Analyticity spaces of self-adjoint operators subjected to perturbations with applications to Hankel invariant distribution spaces

Citation for published version (APA):

Published: 01/01/1983

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

Memorandum 1983-15

November 1983

ANALYTICITY SPACES OF SELF-ADJOINT OPERATORS SUBJECTTED TO
PERTURBATIONS WITH APPLICATIONS TO HANKEL
INVARIANT DISTRIBUTION SPACES

by

S.J.L. van Eijndhoven and J. de Graaf

Eindhoven University of Technology
Department of Mathematics and Computing Science
PO Box 513, 5600 MB Eindhoven
The Netherlands
Analyticity Spaces of Self-Adjoint Operators Subjected to Perturbations with Applications to Hankel Invariant Distribution Spaces

by

S.J.L. van Eijndhoven and J. de Graaf

Abstract

A new theory of generalized functions has been developed by one of the authors (De Graaf). In this theory the analyticity domain of each positive self-adjoint unbounded operator A in a Hilbert space X is regarded as a test space denoted by $S_{X,A}$. In the first part of this paper, we consider perturbations P on A for which there exists a Hilbert space Y such that $A + P$ is a positive self-adjoint operator in Y. In particular, we investigate for which perturbations P and for which $v > 0$, $S_{X,A}^v \subset S_{Y,(A+P)^v}$. The second part is devoted to applications. We construct Hankel invariant distribution spaces. The corresponding test spaces are described in terms of the S_α^K spaces introduced by Gelfand and Shilov. It turns out that the modified Laguerre polynomials establish an uncountable number of bases for the space of even entire functions in $S_{\frac{1}{2}}^\mu$ ($\frac{1}{2} \leq \mu \leq 1$). For an even entire function we give necessary and sufficient conditions on the coefficients in the Fourier expansion with respect to each basis such that $\varphi \in S_{\frac{1}{2}}^\mu$.

A.M.S. Classifications: 46F12, 46F05, 33A65.
Introduction

Let X be a separable infinitely dimensional Hilbert space and let L be a linear operator in X. Then $D^\omega(L)$, the analyticity domain of L, consists of all vectors $v \in \bigcap_{n=1}^{\infty} D(L^n)$ satisfying

$$\exists a > 0 \exists b > 0 \forall n \in \mathbb{N} : \|L^n v\| \leq n! a^n b.$$

For a positive self-adjoint operator A in X, Nelson ([13]) proved that $D^\omega(A)$ can also be described as

$$D^\omega(A) = \bigcup_{t > 0} e^{-tA}(X) = \{ e^{-tA}w | w \in X, t > 0 \}.$$

Instead of $D^\omega(A)$ we use the notation $S_{X,A}$ introduced by De Graaf. The spaces of type $S_{X,A}$ are called analyticity spaces. They are non strict inductive limits of Hilbert spaces. Together with their strong duals $T_{X,A}$ they establish the functional analytic description of the distribution theory in [G].

For each positive constant v the operator A^v is well-defined, positive and self-adjoint in X. So it makes sense to write S_{X,A^v}. The question arises for which perturbations P on A there can be found a Hilbert space Y such that $A + P$ is a positive self-adjoint operator in Y and $S_{X,A^v} \subset S_{Y,(A+P)^v}$. In the paper ([1]) the case $v = 1$ has been considered. Also some results concerning analytic dominancy can be found there.

In the second part of this paper we study a class of Hankel invariant test- and distribution spaces, and, also their relations to the S_{a^α}-spaces of Gelfand and Shilov ([9]). With our papers [2] and [4] we have started this study. There we have shown that the space of even functions in $S^{1/2}$ remains invariant...
under the modified Hankel transforms H_α, $\alpha > -1$, defined by

$$(H_\alpha f)(x) = \int_0^\infty (xy)^{-\alpha} J_\alpha(xy) f(y) y^{2a+1} dy.$$

Moreover, for each $\alpha > -1$ the space of even functions in $S_{1/2}$ equals the analyticity space S_{X_α, A_α} where $X_\alpha = \ell_2((0, \infty), x^{2a+1} dx)$ and $A_\alpha = -\frac{d^2}{dx^2} + x^2 - (2a+1)x \frac{d}{dx}$. The operator A_α has an orthonormal basis of eigenvectors $(\xi_n^{(\alpha)})_{n=0}^\infty$ with eigenvalues $4n + 2a + 2$. So for each even $f \in S_{1/2}$ there exists an ℓ_2-sequence $(\omega_n^{(\alpha)})_{n=0}^\infty$ and $t > 0$ such that

$$f = \sum_{n=0}^\infty \exp(-(4n + 2a + 2)t) \omega_n^{(\alpha)} \xi_n^{(\alpha)}.$$

Here we prove similar results for the spaces $S_{X_\alpha, (A_\alpha)^\nu}$ with $\nu \geq \frac{1}{2}$ and $\alpha > -1$. It will follow that for all $\alpha, \beta > -1$ and all $\nu \geq \frac{1}{2}$

$$S_{X_\alpha, (A_\alpha)^\nu} = S_{X_\beta, (A_\beta)^\nu}.$$

For $\nu \in [\frac{1}{2}, 1]$ the analyticity space $S_{X_{-\frac{1}{2}}, (A_{-\frac{1}{2}})^\nu}$ contains just the even functions in $S_{1/2}$.

1. General theory

Let \mathcal{A} be a positive self-adjoint operator in a Hilbert space X and let $\nu > 0$. It makes sense to write \mathcal{A}^{ν} and the operator \mathcal{A}^{ν} is positive and self-adjoint in X. So the space $S_{X, \mathcal{A}^{\nu}}$ is well-defined. Its elements are characterized by
(1.1) Lemma

For each $f \in D(\mathcal{A}^\infty) \subset X$ the following statements are equivalent

(i) $\exists a > 0 \exists b > 0 \forall k \in \mathbb{N} : \|A^k f\| \leq (k!)^{1/v} a b$;

(ii) $f \in S_X, A^\nu$.

Proof

(i) \Rightarrow (ii). Let $N \in \mathbb{N}$ and let $\tau > 0$. Consider the following estimation

$$(*) \quad \sum_{k=0}^{N} \frac{\tau^k}{k!} \|A^k f\| \leq \sum_{k=0}^{N} \frac{\tau^k}{k!} \|A^{-1 + v k - [vk]}\| \|A^{[vk]} + 1\| f\| \leq$$

$$\leq b \sum_{k=0}^{N} \frac{\tau^k}{k!} (\lfloor v k \rfloor + 1)! v k a$$

where $b = b \sup_{k \in \mathbb{N} \cup \{0\}} (\|A^{-1 + v k - [vk]}\|)$. The following inequalities are valid

$$\lfloor v k \rfloor + 1 \leq (\lfloor v k \rfloor + 1)(\lfloor v k \rfloor + 1) \leq e(\lfloor v k \rfloor + 1)(v k)^v .$$

So $(\lfloor v k \rfloor + 1)! \leq (e(\lfloor v k \rfloor + 1))^{1/v} (v e)^{v k}$, and for $\tau < (v e a)^{-1}$ the series

$$(*)$$

converges. It implies that $f \in \exp(-\tau A^\nu)(X)$.

(ii) \Rightarrow (i) Suppose $g \in S_{X, A^\nu}$. Then there exists $s > 0$ and $w \in X$ such that $g = \exp(-s A^\nu) w$. Let $k \in \mathbb{N}$. Then we estimate as follows

$$\|A^k f\| \leq \|A^k \exp(-s A^\nu)\| \|w\| = \|w\| \left(\frac{k}{vs}\right)^{k/v} e^{-k/v} \leq$$

$$\leq \|w\| \left(1/vs\right)^{k/v} \cdot (k!)^{1/v} .$$

With $a = (vs)^{-1/v}$ and $b = \|w\|$ the implication (ii) \Rightarrow (i) has been proved. □
Let \(L \) be an unbounded linear operator in \(X \). Then the operators \(L^2, L^3, \ldots \) are well-defined. As a corollary of the previous theorem we get

(1.2) **Corollary**

Let \(n \in \mathbb{N} \) and let \(f \in D^\omega(L) \). The following statements are equivalent.

(i) \(\exists a > 0, \exists b > 0, \forall k \in \mathbb{N} : \| L^k f \| \leq (k!)^{1/n} a b \);

(ii) \(f \in D^\omega(L^n) \).

As mentioned in the introduction we investigate perturbations \(P \) on \(A \) such that \(D^\omega((A + P)^v) \supset S_{X,A^v} \). For \(v = 1 \) the following result has been proved in [1]. Here we consider general \(v > 0 \).

(1.3) **Theorem**

Let \(P \) be a linear operator in \(X \) with \(D(P) \supset S_{X,A^v} \). Suppose the following conditions are satisfied

(i) There exists a Hilbert space \(Y \) such that \(\exp(-t A^v) \) maps \(X \) into \(Y \) for all \(t > 0 \);

(ii) In addition, \(A + P \) defined on \(S_{X,A^v} \) is positive and essentially self-adjoint in \(Y \).

(iii) There exists an everywhere defined, monotone non-increasing function \(\varphi \) on \((0,1)\) such that

\[\forall r: 0 < r < 1 : \| \exp(r A^v) PA^{-1} \exp(-r A^v) \|_X \leq \varphi(r) . \]

Then \(S_{X,A^v} \subset S_{Y,(A+P)^v} \).
Proof

We note first that $S_{X^p A^v} = \bigcup \text{exp}(-t A^v)(X)$. So let $0 < t < 1$, and let $0 < t' < 1$.

Let $t > 0$, $0 < t < T$, and let $s = t - \tau$. We want to estimate the norm of the operator $\exp(t A^v) (A + P)^k \exp(-t A^v)$ for each $k \in \mathbb{N}$. Therefore we factor as follows

$$\exp(t A^v) (A + P)^k \exp(-t A^v) =$$

$$= \prod_{j=0}^{k-1} \left\{ \exp \left((\tau + \frac{i}{k} s) A^v \right) (I + P A^{-1}) \exp \left(-(\tau + \frac{i}{k} s) A^v \right) A \exp \left(-\frac{s}{k} A^v \right) \right\} .$$

This factoring yields the estimate

$$\| \exp(t A^v) (A + P)^k \exp(-t A^v) \| \leq \| A \exp \left(\frac{s}{k} A^v \right) \|^k .$$

$$\| \exp(t A^v) (A + P)^k \exp(-t A^v) \| \leq \| A \exp \left(\frac{s}{k} A^v \right) \|^k .$$

$$\leq (k!)^{1/v} \left(\frac{1}{v_s} \right)^{k/v} \prod_{j=0}^{k-1} (1 + \varphi(\tau + \frac{i}{k} s)) .$$

Since $\varphi(\tau + \frac{i}{k} s) \leq \varphi(\tau)$ for all $j = 0, 1, \ldots, k - 1$, we get

$$\prod_{j=0}^{k-1} (1 + \varphi(\tau + \frac{i}{k} s)) \leq (1 + \varphi(\tau))^k .$$

Thus we have proved that

$$\forall t > 0 \forall \tau, 0 < t < T : \exists a \in \mathbb{N} \forall \varphi \in \mathfrak{F} \{0\} : \| \exp(t A^v) (A + P)^k \exp(-t A^v) \| \leq (k!)^{1/v} a^k .$$

Let $t > 0$ and let $w \in X$. Set $f = \exp(-t A^v) w$. Then for $0 < \tau < t$ fixed there
exists a $\alpha > 0$ such that

$$\| (A + P)^k f \|_Y \leq \| \exp(-t \mathcal{A}^\nu) \|_{X \to Y} \| \exp(\mathcal{T} \mathcal{A}^\nu) (A + P)^k f \|_X \leq$$

$$\leq \| \exp(-t \mathcal{A}^\nu) \|_{X \to Y} \| w \|_X \mathcal{A}^k (k!)^{1/\nu} .$$

From Lemma (1.1) it follows that $f \in S_{Y, (A+P)^\nu}$.

Remark: Suppose there exists $k \in \mathbb{N}$ such that the operator \mathcal{A}^{-k} maps X continuously into Y. Then Condition (1.3.i) is fulfilled because

$$\| \exp(-t \mathcal{A}^\nu) \|_{X \to Y} \leq \| \mathcal{A}^{-k} \|_{X \to Y} \| \mathcal{A}^k \exp(-t \mathcal{A}^\nu) \|_X .$$

(1.4) Corollary

Let \mathcal{P} be an operator in X and let $n \in \mathbb{N}$ with $D(\mathcal{P}) \supset S_{X, \mathcal{A}^n}$. Suppose there exists an everywhere defined monotone non-increasing function φ on $(0,1)$ such that

$$\forall r < 1 : \| \exp(r \mathcal{A}^n) \mathcal{P} \mathcal{A}^{-1} \exp(-r \mathcal{A}^n) \| \leq \varphi(r) .$$

Then $S_{X, \mathcal{A}^n} \subset D^{\mathcal{O}}((A + \mathcal{P})^n)$.

Proof

As in the proof of the previous theorem: $\forall t > 0 \forall \tau, 0 < \tau < \mathcal{T} \exists \alpha > 0 \forall k \in \mathbb{N}$:

$$\| \exp(\mathcal{T} \mathcal{A}^n) (A + \mathcal{P})^k \exp(-t \mathcal{A}^n) \| \leq (k!)^{1/n} a^k .$$

So for $f = \exp(-t \mathcal{A}^n)w$, $t > 0$, $w \in X$, we get

$$\| (A + P)^k f \|_X \leq \| \exp(\mathcal{T} \mathcal{A}^n) (A + P)^k \exp(-t \mathcal{A}^n) \| \| w \| \leq$$

$$\leq (k!)^{1/n} a^k \| w \|. \quad \square$$
Remark: If \(P \) satisfies the conditions in Corollary (1.4), then \(A^n \) analytically dominates \((A+P)^n\). (For the terminology, see [6]).

In order to prove the converse statement of Theorem 3, i.e.

\[S_{X,A} \subseteq S_{X,(A+P)^n} \]

we have to interchange the roles of \(A \) and \(A + P \). Put differently, if we write \(B = A + P \) and hence \(A = B - P \), then we have to check whether the pair \(B,P \) satisfies the conditions required in Theorem (1.3).

2. Hankel invariant distribution spaces

In our papers [2], [4] on Hankel invariant distribution spaces the following results have been proved.

Let \(A_\gamma \) denote the differential operator \(-\frac{d^2}{dx^2} + x^2 - \frac{2\gamma + 1}{x} \frac{d}{dx}\) and let \(X \) denote the Hilbert space \(L^2((0,\infty), x^{2\gamma + 1} dx) \) where we take \(\gamma > -1 \). Then for every \(\alpha, \beta > -1 \) we have shown that

\[S_{X,\alpha,A} = S_{X,\beta,A} \]

Moreover, \(f \in S_{X,\gamma,A_\gamma} \) if and only if \(f \) is extendable to an even function in \(S_1^\frac{1}{\gamma} \). Also, it has been proved that the space \(S_{X,\gamma,A_\gamma} \) remains invariant under the modified Hankel transform \(\mathcal{H}_\gamma \) defined by

\[(\mathcal{H}_\gamma f)(x) = \int_0^\infty f(y)(xy)^{-\gamma} J_\gamma(xy)y^{2\gamma+1} dy \]
Here J_γ denotes the Bessel function of the first kind and of order γ. The Hankel transform \mathcal{H}_γ extends to a unitary operator on X_γ and $\mathcal{H}_\gamma A_\gamma = A_\gamma \mathcal{H}_\gamma$. It follows that for all $\alpha, \beta > -1$, \mathcal{H}_α maps the space S_{X_{β}, A_β} onto itself.

By duality, each \mathcal{H}_α leaves invariant each space of generalized functions $\Gamma_{X_{\beta}, A_\beta}$ corresponding to S_{X_{β}, A_β}. The functions $\mathcal{L}_n^{(\gamma)}$ defined by

$$\mathcal{L}_n^{(\gamma)}(x) = \left(\frac{2^{\gamma} \Gamma(n+1)}{\Gamma(n+\gamma+1)} \right)^\frac{1}{2} e^{-\frac{x^2}{2}} L_n^{(\gamma)}(x^2), \quad n \in \mathbb{N} \cup \{0\}, \quad x > 0$$

establish an orthonormal basis in X_γ and they are the eigenfunctions of the self-adjoint operator A_γ with respective eigenvalues $4n + 2\gamma + 2$. Here $l_n^{(\gamma)}$ denotes the n-th generalized Laguerre polynomial of order γ. We note that $\mathcal{H}_\gamma \mathcal{L}_n^{(\gamma)} = (-1)^n \mathcal{L}_n^{(\gamma)}$. We recall that for each $\alpha, \beta > -1$ the functions $f \in S_{X_{\alpha}, A_\alpha}$ can be written as $f = \sum_{n=0}^{\infty} \omega_n L_n^{(\beta)}$ where $\omega_n = O(e^{-nt})$ for some $t > 0$.

With the aid of the theory presented in the first part of this paper we extend the mentioned results and prove that

$$S_{X_{\alpha}, (A_\alpha)^\nu} = S_{X_{\beta}, (A_\beta)^\nu}$$

for all $\nu \geq \frac{1}{2}$ and all $\alpha, \beta > -1$. In addition, we show that for each $\nu \in [\frac{1}{2}, 1]$ and all $\alpha > -1$ the space $S_{X_{\alpha}, (A_\alpha)^\nu}$ contains just the even functions of the Gelfand-Shilov space $S_{1/2, \nu}^{1/2, \nu}$. So each even function $f \in S_{1/2, \nu}^{1/2, \nu}$ admits Fourier expansions $f = \sum_{n=0}^{\infty} \rho_n^{(\alpha)} L_n^{(\alpha)}$ with $\rho_n^{(\alpha)} = O(\exp(-n^\nu t))$.
Let $\alpha, \beta > -1$. Then A_{α} can be written as

$$A_{\alpha} = A_{\beta} + 2(\alpha - \beta)R$$

where we put $R = \frac{1}{x} \frac{d}{dx}$. Obviously, A_{α} can be obtained from A_{β} by means of the 'perturbation' $2(\alpha - \beta)R$, and A_{β} from A_{α} by means of $2(\beta - \alpha)R$. In order to show that R and hence cR, $c \in C$, is a perturbation in the sense of Theorem (1.3) we compute the matrix of R with respect to the orthonormal basis $(\ell^{(\gamma)}_n)_{n=0}^{\infty}$. To this end, we mention that

$$R \ell^{(\gamma)}_n = -\ell^{(\gamma)}_{n-1}$$

where the relation $\frac{d}{dx} L^{(\gamma)}_n = -L^{(\gamma+1)}_n$ is used.

Now $L^{(\gamma+1)}_k = \sum_{j=0}^{k} L^{(\gamma)}_j$ and hence

$$R \ell^{(\gamma)}_n = -\left(\frac{2\Gamma(n+1)}{\Gamma(n+\gamma+1)}\right)^{\frac{1}{2}} \left[\left(\frac{\Gamma(n+\gamma+1)}{\Gamma(n+1)}\right)^{\frac{1}{2}} \ell^{(\gamma)}_n + 2 \sum_{m=0}^{n-1} \left(\frac{\Gamma(m+\gamma+1)}{\Gamma(m+1)}\right)^{\frac{1}{2}} \ell^{(\gamma)}_m \right].$$

Thus we obtain the matrix of R with respect to the basis $(\ell^{(\gamma)}_n)_{n=0}^{\infty}$

$$\begin{pmatrix}
-1 & \text{if } \ell = k, \ k \in \mathbb{N} \\
0 & \text{if } \ell > k, \ k \in \mathbb{N} \cup \{0\} \\
-2\left(\frac{\Gamma(k+1)}{\Gamma(k+\gamma+1)}\right)^{\frac{1}{2}} \left(\frac{\Gamma(k+\gamma+1)}{\Gamma(\ell+1)}\right)^{\frac{1}{2}} & \text{if } 0 \leq \ell < k, \ k \in \mathbb{N}.
\end{pmatrix}$$
The inequality (cf. [11])

\[n^{1-s} \leq \frac{\Gamma(n+1)}{\Gamma(n+s)} \leq (n+1)^{1-s}, \quad 0 \leq s \leq 1, \quad n \in \mathbb{N} \]

yields

\[|(R \mathcal{L}^{(\gamma)}_k, \mathcal{L}^{(\gamma)}_k)| \leq \begin{cases} 2 & \text{if } \gamma \geq 0, \quad 0 \leq \ell < k, \quad k \in \mathbb{N} \cup \{0\} \\ 2k^{-\gamma/2} & \text{if } -1 < \gamma < 0, \quad 0 \leq \ell < k, \quad k \in \mathbb{N} \cup \{0\}. \end{cases} \]

For each \(\nu \geq \frac{1}{2} \), the operator \(\exp(r(A_\gamma)^\nu) R(A_\gamma)^{-1} \exp(-r(A_\gamma)^\nu) \) has to satisfy Condition (iii) of Theorem (1.3). We define the weighted shift operators

\[W^{(n)}_{\gamma, \nu}(r), \quad n \in \mathbb{N} \cup \{0\}, \]

with norms

\[\| W^{(n)}_{\gamma, \nu}(r) \|_{X, \gamma} = \sup_{\ell \in \mathbb{N} \cup \{0\}} |(R \mathcal{L}^{(\gamma)}_k, \mathcal{L}^{(\gamma)}_k)| \frac{\exp(-r(\ell + n)^{\frac{\gamma}{2}})}{4(\ell + n) + 2\gamma + 2}. \]

So \(\| W^{(0)}_{\gamma, \nu}(r) \| \leq \frac{1}{2\gamma + 2} \). Now let \(n \in \mathbb{N} \). The inequality

\[(\ell + n)^{\nu} - \ell^{\nu} \geq (\ell + n)^{\frac{1}{2}} - \ell^{\frac{1}{2}} \]

is valid for all \(\ell \in \mathbb{N} \cup \{0\} \) and all \(\nu \geq \frac{1}{2} \). In addition, the matrixelements

\[|(R \mathcal{L}^{(\gamma)}_\ell, \mathcal{L}^{(\gamma)}_\ell)| \]

are smaller than \(2(\ell + n)^{-\gamma/2} \) for \(-1 < \gamma < 0\) and smaller than \(2 \) for \(\gamma \geq 0 \). If \(-1 < \gamma \leq 0\) we therefore get

\[\| W^{(n)}_{\gamma, \nu}(r) \| \leq \sup_{\ell \in \mathbb{N} \cup \{0\}} \frac{2(\ell + n)^{-\gamma/2}}{4(\ell + n) + 2\gamma + 2} \exp(-r((\ell + n)^{\frac{1}{2}} - \ell^{\frac{1}{2}})) \leq \sup_{\ell \in \mathbb{N} \cup \{0\}} (1(\ell + n)^{-1} \gamma - 1) \exp(-\frac{1}{2} \ln(\ell + n)^{-1}) \leq \left(1 + \frac{1}{\gamma} \right)^{2+\gamma} \left(\frac{1}{\gamma} \right)^{2+\gamma} \exp(2 + \gamma) =: d_n \left(\frac{1}{\gamma} \right)^{2+\gamma} \left(\frac{1}{\gamma} \right)^{2+\gamma}. \]
Since
\[\exp(r(A_\gamma)^{\nu}) R(A_\gamma)^{-1} \exp(-r(A_\gamma)^{\nu}) = \sum_{n=0}^{\infty} \omega^{(n)}_{\gamma,\nu}(r) \]
we can use the following straightforward estimate for all \(r > 0 \)

\[
\| \exp(r(A_\gamma)^{\nu}) R(A_\gamma)^{-1} \exp(-r(A_\gamma)^{\nu}) \| \leq \sum_{n=0}^{\infty} \| \omega^{(n)}_{\gamma,\nu}(r) \| \leq \]
\[
\leq \frac{1}{2\gamma + 2} + d_\gamma \left(\frac{1}{r} \right)^{2+\gamma} \sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^{2+\gamma} \leq \frac{d_\gamma \left(\frac{1}{r} \right)^{2+\gamma}}{2\gamma + 2} + \frac{1}{2\gamma + 2}
\]

where \(d_\gamma = d_\gamma \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \right)^{2+\gamma} \right) \). Summarized

(2.1) **Lemma**

Let \(\gamma > -1 \). Then there exist constants \(d_\gamma > 0 \) and \(p_\gamma > 0 \) such that

\[\forall r > 0 : \| \exp(r(A_\gamma)^{\nu}) R A_\gamma^{-1} \exp(-r(A_\gamma)^{\nu}) \| \leq d_\gamma \left(\frac{1}{r} \right)^{p_\gamma} + \frac{1}{2\gamma + 2} . \]

Proof

For \(-1 < \gamma \leq 0 \) the assertion has already been proved. For \(\gamma > 0 \) it follows from the matrix expressions for \(R \) that

\[\| \exp(r(A_\gamma)^{\nu}) R A_\gamma^{-1} \exp(-r(A_\gamma)^{\nu}) \| \leq d_0 \left(\frac{1}{r} \right)^{p_0} + \frac{1}{2\gamma + 2} . \]

In addition, we show that given \(r > 0, \gamma, \delta > -1 \), the operator \(\exp(-r(A_\gamma)^{\nu}) \) maps \(X_{\gamma} \) into \(X_{\delta} \). In [2], p. 17, the following result has been proved

\[\forall s \in \mathbb{N}, \exists \ell \in \mathbb{N} : \| O^{2s}(A_\gamma)^{-\ell} \|_\gamma < \infty . \]
Here Q denotes the multiplication operator in X_γ given by

$$(Qf)(x) = xf(x).$$

Now let $\delta > -1$ and let $f \in X_\gamma$. Put $s := \lceil \max\{0, \frac{\delta - \gamma}{2}\} \rceil + 1$. Then there exists $\ell_0 \in \mathbb{N}$ such that $\|Q_{\gamma}^{2s} A_{\gamma}^{-\ell}\| < \infty$ for all $\ell \geq \ell_0$. So we derive

\begin{align*}
(*) & \quad \int_1^\infty |\langle (A_\gamma)^{-\ell} f \rangle (x)|^2 x^{2s+1} dx = \int_1^\infty x^{2(\delta - \gamma)} |\langle (A_\gamma)^{-\ell} f \rangle (x)|^2 x^{2\gamma+1} dx \\
& \quad \quad \leq \int_1^\infty x^{4s} |\langle (A_\gamma)^{-\ell} f \rangle (x)|^2 x^{2\gamma+1} dx \\
& \quad \quad \leq \|Q_{\gamma}^{2s} (A_\gamma)^{-\ell}\| \gamma \|f\| \gamma.
\end{align*}

Following [12], p. 248, there exists $\ell_1 \in \mathbb{N}$ and $d > 0$ such that

$$\max_{x \in [0, 1]} |(\mathcal{L}_k^{(\gamma)})(x)| \leq d(k + 1)^{\ell_1}.$$

For $\ell > \ell_1$ it yields

\begin{align*}
(**) & \quad \int_0^1 |\langle (A_\gamma)^{-\ell} f \rangle (x)|^2 x^{2s+1} dx \leq \left(\max_{x \in [0, 1]} |\langle (A_\gamma)^{-\ell} f \rangle (x)| \right)^2 \int_0^1 x^{2s+1} dx \\
& \quad \leq \frac{1}{2^s + 2} \left(\sum_{k=0}^{\infty} (f, \mathcal{L}_k^{(\gamma)})_\gamma \left(\frac{1}{4k + 2\gamma + 2} \right)^\ell \max_{x \in [0, 1]} |\mathcal{L}_k^{(\gamma)}(x)| \right)^2 \\
& \quad \leq \frac{1}{2^s + 2} \left(d^2 \sum_{k=0}^{\infty} \frac{(k + 1)^{2\ell}}{(4k + 2\gamma + 2)^{2\ell}} \right) \|f\| \gamma^2.$$

From (\ast) and (\ast\ast) we get

\[\forall \gamma > -1, \forall \delta > -1, \exists \ell \in \mathbb{N}, \exists c > 0, \forall f \in X_\gamma : \]

\[\| (A_\gamma)^{-\ell} f \|_\delta^2 = \int_0^\infty \left| \left((A_\gamma)^{-\ell} f \right)(x) \right|^2 x^{2\delta + 1} dx \leq c \| f \|_\gamma^2 \]

i.e. \((A_\gamma)^{-\ell}\) is a continuous linear operator from \(X_\gamma\) into \(X_\delta\).

(2.2) **Lemma**

Let \(\gamma > -1\). Then for every \(r > 0\), \(\nu > 0\) and \(\delta > -1\) the operator \(\exp(-r(A_\gamma)^\nu)\) is a continuous linear operator from \(X_\gamma\) into \(X_\delta\).

Proof

Let \(r > 0\), \(\nu > 0\) and let \(\delta > -1\). Then there exists \(\ell \in \mathbb{N}\) such that \((A_\gamma)^{-\ell}\) is a continuous linear mapping from \(X_\gamma\) into \(X_\delta\). Hence \(\exp(-r(A_\gamma)^\nu) = (A_\gamma)^{-\ell} \left\{ (A_\gamma)^\ell \exp(-r(A_\gamma)^\nu) \right\}\) is also a continuous linear mapping from \(X_\gamma\) into \(X_\delta\).

\[\square \]

Lemmas (2.1) and (2.2) yield the following important result.

(2.3) **Theorem**

Let \(\alpha, \beta > -1\). Then for every \(\nu \geq 1\)

\[S_{X_\alpha}, (A_\alpha)^\nu = S_{X_\beta}, (A_\beta)^\nu. \]
Proof
Let \(\nu \geq \frac{1}{2} \). We have shown that

- \(\exp(-t(A_\alpha)^\nu), t > 0, \) maps \(X_\alpha \) continuously into \(X_\beta \):
- \(D(\mathcal{R}) \subseteq S_{X_\alpha,(A_\alpha)^\nu}, \) and \(A_\beta = A_\alpha + 2(\alpha - \beta)\mathcal{R} \) is positive and self-adjoint in \(X_\beta \);
- There exist constants \(d_\alpha, p_\alpha > 0 \) such that for all \(r > 0 \)

\[
\|\exp(r(A_\alpha)^\nu) R(A_\alpha)^{-1} \exp(-r(A_\alpha)^\nu)\|_\alpha \leq d_\alpha \left(\frac{1}{r} \right)^{P_\alpha} + \frac{1}{2\alpha + 2}.
\]

So by Theorem (1.3), \(S_{X_\alpha,(A_\alpha)^\nu} \subseteq S_{X_\beta,(A_\beta)^\nu} \). Interchanging \(\alpha \) and \(\beta \) we get the wanted result.

Let \(\alpha > -1 \). Since \(H_\alpha A_\alpha = A_\alpha H_\alpha \), also \(H_\alpha (A_\alpha)^\nu = (A_\alpha)^\nu H_\alpha \). So the Hankel transform \(H_\alpha \) is a continuous bijection on the space \(S_{X_\alpha,(A_\alpha)^\nu}, \nu \geq \frac{1}{2} \), and hence on the spaces \(S_{X_\beta,(A_\beta)^\nu}, \nu \geq \frac{1}{2}, \beta > -1 \). By duality each transform \(H_\alpha \) leaves invariant the spaces of generalized functions \(T_{\nu_\alpha} \). For \(\alpha = -\frac{1}{2} \) we get \(X_{-\frac{1}{2}} = L_2((0,\infty)) \) and \(A_{-\frac{1}{2}} = -\frac{d^2}{dx^2} + x^2 \). The functions \(\mathcal{E}_k^{(-\frac{1}{2})} \) are the even Hermite functions. With the aid of the papers [8] and [10] the following characterization of the spaces \(S_{X_{-\frac{1}{2}},(A_{-\frac{1}{2}})^\nu}, \nu \in [\frac{1}{2},1], \) can be obtained,

\[
f \in S_{X_{-\frac{1}{2}},(A_{-\frac{1}{2}})^\nu} \iff f \text{ is extendable to an even function in the space } S^{1/2\nu}_{1/2\nu}.
\]

The spaces \(S^p_q, p + q \geq 1, p,q \geq 0, \) are introduced by Gelfand and Shilov in [9]. In this connection we note that in our paper [5] we have proved that the spaces \(S^{k/k+1}_{1/k+1} \) are analyticity spaces; explicitly

\[
S^{k/k+1}_{1/k+1} = L_2(\mathbb{R}), B_k \quad \text{with } B_k = (-\frac{d^2}{dx^2} + x^{2k})^{(k+1)/2k}.
\]
Relevant for the present paper are the spaces S_μ^μ, $\frac{1}{2} \leq \mu \leq 1$. We have

$\varphi \in S_\mu^\mu$, $\frac{1}{2} \leq \mu \leq 1$ if and only if φ is an entire function satisfying

$$|\varphi(x+iy)| \leq C \exp(-A|x|^{1/\mu} + B|y|^{1/1-\mu})$$

and

$\varphi \in S_1^1$ if and only if φ is analytic on a strip about the real axis say of width $r > 0$ and satisfying

$$\exists A, C > 0 : \sup_{|y|<r} |\varphi(x+iy)| \leq C \exp(-A|x|).$$

Now Theorem (2.3) leads to the following important results.

(2.4) Corollary

Let $\alpha > -1$ and let $\nu \in [\frac{1}{2}, 1]$. Then $f \in S_{x, \alpha}^{\nu}, (A_{\nu})^{\nu}$ if and only if f is extendable to an even function in the space $S_{1/2, \nu}^{1/2}$.

(2.5) Corollary

Let $f \in S_{1/2, \nu}^{1/2}$ be even, with $\nu \in [\frac{1}{2}, 1]$. Then for each $\gamma > -1$, there exists an ℓ_2-sequence $(\omega_n^{(\gamma)})_{n=0}^{\infty}$ and $t > 0$ such that $f = \sum_{n=0}^{\infty} \exp(-t\gamma) \omega_n^{(\gamma)} L_n^{(\gamma)}$ where the series converges pointwise.
Appendix

The set of so-called entire vectors for a positive self-adjoint operator A in a Hilbert space X is equal to

$$ D^\infty(e^A) = \bigcap_{t>0} e^{-tA}(X). $$

In [3], Van Eijndhoven has used the Fréchet space $D^\infty(e^A)$ as the test space in a theory of generalized functions which is a kind of reverse of the theory in [7]. The space $D^\infty(e^A)$ is denoted by $\tau(X,A)$ and it may be called the entire-ness space. To our opinion the well-known theory of tempered distributions is considerably generalized in [3]. (Put $A = \log\left(-\frac{d^2}{dx^2} + x^2 + 1\right)$). Then $\tau(L^2(\mathbb{R}),A)$ is the space $S(\mathbb{R})$ of functions of rapid decrease.)

Similar to Theorem (1.3) we prove.

(a.1) Theorem

Let P be a linear operator in X with $D(P) = \exp(-\sigma A^\nu)(X)$ for some $\sigma > 0$ sufficiently large. Suppose the following conditions are satisfied.

(i) There exists a Hilbert space Y such that $\exp(-tA^\nu)$ maps X into Y for all $t > 0$.

(ii) Also, $A + P$ defined on $\exp(-\sigma A^\nu)(X)$ is a positive essentially self-adjoint operator in Y.

(iii) There exist positive constants $r_0 \geq 1$, $d > 0$ and $0 < q < 1/\nu$ such that for all $r > r_0$

$$ \|\exp(rA^\nu) P A^{-1}\exp(-rA^\nu)\|_X < d r^q. $$

Then $\tau(X,A^\nu) \subset \tau(Y,(A + P)^\nu)$.
Proof

Since $\tau(X, A^\nu) = \tau_0 \exp(-t A^\nu)(X)$, we consider $t > r_0$ only. Let $0 < t < 1$ with $s = t - r_0 > 1$. The factoring used in Theorem (1.3) yields the following estimate

$$
\| \exp(t A^\nu)(A + P)^k \exp(-t A^\nu) \| \leq k! \left(\frac{1}{\nu s} \right)^{k/v} \prod_{j=0}^{k-1} (1 + d(\tau + js/k)^q).
$$

Put $b_t = 1 + dt^q$. Then

$$
\prod_{j=0}^{k-1} (1 + d(\tau + js/k)^q) \leq b_t \prod_{j=0}^{k-1} \left(1 + d \left(\frac{k + js}{k} \right)^q \right) \leq b_t (1 + d)^k 2^q s^k q^k.
$$

Set $a = (1 + d)^2 q^{1/v}$. Then

$$
\| \exp(t A^\nu)(A + P)^k \exp(-t A^\nu) \| \leq (k!)^{1/v} \left(\frac{1}{s} \right)^{(-q+1/v)} k^b \tau.
$$

For $f \in \exp(-t A^\nu)(X)$ it yields

$$
\| (A + P)^k f \|_Y \leq \| \exp(-t A^\nu) \|_{X \rightarrow Y} \| \exp(t A^\nu)(A + P)^k \exp(-t A^\nu) \|_X \| \exp(t A^\nu) f \|_X \leq
$$

$$
\leq (k!)^{1/v} \left(a \cdot \left(\frac{1}{s} \right)^{1/v-q} \right)^b \tau \| \exp(-t A^\nu) \|_{X \rightarrow Y} \| \exp(t A^\nu) f \|_X.
$$

Thus we find that $f \in \exp(-r(A + P)^\nu)(Y)$ for all $r < \frac{1}{\nu a e} s^{-q+1/v}$. Now put $r(t) = \frac{1}{\nu a e + 1} s^{-q+1/v}$ with $s = t + \frac{1}{t} - 1$ for instance. Then we get

$$
\tau(X, A^\nu) = \tau_0 \exp(-t A^\nu)(X) = \n \exp(-r(t)(A + P)^\nu)(Y) = \n \exp(-r(A + P)^\nu)(Y) = \tau(Y, (A + P)^\nu).
$$
It is not hard to see that the spaces $\tau(X^\alpha, (A^\alpha)^\nu)$, $\alpha > -1$, are Hankel invariant, and hence their strong duals $\sigma(X^\alpha, (A^\alpha)^\nu)$. The previous theorem and the Lemmas (2.1) and (2.2) lead to the following classification.

(a.2) Theorem

Let $\alpha, \beta > -1$ and let $\nu \geq \frac{1}{2}$. Then

$$\tau(X^\alpha, (A^\alpha)^\nu) = \tau(X^\beta, (A^\beta)^\nu).$$

By [2] and [8] we obtain the following characterizations

$$f \in \tau(X^\alpha_{\frac{1}{2}}, (A^\alpha_{-\frac{1}{2}})) \text{ iff } f \text{ is extendable to an even entire function for which}$$

$$\forall 0 < a < 1 \exists C > 0 \forall x + iy \in \mathbb{C} : |f(x + iy)| \leq C \exp(-\frac{1}{2a}x^2 + \frac{1}{2a}y^2)$$

and

$$f \in \tau(X_{\frac{1}{2}}, (A_{\frac{1}{2}})^\nu) \text{ iff } f \text{ is extendable to an even entire function for which}$$

$$\forall r > 0 : \sup_{|x| < r, -\infty < x < \infty} e^r |x| |f(x + iy)| < \infty.$$

Finally, Theorem (a.2) gives the characterization in classical analytic terms of the elements in each $\tau(X^\alpha, A^\alpha)$, respectively $\tau(X^\alpha, (A^\alpha)^{\frac{1}{2}})$, $\alpha > -1$.

References

[12] Magnus, W., F. Oberhettinger and R.P. Soni, Formulas and theorems
 for the special functions of mathematical physics, third edition.