De konstruktie van een continu spanningsveld bij gebruik van de verplaatsingsmethode

Citation for published version (APA):

Document status and date:
Gepubliceerd: 01/01/1976

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
De konstruktie van een continu spanningsveld bij gebruik van de verplaatsingsmethode

W.A.M. Brekelmans
WE 76-01
15 januari 1976
De constructie van een continu spanningsveld bij gebruik van de verplaatsingsmethode

1. Inleiding

Bij de analyse van een constructie met behulp van de verplaatsingsmethode waarbij de constructie is verdeeld in een eindig aantal elementen wordt als resultaat verkregen:
- een kinematisch toelaatbaar (en dus continu) verplaatsingsveld voor de gehele constructie,
- een per element continu spanningsveld (dat in het algemeen niet aan de evenwichtsvergelijkingen zal voldoen), echter over de elementgrenzen lezen discontinu spanningsveld.

De grootte der discontinuïteiten in het spanningsveld is een maat voor de nauwkeurigheid van de analyse.

Echter omwille van eenduidigheid der resultaten en ten behoeve van een beter interpreteerbare grafische weergave is continuïteit gewenst. Het exakte spanningsveld zal immers ook continu zijn, uitzonderingen (bijvoorbeeld in geval van inhomogeniteit of bij een geconcentreerde belasting) daar gelaten.

En zijn verschillende manieren om het discontinu veld om te vormen tot een continu veld; een fysieke achtergrond daarbij ontbreekt echter.
Aan de orde kullen komen:
- een middelingsmethode met een modificatie,
- een kleinste kwadratenmethode.

Een korte samenvatting van de theorie der verplaatsingsmethode zal echter eerst gegeven worden ter verduidelijking van de betekenis van een aantal hulpgrootheden.

Ter toelichting zal de werkwijze verder worden uitgewerkt bij gebruik van TRIM-3 elementen (driehoekige elementen voor een vlakspanningsstoestand met een lineair verplaatsingsveld) en aan de hand van een eenvoudig voorbeeld zullen de methodieken worden vergeleken.

N.B. We distantiëren ons van situaties waarin het exakte spanningsveld discontinuïteiten bevat.

2. Verplaatsingsmethode

2.1 Algemene theorie

We beschouwen een constructie, die verdeeld is in elementen van een type.

Het verplaatsingsveld per element wordt gedefinieerd met een aantal onafhankelijke scalaire functies \hat{u}_e_i ($i = 1, ..., M$) van de plaatscoördinaten x_j ($j = 1, ..., N$):

$$\hat{u}_e_i = \hat{u}_e_i (x_j) \quad (2.1)$$
In de verplaatsingsmethode wordt een bepaald funktie-verbop binnen het element aangenomen, geschreven als een vectorvermenigvuldiging:

\[\hat{u}_{ei} = \hat{\Phi}_i \cdot \vec{x}_{ei} \]

(2.2)

waarbij \(\hat{\Phi}_i \) een kolomvector is waarvan de componenten bekende functies zijn van de plaatscoördinaten en waarbij \(\vec{x}_{ei} \) een vector is, die de nader te bepalen onbekende parameters bevat. Voor een element worden discrete knooppuntverplaatsingsgrootten gedefinieerd, zodanig dat er een zensuïdie omkeerbare relatie bestaat tussen deze knooppuntgrootten en de nog onbekende componenten van de vekten \(\vec{x}_{ei} \) (\(i=1,...,M \)). Gaan we ervan uit dat genoemde knooppuntgrootten bestaan uit de waarden van de functies \(\hat{u}_{ei} \) in de knooppunten, opgeraden in een vector \(\vec{u}_{ei} \), dan kan het verband tussen \(\vec{x}_{ei} \) en \(\vec{u}_{ei} \) gevonden worden door substitutie van de knooppuntcoördinaten in formule (2.2) met als resultaat:

\[\vec{u}_{ei} = \hat{A}_{ei} \cdot \vec{x}_{ei} \]

(2.3)

Hierin is \(\hat{A}_{ei} \) een (vierkante) matrix, die wegens de eis van omkeerbaarheid regulier is. De componenten van de vector \(\vec{x}_{ei} \) kunnen nu worden uitgedrukt in de knooppuntsgrootten:

\[\vec{x}_{ei} = \hat{A}_{ei}^{-1} \cdot \vec{u}_{ei} \]

(2.4)
In plaats van de componenten van $\mathbf{u}e_i$ worden nu de componenten van \mathbf{ue}_i beschouwd als rader te bepalen onbekenden. Het verplaatsingsveld per element: \mathbf{ue}_i ($i=1,...,M$) kan in deze grootte worden uitgedrukt:

$$\mathbf{ue}_i = \mathbf{\hat{e}}_i \mathbf{A}e^{-1} \mathbf{ue}_i$$ \hspace{1cm} (2.5)

We beperken ons nu tot die klasse van elementen waarbij voor elke verplaatsingsfunctie \mathbf{ue}_i ($i=1,...,M$) een gelijkssoortig verloop wordt aangenomen en waarbij in elk knooppunt dezelfde set verplaatsingsgrootteën is gedefiniëerd. Dan zal gelden: $\mathbf{\hat{e}}_1 = \mathbf{\hat{e}}_2 = ... = \mathbf{\hat{e}}_M$ en $\mathbf{A}_1 = \mathbf{A}_2 = ... = \mathbf{A}_M$, zodat wat behelst $\mathbf{\hat{e}}$ en \mathbf{A}_i de index i kan worden weggelaten. Definieren we:

$$\mathbf{ue} = [\mathbf{ue}_1, ..., \mathbf{ue}_M]$$ \hspace{1cm} (2.6)

$$\mathbf{ue} = [\mathbf{ue}_1, ..., \mathbf{ue}_M]$$ \hspace{1cm} (2.7)

Dan kunnen de vergelijkingen (2.5) voor $i=1,\ldots,M$ geschreven worden als:

$$\begin{bmatrix} \mathbf{ue}_1 \\ \mathbf{ue}_2 \\ \vdots \\ \mathbf{ue}_M \end{bmatrix} = \begin{bmatrix} \mathbf{\hat{e}}_1 \\ \vdots \\ \mathbf{\hat{e}}_M \end{bmatrix} \cdot \begin{bmatrix} \mathbf{A}_1^{-1} \\ \vdots \\ \mathbf{A}_M^{-1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{ue}_1 \\ \mathbf{ue}_2 \\ \vdots \\ \mathbf{ue}_M \end{bmatrix}$$
Afgeleid in afgekorte vorm:

\[\hat{\mathbf{u}}_e = \hat{\mathbf{F}} \mathbf{B}_e \mathbf{u}_e \]

(2.8)

De matrix \(\hat{\mathbf{F}} \) is uitsluitend een functie van de coördinaten, terwijl de componenten van de matrix \(\mathbf{B}_e \) alleen afhangen van de geometrische element-gegevens.

De relevante (plaatsafhankelijke) rekgrootheden, verzameld in een vector \(\hat{\mathbf{e}}_e \) kunnen via een operator \(\hat{\mathbf{D}} \) gevonden worden uit het verplaatsingsveld \(\hat{\mathbf{u}}_e \):

\[\hat{\mathbf{e}}_e = \hat{\mathbf{D}}(\hat{\mathbf{u}}_e) = \hat{\mathbf{D}}(\hat{\mathbf{F}}) \mathbf{B}_e \mathbf{u}_e \]

(2.9)

ofwel met de afkorting \(\hat{\mathbf{D}}(\hat{\mathbf{F}}) = \hat{\mathbf{D}} \) :

\[\hat{\mathbf{e}}_e = \hat{\mathbf{D}} \mathbf{B}_e \mathbf{u}_e \]

(2.10)

De relevante spanningsgrootheden zijn een lineaire combinatie van de rekgrootheden; het verband wordt aangegeven met de matrix \(S \) (symmetrisch):

\[\hat{\mathbf{e}}_e = S \hat{\mathbf{e}}_e = S \hat{\mathbf{D}} \mathbf{B}_e \mathbf{u}_e \]

(2.11)

Voor de elasti sche energie per volume eenheid: \(\hat{\mathbf{u}}_e \) geldt:

\[\hat{U}_e = \frac{1}{2} \hat{\mathbf{e}}_e \hat{\mathbf{e}}_e = \frac{1}{2} \mathbf{u}_e \mathbf{B}_e \hat{\mathbf{D}} S \hat{\mathbf{D}} \mathbf{B}_e \mathbf{u}_e \]

(2.12)

Integratie over het volume van het element.
Deel 2 van de uitdrukking voor de totale element aanwezig elastische energie:

\[U_e = \int_{\text{Vol}} \hat{U}_e \, dV = \frac{1}{2} U_e B^e \int_{\text{Vol}} \delta S \, dV \, B^e \]

Deze elastische energie is een kwadratische functie van de componenten van de elementverplaatsingsvector \(u_e \), ook te schrijven als:

\[U_e = \frac{1}{2} u_e Q_e \, u_e \]

Hiermede is de elementstijfheidsmatrix \(Q_e \) geïntroduceerd, waarvan geldt:

\[Q_e = B^e \int_{\text{Vol}} \delta S \, dV \, B^e \]

Een element maakt deel uit van de totale constructie; de element-knooppuntverplaatsingsgrootheden \(\bar{u} \) moeten gekoppeld worden aan die van de constructie.

We definieren een vector \(\bar{u} \), die alle vrijheidsgraden (knooppuntverplaatsingsgrootheden) van de constructie bevat in een volgorde die wordt gecommandeerd door de nummering van de knooppunten. De componenten van \(\bar{u} \) zijn tevens componenten van \(\bar{u} \) (de totale verplaatsingsvector) behalen, formeel ge noteerd kan worden met een localiërmatrix \(\tilde{z} \):

\[u_e = \tilde{z} \bar{u} \]
Voor de totale in de constructie aanwezige elastische energie, \(U \), kan dan geschreven worden:

\[
U = \sum_{\text{alle elem.}} U_e = \frac{1}{2} \sum_{\text{alle elem.}} \left\{ \vec{\varepsilon}_e \vec{Q}_e \vec{e}_e \right\} \vec{u}_t
\]

(2.17)

ofwel met de afkorting \(\vec{\varepsilon}_e \) voor de sommatie:

\[
U = \frac{1}{2} \vec{u}_t \vec{\varepsilon}_e \vec{u}_t
\]

(2.18)

De analoge aan \(\vec{u}_t \) opgebouwde knooppuntbelastingsvector wordt aangegeven met \(\vec{f}_t \). Voor de totale potentiële energie, \(V \), geldt dan:

\[
V = \frac{1}{2} \vec{u}_t \vec{\varepsilon}_e \vec{u}_t - \vec{u}_t \vec{f}_t
\]

(2.19)

Het stationair stellen van deze uitdrukking voor kinematisch toelaatbare variaties van de componenten van \(\vec{u}_t \) resulteert in een lineair stelsel vergelijkingen waarmee de onbekende componenten van \(\vec{u}_t \) bepaald kunnen worden.

Als \(\vec{u}_t \) bekend is volgt daaruit voor elke element \(U_e \) (via formule (2.16)), daaruit volgt het verplaatsingsveld \(\vec{u}_e \) (formule (2.8)), daaruit volgt het rekveld \(\vec{e}_e \) (formule (2.9)) en tenslotte volgt het spanningveld \(\vec{\sigma}_e \) (formule (2.11)) of, zonder al deze tussenstappen:

\[
\vec{\sigma}_e = S \vec{D} \vec{B}_e \vec{\varepsilon}_e \vec{u}_t
\]

(2.20)

Voor een bepaalde component van de vector \(\vec{\sigma}_e \),
zijnde een bepaalde spanningsgrootheid die een functie is van de coördinaten, kan dan geschreven worden:

\[\hat{e}_k = \hat{e}_k \hat{D} \hat{B}_0 \hat{Z}_0 \hat{u}_t \]

(2.21)

waarbij \(\hat{e}_k \) de \(k \)-de rij van de matrix \(S \) is.

N.B. In het voorgaande zijn een aantal al dan niet expliciet vermelde afspraken, aannames en beperkingen verwerkt. Wat de afspraken en aannamen betreft wordt opgemerkt dat die als gebruikelijk beschouwd kunnen worden, wat de beperkingen betreft wordt vermeld dat deze in het algemeen niet van essentiële aard zijn.

2.2. *Theorie specifiek voor het TRIM-3 element*

![Diagram](image)

- elasticiteitsmod. \(E \)
- dwarscomh. coëf. \(v \)
- dikte : \(t \)
- aantal relevante verplaatsingsfunkties, \(M = 2 \)
- aantal relevante coördinaten, \(N = 2 \)

Formule (2.1) gaat over in:
\[\hat{u} = \hat{u}(x, y) \quad \hat{v} = \hat{v}(x, y) \]

voor respectievelijk \(i = 1 \) en \(i = 2 \). Evenzo gaat formule (2.2) over in:

\[
\begin{bmatrix}
\hat{u} \\
\hat{v}
\end{bmatrix} =
\begin{bmatrix}
1 & x & y
\end{bmatrix} \begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix} =
\begin{bmatrix}
1 & x & y
\end{bmatrix} \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}
\]

De vectoren \(\hat{u}_e \) en \(\hat{u}_e \) (zie formule (2.3)) worden:

\[
\hat{u}_e = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}, \quad \hat{u}_e = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}
\]

Voor de vector \(\hat{\Phi} \) en de matrix \(A_e \) geldt:

\[
\hat{\Phi} =
\begin{bmatrix}
1 \\
x \\
y
\end{bmatrix}, \quad A_e =
\begin{bmatrix}
1 & x & y \\
x & 1 & x_2 \\
y & x_3 & 1
\end{bmatrix}
\]

De inverse van matrix \(A_e \):

\[
A_e^{-1} = \frac{1}{d}
\begin{bmatrix}
x_2 y - x_3 y_2 & x_3 y - x_1 y_3 & x_1 y_2 - x_2 y_1 \\
x_2 - y_2 & y_3 - y_1 & y_1 - y_2 \\
x_3 - x_2 & x_1 - x_3 & x_2 - x_1
\end{bmatrix}
\]

\[
d = x_2 y_3 - x_3 y_2 + x_3 y_1 - x_1 y_3 + x_1 y_2 - x_2 y_1
\]

Formule (2.6) en (2.7) gaan over in:

\[
\hat{u}_e = \begin{bmatrix} \hat{u} \\
\hat{v} \end{bmatrix}, \quad \hat{u}_e = \begin{bmatrix} u_1 & u_2 & u_3 & v_1 & v_2 & v_3 \end{bmatrix}
\]
Voor de matrices \(\hat{F} \) en \(\theta_0 \) geldt voor het onderhavige geval:

\[
\hat{F} = \begin{bmatrix}
1 & x & y & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x & y
\end{bmatrix}
\]

\[\theta_0 = \frac{1}{\alpha} \begin{bmatrix}
x_2y_3-x_3y_2 & x_3y_1-x_1y_3 & x_1y_2-x_2y_1 & 0 & 0 & 0 \\
y_2-x_3 & y_3-x_1 & 0 & 0 & 0 & 0 \\
x_3-x_2 & x_1-x_3 & x_2-x_1 & 0 & 0 & 0 \\
0 & 0 & 0 & y_2-x_3 & y_3-x_1 & y_1-x_2 \\
0 & 0 & 0 & x_3-x_2 & x_1-x_3 & x_2-x_1
\end{bmatrix}\]

De reeksgrootheden, de componenten van de vector \(\hat{e} \) zijn:

\[
\hat{e}_0 = \begin{bmatrix}
\hat{e}_x \\
\hat{e}_y \\
\hat{e}_{xy}
\end{bmatrix}
\]

kunnen uit het verplaatsingsveld \(\hat{e} \) worden gevonden met de operator \(\mathbb{D} \) (zie formule (2.9)):

\[
\mathbb{D} = \begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix}
\]

Uitwerking van \(\mathbb{D}(\hat{F}) \) levert de matrix \(\hat{D} \):

\[
\hat{D} = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}
\]
waarbij in dit speciale geval de matrix \mathbf{B} niet meer van de coördinaten af blijkt te hangen. Bij een TRIM-3 element behoren constante rekken per element.

De spanningsgrootheden, de componenten van de vector \mathbf{e}, analog opgebouwd als de vector \mathbf{e}, kunnen bepaald worden met behulp van de matrix \mathbf{S} (zie formule (2.11)):

$$
\mathbf{S} = \frac{E}{1-\nu^2} \begin{bmatrix}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{bmatrix}
$$

De matrices, die nodig zijn om de element-stijfheidsmatrix \mathbf{A} te bepalen, \mathbf{B}, \mathbf{D} en \mathbf{S}, zie formule (2.15) zijn nu voorhanden. Integratie over het volume van het element is in dit geval niet anders dan vermenigvuldiging met het volume, de integrand is immers geen functie van de coördinaten.

Het assemblage-proces en de berekening der onbekende vrijheidsgroeden is niet specifiek voor het TRIM-3 element en zal in deze paragraaf verdere niet aan de orde komen.

2.3. Numeriek voorbeeld

Voor een eenvoudig probleem uit de balkentheorie, waarvan de "exakte" oplossing bekend is, zullen de resultaten voor de spanningen worden gegeven, die berekend
zijn via de elementenmethode bij een betrekkelijk grote verdeling in 71173 elementen.
In onderstaande figuur is het probleem schematisch weergegeven:

\[E, y \]

\[M_b \]

\[l \]

Gegevens:
\[\begin{align*}
 l &= 8 \\
 b &= 1 \\
 h &= 2 \\
 E &= 10^5 \\
 \nu &= 0.3 \\
 M_b &= 1
\end{align*} \]

\[\text{materiaal} \]

De spanningsgrootte die we gaan beschouwen is \(\hat{\delta}_x \), voor dit probleem de enige relevante.
Voor elke dwarsdoorsnede (voor elke \(x \)) geldt het volgende verloop (exakte oplossing):

\[\hat{\delta}_x = \hat{\delta}_x(x) \]

voor \(0 \leq x \leq l \)

N.B. Bij geen der grootteden is de eenheid vermeld waarin de numerieke waarden zijn uitgedrukt; voor elke grootte is in hetzelfde stelsel gewerkt.
De berekening via de elementenmethode (TRIM-3) is gedaan aan de hand van het onderstaande model (85 knooppunt, 128 elementen):

De knooppuntsschachten aan het uiteinde zijn een kinematisch consistent vervanging van de uiteenlopende belasting door het buigend moment.

Van de resultaten der berekening geven we alleen de resultaten voor θ_x in de dwarsdoorsnede $A-A$ (zie figuur). Het verloop is uiteraard discontinu en vertoont grote afwijkingen ten opzichte van de exakte oplossing.

\[\theta_x = \theta_x(x) \]
3. Middelingsmethode voor de spanningen

3.1 Algemene werkwijze
De algemene werkwijze is zeer kort samen te vatten. In elk knooppunt van de constructieve geleden voor een bepaalde spanningsgrootheid een aantal, in het algemeen verschillende, numerieke waarden, namelijk evenveel als het aantal elementen dat in dat knooppunt samenkomt. Die waarden kunnen worden gevonden door voor de betreffende elementen en voor de betreffende waarde van \(k \) (die aangeeft welke spanningsgrootheid wordt beschouwd) in formule (2.21) de knooppuntcoördinaten te substitueren. Voor elk knooppunt wordt nu van die verschillende waarden het gemiddelde bepaald en opgeslagen in een vector \(\bar{\eta}_k \) waarvan de componenten de gemiddelde knooppuntwaarden van de betreffende spanningsgrootheid voor alle knooppunten weergeven.

De deelvervanging uit \(\bar{\eta}_k \) die behoort bij de knooppunten van een bepaald element geven we aan met \(\bar{\eta}_k' \). Formeel kan het verband geschreven worden via een locatiematrix \(\bar{\Gamma}_e \) :

\[
\bar{\eta}_k' = \bar{\Gamma}_e \bar{\eta}_k
\]

(3.1)

N.B. Deze formulering is nagenoeg analoog met die van formule (2.16) voor het verband tussen elementverplaatsingsvectoren en de totale verplaatsingsvector van de constructie.
Voor het verloop van de spanningsgrootheden binnen het element, \(\hat{e}_k \) als functie van de coördinaten wordt nu eenzelfde veld gekozen als voor de verplaatsingsgrootheden \(\hat{u}_i \) per element, met andere woorden:

\[
\hat{e}_k = \hat{f} A e_1 \hat{e}_k
\]
\[(3.2)\]

gleek uiterlijk met formule (2.5). Evenals het verplaatsingsveld voor de constructie \(\hat{u}_i \) voor alle elementen) continu was, geldt nu ook dat het verloop van de \(k \)spanningsgroohtheid in de constructie \(\hat{e}_k \) voor alle elementen) continu is geworden.

Uiteraard kan het bovenstaande proces voor elke spanningsgroohtheid afzonderlijk (met andere woorden voor elke relevante waarde van \(k \)) worden uitgevoerd.

Een modificatie van bovenstaande methode wordt verkregen door bij de bepaling van de componenten van de vector \(\hat{e}_k \), met andere woorden bij het bepalen van de gemiddelde knooppuntspanningen, de bijdrage van de in een knooppunt samenkomende elementen in verschillende mate in rekening te brengen via gewichtsfactoren. Als een maat voor deze gewichtsfactoren in een bepaald knooppunt kunnen een groot aantal keuzen gemaakt worden; het meest voor de hand ligt het op een of andere wijze in rekening brengen van de grootte, vorm of positie van de betrokken elementen.
3.2. Werkwijze bij gebruik van TRIM-3 elementen

Wat betreft de normale werkwijze bij gebruik van TRIM-3 elementen is aan het voorgaande weinig toe te voegen. Het zal duidelijk zijn dat het uiteindelijke resultaat bestaat uit een continu spanningsveld dat per element lineair verloopt (facetfunctie).

Wat betreft de gemodificeerde methodiek om te komen tot de componenten van de vector \mathbf{F} volstaan we met een voorbeeld.

In een bepaald knooppunt P (zie figuur) kan aangenomen worden dat de weegfactor voor de bijdrage van een bepaald element e tot de betreffende knooppuntswaarde recht evenredig is met de grootte van de door het element ingesloten hoek θ_e in het knooppunt.

![Diagram](image)

Bij een voldoende fijne elementverdeling geeft de methode (zowel normaal als gemodificeerd) reëel aannemelijke resultaten voor het spanningsveld. Helaas moet bij gebruik van o.a. TRIM-3 elementen als nadeel vermeld worden dat de grootste afwijkingen optreden langs de omtrek, met andere woorden juist daar waar in het algemeen de grootste spanningen verwacht kunnen worden.
3.3. Numeriek voorbeeld

Op de elementenmethode-resultaten bekend bij het voorbeeld uit paragraaf 2.3. zijn de in dit hoofdstuk behandelden middelingsmethoden toegepast ter verkrijging van een continu spanningsveld. We geven de resultaten voor \(\hat{\sigma}_x \) in de ook in paragraaf 2.3. beschouwde dwarsdoorsnede A-A.

\[\hat{\sigma}_x = \hat{\sigma}_x(x) \]

De resultaten spreken voor zichzelf. De gemodificeerde middelingsmethode geeft langs de rand iets minder slechte resultaten dan de normale methode. De berekening is echter erg onnauwkeurig; de element-verdeling voor dit probleem is veel te groot gehouden.
4. Kleinste kwadratenmethode voor de spanningen

4.1. Algemene werkwijze

Met betrekking tot een bepaalde spanningsgrootheid, aangegeven met de index k, worden voorlopig als onbekende parameters beschouwd de componenten van de vector \(\mathbf{\delta}_k \) die de nodig de bepalen waarden van de spanningsgrootheid in de knooppunten weergeven. Het gewenste continue veld is dan gedefinieerd met de formules (3.1) en (3.2), identiek met de wijze waarop dit in het voorgaande hoofdstuk is gebeurd.

De bepaling der onbekenden, de componenten van \(\mathbf{\delta}_k \), geschiedt op een manier geheel verschillend met die in het voorgaande hoofdstuk.

We definieren de functionaal \(I_k \):

\[
I_k = \sum_{\text{alle elem.}} \int_{\text{Vol}} (\mathbf{\hat{\delta}}_k - \mathbf{\delta}_k)^2 \, dV \tag{4.1}
\]

waarin \(\mathbf{\hat{\delta}}_k \) (zie formule (3.2)) het te bepalen veld is voor de \(k \)-de spanningsgrootheid in het betreffende element en voor de gehele constructie een continu veld oplost en waarin \(\mathbf{\delta}_k \) (zie formule (3.2)) een per element volledig bekende functie is van de coördinaten, zoals die volgt uit de normale elementenmethode berekening, voor de constructie als geheel een discontinu spanningsveld opleverend.

Zoeken naar die numerieke waarden van de componenten van de vector \(\mathbf{\delta}_k \) die de functionaal minimaal maken komt overeen met het zoeken naar dat continue spanningsveld, dat "zo goed
mogelijk" lijkt op het oorspronkelijke (bekende) discontinue veld.

Definieer we \(I_k^* \) volgens:

\[
I_k^* = \sum_{\text{alle \ elem.}} \int_{\text{vol}} \left(\hat{\mathbf{e}}_{ek} \cdot \mathbf{e}_{ek}^2 - 2 \hat{\mathbf{e}}_{ek} \cdot \mathbf{e}_{ek} \right) dV \quad (4.2)
\]

dan komt de eis dat \(I_k^* \) minimaal is overeen met de eis dat \(I_k \) minimaal is; het verschil: \(I_k^* - I_k \) is constant en onafhankelijk van de componenten van de vector \(\mathbf{e}_{ek} \).

Uitwerking van formule (4.2) daarbij gebruikmakend van formule (3.1) en (3.2) levert:

\[
I_k^* = \sum_{\text{alle \ elem.}} \int_{\text{vol}} \left\{ \frac{\partial}{\partial t} \int_{\text{elem.}} \hat{e}_{ek} \mathbf{e}_{ek}^T \hat{\mathbf{e}}_{ek} \mathbf{e}_{ek}^{-1} \mathbf{e}_{ek} \mathbf{e}_{ek}^{-1} \mathbf{e}_{ek} \hat{\mathbf{e}}_{ek} \right\} dV \quad (4.3)
\]

Met de definitie van de matrix \(C \) en de vector \(R_k \) volgens:

\[
C = \sum_{\text{alle \ elem.}} \int_{\text{vol}} \hat{e}_{ek} \mathbf{e}_{ek}^{-1} \int_{\text{vol}} \hat{\mathbf{e}}_{ek} \mathbf{e}_{ek} \mathbf{e}_{ek}^{-1} \mathbf{e}_{ek} \mathbf{e}_{ek}^{-1} \mathbf{e}_{ek} \hat{\mathbf{e}}_{ek} \quad (4.4)
\]

\[
R_k = \sum_{\text{alle \ elem.}} \int_{\text{vol}} \hat{e}_{ek} \mathbf{e}_{ek}^{-1} \int_{\text{vol}} \hat{\mathbf{e}}_{ek} \mathbf{e}_{ek} \mathbf{e}_{ek}^{-1} \mathbf{e}_{ek} \hat{\mathbf{e}}_{ek} \quad (4.5)
\]

volgt voor de functionaalanuitdrukking \(I_k^* \):

\[
I_k^* = \frac{\partial}{\partial t} \mathbf{e}_{ek} C \mathbf{e}_{ek} - 2 \frac{\partial}{\partial t} \mathbf{e}_{ek} R_k \quad (4.6)
\]
De als dat I_k^* minimaal is leidt tot een lineair stelsel vergelijkingen voor de onbekenden, de componenten van de vector \vec{e}_k^*:

$$ C \vec{e}_k = R_k \quad (4.7) $$

N.B. We merken op dat de matrix C niet afhangt van de spanningsgrootheden (aangegeven met k) die wordt beschouwd, noch van de oorspronkelijk berekende spanningen (\vec{e}_k).

Oplossing van het stelsel (4.7) levert geen problemen; de matrix C is positief definit. Als de vector \vec{e}_k bekend is volgt voor elk element de vector \vec{e}_k via формуле (3.1) en het spanningsveld in het element \vec{e}_k via формуле (3.2).
Voor de constructie af, geheel hebben we dan een continu spanningsveld verkregen.
De resultaten van de methode zijn bevestigend te noemen; er is echter nogal wat extra rekenwerk (oplossen van het stelsel (4.7)) voor noodzakelijk.

4.2. Werkwijze bij gebruik van TRIM-3-elementen
Het bepalen van de matrix C levert voor een constructie verdeeld in TRIM-3-elementen geen enkel probleem op. De voor het berekenen van de bijdrage van een bepaald element
tot deze matrix C benodigde matrix P_k^{-1} en de vector \hat{E} (zie formule (4.4)) kunnen direct gevonden worden in paragraaf 2.2. Het bepalen der vectoren R_k, voor $k = 1, 2, 3$ respectievelijk behorend bij δ_x, δ_y en δ_{xy} levert evenmin problemen op.

4.3. Numeriek voorbeeld

De behandelden methode werd toegepast op de elementenmethode-resultaten behorend bij het voorbeeld uit paragraaf 2.3. We geven de resultaten voor δ_x in dwarsdoorsnede A-A.

\[\delta_x = \delta_x(x) \]

Het met de in dit hoofdstuk behandelde methode bereikte resultaat behoeft geen commentaar.
5. slotopmerkingen

Beschouwd zijn een aantal methodieken om het oorspronkelijke discontinu spanningsefeld om te vormen tot een meer realistisch continu veld. De waarde van zo'n continu veld blijft discutabel; evenmin als het oorspronkelijke veld is het statisch toelaatbaar; het voldoet niet aan de evenwichtsvergelijkingen en de randcondities voor de spanningen.

Na een vergelijking van de resultaten der behandelde methoden zal de voorkeur uitgaan naar de kleinste kwadratenmethode (hoofdstuk 4), hoewel we ons moeten realiseren dat deze methode aanzienlijke rekentijd vergt. Voor voldoende nauwkeurige resultaten zullen echter in eerste instantie eisen gesteld moeten worden aan de fijnheid der elementverdeling.

Een methode die niet aan de orde is gekomen kan als volgt worden omschreven. Als we beschikken over de discrète verplaatsingsproefpunten in de knooppunten van een constructie is het mogelijk om voor de constructie als geheel (via bijvoorbeeld interpolatiepolynomen) een overal voldoende vaak differentieerbaar verplaatsingsefeld te creëren. Het hierna (via differentiatië) te berekenen rekendel en dus ook het spanningsefeld zal dan reken continu zijn, hetgeen ook de wens was.
Dit uitvoeren voor de konstruktie als geheel zal vaak een omvangrijke hoeveelheid rekenwerk met zich meebrengen. Het is natuurlijk ook mogelijk om dit proces voor een gedeelte van de konstruktie uit te voeren, een gedeelte dat zodanig gekozen zal worden dat het de interessante plaatsen bevat.

Voor het kiezen van een methode zijn (nog) geen duidelijke richtlijnen voorhanden. Dit rader onderzoek zullen wellicht aanwijzingen volgen die een verantwoorde keuze mogelijk maken.