New measurement technique for waveguide losses based on photoluminescence

Amersfoort, M.R.; Gruetzmacher, D.; Smit, M.K.; Oei, Y.S.

Published in:
Electronics Letters

Published: 01/01/1991

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
NEW MEASUREMENT TECHNIQUE FOR WAVEGUIDE LOSSES BASED ON PHOTOLUMINESCENCE

Indexing terms: Waveguides, Losses, Measurement, Photoluminescence

A new technique has been developed to measure optical losses of waveguide devices fabricated in III-V semiconductors by optical excitation of an integrated twinguide structure, which is nondestructive and also applicable to multimode waveguides and multiport waveguide devices. Reproducibility of excitation was found to be better than 0.2 dB.

Introduction: As OEICs are expected to play an important role in future telecommunication systems there is an increasing demand for accurate techniques for measuring the transmission losses of waveguide devices fabricated in III-V semiconductors. Until recently the cutback method was widely applied to this type of measurement. In our laboratory it has been applied for determining the losses of straight and bent InGaAsP waveguides.

A disadvantage of this method is its destructive character. A quick and accurate nondestructive method, which has become increasingly popular, is the Fabry-Perot method. This method is, however, restricted to singlemode two-port devices. We present a nondestructive measurement technique which is applicable to multiport devices with single or multimode waveguides.

Principle: The method is based on optical pumping of an integrated twinguide structure (see Fig. 1). The twinguide consists of a low-bandgap layer [InGaAsP(1.55)] on top of the waveguide layer [InGaAsP(1.38)] separated by a thin InP etch-stop layer. Part of the photoluminescence of the upper quaternary layer (λ = 1.55 μm) will be trapped in the twinguide and propagate in the form of twinguide modes. At the transition between the twinguide and the waveguide section a substantial part of this light is coupled into the transparent waveguide. The light emanating from the waveguide is imaged onto a photodiode. Waveguide attenuation can be measured by fabricating a number of twinguide blocks at different distances from the cleaved edge (Fig. 2). Component losses are measured by comparing the output power with that of a straight waveguide.

References

Fig. 1 Schematic representation of integrated twinguide structure

Fig. 2 Fabrication of twinguides at different distances from cleaved edge allowing determination of waveguide losses
Experiments: Integrated twinguide structures have been fabricated using MOCVD-grown layers (background doping level < 10^{17} \text{cm}^{-3}) on an SI-InP substrate. The layer structure consists of three layers for waveguide fabrication (InP buffer: 10 \mu m, InGaAsP(1.55): 0.4 \mu m, InP: 0.15 \mu m) on top of which (in the same epitaxial step) two additional layers (InGaAsP(1.55): 0.2 \mu m, InP cover: 0.25 \mu m) are grown for fabrication of the twinguide. Patternning of the integrated twinguide structures was performed by two steps of CH$_3$/He reactive ion etching at a power density of 0.4 W cm$^{-2}$. In the first step the two top layers were removed everywhere except at the twinguide sections. In the second step waveguides with a ridge height of 0.55 \mu m were fabricated in the same way as for nonloaded structures. Fig. 3 shows an SEM micrograph of a fabricated integrated twinguide. Optical pumping was achieved by focusing light from a stripe on top of the twinguide, using a GaAs/AIGa power laser with a centre wavelength of 820 nm. The light emanating from the waveguides was focused onto a Ge photodiode with a ULWD microscope objective.

Results: Reproducibility of excitation of the integrated twinguide was found to be better than 0.2 dB. The spread in the output intensity of integrated twinguide with identical waveguide lengths is about 0.3 dB. Fig. 4 displays the output power of the integrated twinguide against waveguide length. Waveguide losses are 2.2 ± 0.4 dB/cm and 1.4 ± 0.5 dB/cm for 5 and 7 \mu m wide waveguides, respectively. Measurements on 50 \mu m wide waveguides indicate that film losses are negligible.

Discussion: The relatively small spread in the output intensity indicates a good excitation reproducibility from one waveguide to another. As a spread of 0.3 dB in transmitted power is quite typical for our waveguides, the actual spread in the power coupled into the waveguides is probably much smaller. The small spread for the 50 \mu m wide guides seems to confirm this supposition. Measurement accuracy thus compares quite well with existing methods.

In comparison with other methods the present method requires the growth of two additional layers and one additional noncritical etching step. Because the light source is an optically pumped LED the measurement is inherently incoherent. The method can easily be applied to multiport waveguide devices, such as couplers or power splitters, and is less sensitive to the occurrence of higher order modes than the Fabry-Perot method.

Conclusions: A new measurement technique has been presented to determine the losses of a wide variety of waveguide devices in III-V semiconductors. It is an alternative to the Fabry-Perot method if multiport or multimode waveguide devices have to be measured. Coupling light into the waveguide is easily achieved by optical pumping of an integrated twinguide structure with a reproducibility better than 0.2 dB. The method is a first step towards integrated test structures for on-chip determination of the performance of optical devices.

Acknowledgment: These investigations in the program of the Foundation for Fundamental Research on Matter (FOM) have been supported by the Netherlands Technology Foundation (STW).

M. R. AMERSFOORT
D. GRÜTZMACHER
M. K. SMIT
Y. S. OEI
Delft University of Technology, Department of Electrical Engineering, P.O. Box 5051, 2600 GA Delft, The Netherlands

* Aachen Technical University, Institute of Semiconductor Electronics, Sommerfeldstr., D-5201 Aachen, Germany

References

PLATINUM SILICIDE FUSION BONDING

Indexing terms: Silicon, Semiconductor devices and materials

Silicide direct bonding has been accomplished between silicon PSi coated wafers and both PSi coated and uncoated silicon wafers. Successful bonding occurred when the PSi surface was rendered hydrophilic by a hot aqua regia selective etching and cleaning process. The PSi provides bondable, relatively low resistance paths which provide electrical interconnections between circuit elements on the bonded pair of wafers.

Introduction: Silicon direct bonding was initially used as a 'bond and etch back' process to create high purity silicon on insulator material. The direct bonding technique has recently been applied to silicon nitride coated wafers in addition to the earlier work on surfaces with silicon and SiO2. Researchers have used the technique to bond one patterned wafer to bulk substrates to create working electrical and mechanical devices. Aligned silicon fusion bonding is an extension of the techniques that allows two prefabricated wafers to be fused with precise alignment to form a complete three dimensional microstructure. A major area of application of aligned silicon fusion bonding involves formation of three dimensional integrated circuits. In this application it is essential to obtain electrical interconnections between the