PHASAR-based PICs for WDM-applications

Citation for published version (APA):

Document status and date:
Published: 01/01/1997

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
PHASAR-based PICs for WDM-applications

M.K. Smit

Delft University of Technology
Department of Electrical Engineering, P.O. Box 5031, 2600 GA Delft, The Netherlands
Tel: +31-15-2782279, Fax: +31-15-2784046, E-mail: smit@et.tudelft.nl

ABSTRACT

Wavelength multiplexers, demultiplexers and routers based on optical phased arrays play a key role in multi-wavelength telecommunication links and networks. Photonic integration of PHASARS with active components will provide the functionality required in tomorrow's multi-wavelength networks.

SUMMARY

Commercial interest in multi-wavelength components and systems is rapidly increasing. WDM provides a new dimension for solving capacity and flexibility problems in the telecommunication network. It offers a huge transmission capacity and allows for novel network architectures which offer much more flexibility than the current networks [1,2]. Multi-wavelength links and networks require optical components with an increased functionality, such as multi-wavelength (MW) receivers, MW-sources, add-drop multiplexers and optical cross connects.

A key component in MW-devices and circuits is the wavelength (de)multiplexer. Phased array (PHASAR) demultiplexers have proven to be robust components [3] which are particularly suitable for integration with other components. Integration with detectors in MW-receivers [4,5], with optical amplifiers in MW-lasers [6,7] and with optical switches in MW-add-drop multiplexers [8,9] has been reported.

Photonic integration offers the potential to provide the functionality required in future MW-networks in a compact way. Performance and fabrication issues of integrated PHASAR-based devices will be discussed.
References.


87