A strong relationship between new and old inversion mechanisms
Dijksman, E.A.

Published in:
Journal of Engineering for Industry : Transactions of the ASME

Published: 01/01/1971

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 13. Sep. 2017
A Strong Relationship Between New and Old Inversion Mechanisms

Application of the theory on cognate six-bars of Watt's type makes it possible to link the well-known inversion mechanisms through mechanical cognation. It is proved that the inversors of Peaucellier, Hart, and Sylvester are cognates, though they do not all have the same number of links and turning-joints. As side-lines, two new inversion linkages and two other straight-line mechanisms are found. All of them are each other’s cognate and produce the same straight line. The presented cognates cover a wide range in sizes.

1 Introduction

As early as 1864 the French captain A. Peaucellier invented a nowadays well-known planar inverter [1]. The invented linkage was based on the mathematical principle of inversion with respect to some unit circle in the plane. This unit circle enables the mathematician to transform an arbitrarily chosen curve into what may be termed the inverted curve. So it is known that a circle transforms itself onto another one, except the circle going through the inversion center O, which will transform itself into a straight line. This line is the radical axis of the two circles. It is the latter property which makes it possible to design straight-line mechanisms. To carry this out, one merely needs an inversion mechanism which possesses two coupler-points P and Q moving so that $OP \cdot OQ = \text{constant}$. (The inversion center O must then be made a fixed center of pivot on the frame.) The Peaucellier-cell, having a rhombus and a kite as kinematic sub-chains, possesses the required condition and may be used for designing a straight-line generating mechanism as described above. This straight-line mechanism of Peaucellier consists of 8 bars and 6 turning-joints (see Fig. 1).

Later, in 1875, H. Hart discovered another well-known inverter, which is called the contraparallelogram chain of Hart [2]. This chain is merely a four-bar with the points O, P, and Q located on three successive sides of the contraparallelogram. (The points also lie—and remain lying so during motion—on some straight line parallel to the diagonals of the contraparallelogram.) A straight-line mechanism using Hart’s cell is shown in Fig. 2. Here the mechanism consists of only 6 bars and 7 turning-joints.

Although both linkages are inversion mechanisms, they seem to have no mechanical connection. And so even in literature they are presented as two quite different inventions merely linked together through a common mathematical property. It is for this reason that the writer of the present paper has searched for a mechanical conjunction between the two inversors. By doing so, new straight-line mechanisms have been obtained as side-lines. The connection sought for is such that the two inversors are cognates of each other. That is to say that the two mechanisms are linked together in such a way that the two corresponding points, generating the same straight line, coincide at any point of time. Besides, they have a common fixed center of pivot on the frame, and corresponding links move at the same angular velocity at any point of time. It will be proved, therefore, that both mechanisms are cognates of another less-known
The quadruplanar inversor of Sylvester and Kempe [3] (see Fig. 3) may be seen as a six-bar linkage of Watt. As a consequence, one may obtain \(n \) cognates [5] using the inversor as the initial mechanism from which to start the design. The cognition is shown by the following sequence of design instructions (see Fig. 4):

\[(a) \text{ The initial mechanism consists of the contraparallelogram } BCDK, \text{ the four-bar } A_0A'B'B_e \text{ (with } A_0A = A_eB_e \text{), and the similar and rigid triangles } \Delta B'B_eC, \Delta A'BK, \text{ and } \Delta DEC. \]

\[(b) \text{ Turn the contraparallelogram } BCDK \text{ about } C \text{ over an arbitrarily chosen angle } \alpha - \beta, \text{ multiply the contraparallelogram geometrically from } C \text{ by the arbitrarily chosen factor } f_\alpha = B'C/BC. \]

\[(c) \text{ One thus obtains } \Delta BCDK \sim \Delta BCDK. \]

\[(d) \text{ Form the rigid and similar triangles } \Delta B'C'B_e \text{ and } \Delta D'CE. \]

\[(e) \text{ Turn the four-bar } A_0A'B'B_e \text{ about } B_e \text{ over the angle } \beta = \gamma + B'B_eK = \gamma + A_eB_eA' \text{ and multiply simultaneously from } B_e \text{ by the factor } f_\beta = B'B_e/B_e = A_eB_e/A_eB_e. \]

\[(f) \text{ One thus obtains the four-bar } \Delta A_0A'B'B_e \sim \Delta A_0A'B'B_e \text{ with } A_0A' = A_0B_e. \]

\[(g) \text{ Form the rigid and similar triangles } \Delta A'B'K' \text{ and } \Delta D'EC. \]

The cognate quadruplanar inversor thus obtained consists of the contraparallelogram \(BCDK' \), the four-bar \(A_0A'B'B_e \) (with \(A_0A' = A_0B_e \)), and the similar triangles \(B'C'B_e, B'A'K' \), and \(D'E \). The initial and the obtained cognates both have the fixed center \(B_e \), the turning-joint \(C \), and the generating point \(E \) in common. Both mechanisms are inversors and generate the same straight line, produced by the coupler-point \(E \).
3 The Inversor of Hart Obtained as a Cognate From the Quadruplanar Inversor of Sylvester and Kempe

By a special choice of α in the design presented in the preceding section, one may obtain the well-known inversor of Hart. This may be done by making $\alpha = \angle BCB_0$ and by choosing f_a arbitrarily, but $\neq B_0 C / BC$.

The obtained cognate is shown in the Figs. 2 and 5. The straight line generated by point E is perpendicular to $B_0 A_0'$. (In this special case the points B_0, A_0', and E remain on the same straight line, moving parallel to the diagonals of the contraparallelogram $B_0 C D' E K'$ and they are points on the sides of this contraparallelogram.)

4 The Design of a New Inversor Through Cognition With the Inversor of Sylvester and Kempe

Taking the quadruplanar inversor of Sylvester and Kempe as the initial mechanism, one may obtain a quite new inversor through the following pattern of instructions in design (see Fig. 6):

(a) Turn the contraparallelogram $B_0 C D' E K'$ about C over $\alpha = \angle BCB_0 = \angle DCE$ and multiply simultaneously from C by the factor $f_a = CB_0 / CB = CE / CD$.

(b) One thus obtains the contraparallelogram $B_0 C E K' \sim \Box BCDK$.

(c) Frame the linkage parallelogram $C B_0 K' B'$.

(d) Next, turn the four-bar $A_4 A B B_0$ about B_0 over $\beta = \angle B B_0 C$ and multiply the four-bar geometrically from B_0 by the factor $f_\beta = C B_0 / B B_0$.

(e) One obtains the four-bar $A_4' A' C B_0 \sim \Box A_4 A B B_0$ with $A_4'' A'' = A_4'' B_0$.

(Since $A'' C$ and $C B_0'$ move with identical angular velocity and both have a common turning-joint C, they form one rigid bar. This bar is a stretched one since $\angle (A'' C, B_0'C) = \beta + \gamma + \alpha = \pi$ rad. Moreover,

$$A'' C = A'' C \cdot B K \cdot B A = A'' C \cdot B C \cdot B_0 B$$

$$B_0 C = A B \cdot B_0 C \cdot B K = B B_0 \cdot B_0 C \cdot B C = 1$$

Thus $A'' C = B_0 C$.)

The obtained cognate inversor consists of the contraparallelogram $B_0 C E K'$, the parallelogram $C B_0 K' B'$, and the four-bar
The obtained cognate inversor is shown in Fig. 9. The linkage will be called an inversion mechanism of the second kind since it contains the same properties as the inversor of the first kind. Here also \(B_1A'\cdot B_3E = \text{constant} \) and both cognates have 8 bars and 7 turning-joints. The straight line, generated by \(E\), here also, is perpendicular to \(A_1'B_3\).

6 A New Straight-Line Mechanism as a Cognate of the Inversor of the First Kind

As before, taking the inversor of Fig. 7 as the initial mechanism, one may obtain a straight-line mechanism having 8 bars and only 6 turning-joints. This may be done using the following instructions (see Fig. 10):

(a) Make the four-bar linkage \(A^*C'B_3E' = A_1^*C'B_3E\).
(b) Frame the linkage parallelogram \(A_1^*B_3K'A'\).

One thus obtains the cognate straight-line mechanism shown in Fig. 11. The mechanism consists of the contraparallelogram \(B_3C'K'E\), the parallelogram \(A_1^*B_3K'A'\), and the four-bar \(A^*C'B_3E\) with \(A^*C = A_1^*B_3\). The designer, using such a mechanism, may freely choose the lengths \(A^*K', A^*C,\) and \(A_1^*B_3\) but they have to remain equal to each other.

Although the mechanism bears some resemblance to the planar Kempe linkage of the first kind [3, 6], they are no cognates of each other, since the four-bar \(A^*K'E\) (or another one, derived from this one, through some change in the sequence of the links) is not materialized in any sub-chain of the linkage of Kempe (see Fig. 17).

7 Cognate Straight-Line Mechanisms

Taking the mechanism of Fig. 11 as the initial one, another straight-line mechanism may be obtained through cognation. The design instructions are (see Fig. 10):

(a) Frame the kite \(C'A^*K'\cdot A^*\) and the linkage parallelogram \(B_3C'\cdot A_1^*A_3\).
(b) Take point \(A_3^*\) as a fixed center of pivot on the frame.

The obtained cognate is the straight-line mechanism shown in Fig. 12. As before, the straight path of \(E\) is perpendicular to frame link \(B_3A_3^*\).

Starting with the inversor of Fig. 7 as the initial mechanism, one seemingly obtains a third straight-line mechanism bearing some resemblance to the mechanisms of the Figs. 11 and 12. The design instructions are (see Fig. 13):
8 The Inversor of Peaucellier as a Cognate of the Fourth Straight-Line Linkage

The well-known inversor of Peaucellier may be obtained from the straight-line mechanism shown in Fig. 15, through cognation. Taking the mechanism of Fig. 15 as the initial one, one may design the inversor with the following instruction (see Fig. 16):

(a) Frame the parallelograms $B_0C^'E'C^'$ and $B_0K'E^'K^'$.
(b) Make the four-bar $\square A^'K'E^'C^' \cong \square A^*A^*C'B_0$.
(c) Frame the parallelogram $B_0C^*A^*A^*$.

The obtained cognate is shown in Fig. 14. (One may observe however, that the mechanism of Fig. 14 is identical to that of Fig. 11: They are merely drawn in different positions.)

Apparently a fourth straight-line mechanism of this kind may be obtained, using the mechanism of Fig. 14 as the initial mechanism. The design instructions are (see Fig. 13):

(a) Frame the kite $K^*A^*C^*A^*$ and the linkage parallelogram $B_0K^*A^*A^*$.
(b) Turn the joint A_s into a fixed center of pivot on the frame. One thus obtains the cognate straight-line mechanism shown in Fig. 15. This is identical to the straight-line mechanism shown in Fig. 12: They merely differ in position.

The well-known inversor of Peaucellier may be obtained from the straight-line mechanism shown in Fig. 15, through cognation. Taking the mechanism of Fig. 15 as the initial one, one may design the inversor with the following instruction (see Fig. 16):

(a) Frame the parallelograms $A_sA^*C^*A^*$ and $B_0K'E^'K^'$ and the kite $A'C'E^*K^*$.

One thus obtains the inversor of Peaucellier, as shown in Fig. 1. All the foregoing shows that the mechanisms presented in the illustrations 1—10 are related through cognation. It is thus shown that both inversors, viz., the one of Hart and the one of Peaucellier, are cognates of each other.
References

DISCUSSION

Fan Y. Chen

This is a remarkable discovery. A century has passed since the invention of the first mechanical inverter, and we are now aware of the two historical inverse mechanisms: The Peaucellier cell and contraparallelogram of the Hart cell are cognates of each other. As a consequence of this, a new class of straight-line mechanisms is being introduced. Aside from theoretical interest, cognates provide alternative linkages with different link sizes and configurations, force transmission characteristics, crank rotations, and fixed pivot locations to provide a variety of design choices.

The writer would like to point out that the crossed parallelogram of Hart can directly replace the Peaucellier cell without using the quadruplanar inverter of Sylvester and Kempe. In Fig. 18, the Peaucellier cell of the first kind and the crossed parallelogram of Hart are presented superimposed upon each other. By using the same mechanism configurations and notations as those of the authors, the isosceles B1K'Q'C' and the kite B1K'Q'C'' of the Peaucellier cell are shown in solid lines, the crossed parallelogram of Hart B1C'D'K'1 is shown in dashed lines, and B1A1, A1, Q are the auxiliary links. The steps outlined below show how to obtain one from the other:

1. Starting from the given Peaucellier cell, draw CP in parallel to OC' and extend CP to D' such that PD'=CP=OC'.
2. Draw CO in parallel to PC'' and extend CO to B' such that OB'=CO=PC''.
3. From point B' draw a straight line B' in parallel to OK' and extend it to point K' such that QK'=B'Q=OK'.
4. Join K'D' to complete the construction of the crossed parallelogram of Hart.

Note that both mechanisms have the fixed centers B1 and A1', points P, Q, and A1, and the generating point E in common. Without difficulty, we can also show that the Peaucellier cell of the second kind is cognate to the inverter of Hart.

Furthermore, it is conceivable that all cognate mechanisms presented in the paper are extensible to become spherical mechanisms by means of stereographic projection and that some of the cognate mechanisms may be used to generate inverse-square law force (a property which the Peaucellier cells can be used to simulate, as has been shown by the discussor).4

1 Associate Professor of Mechanical Engineering, Ohio University, Athens, Ohio.
2 There are two versions of Peaucellier cell. They differ only by the relative proportions of the link length.
3 From point E, draw a straight line E in parallel to B' and extend it to point K' such that QK'=B'Q=OK'.