Systolic blood pressure estimation using PPG during physical exercise

Citation for published version (APA):

Document status and date:
Published: 01/08/2016

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Systolic blood pressure estimation using PPG during physical exercise

Shaoxiong Sun1,2, Rick Bezemer1,2, Xi Long1,2, Jens Muehlsteff3, Ronald M. Aarts1,2,
1Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
Email: s.sun@tue.nl

Introduction
- Continuous monitoring of blood pressure not only provides immediate physiological parameters for patient care and monitoring, but also reveals health risks that might eventually lead to hypertension and arteriosclerosis.
- Measurements using brachial cuff can be only obtained intermittently. Measurements using finger cuff is not suitable for long-term use. Measurements using an invasive arterial catheter expose patients to infection risks.
- Photoplethysmography (PPG) has been considered as a method to estimate blood pressure.
- We designed a model using multiple PPG-derived features to estimate systolic blood pressure (SBP) for healthy people during physical exercise.

Materials and Methods
- N = 19 healthy subjects doing 30-minute cycling exercise
- We initialized the model for each subject at rest.
- We derived 18 features (including 4 proposed features), combined these features using linear regression and quantified their contribution by means of normalized weights.
- We evaluated model performance using leave one subject out cross validation (LOSOCV).

Results

<table>
<thead>
<tr>
<th>Table 1 Model performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
</tr>
<tr>
<td>Standard deviation</td>
</tr>
<tr>
<td>Median intra-subject correlation coefficient</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig. 5. Bland-Altman plot for estimated and measured SBP</th>
</tr>
</thead>
</table>

Conclusions
- The estimated SBP had high correlations with the measured SBP, while the RMSE still warrants further attention.
- The features we proposed such as dpmean and spvar played important roles as indicated by the larger normalized weights.