
 Eindhoven University of Technology

MASTER

Landmark indexing for scalable evaluation of label-constrained reachability queries

Valstar, L.D.J.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8edf9e1d-567d-458a-8c1d-ebf6be6895e5


Landmark indexing for
scalable evaluation of

label-constrained
reachability queries

L.D.J. (Lucien) Valstar

Department of Mathematics and Computer Science
Web Engineering Research Group

Supervisors:
G.H.L. Fletcher

Y. Yoshida

Committee members:
A. Driemel

G.H.L. Fletcher
M.A. Westenberg

Y. Yoshida

version 1.0

Eindhoven, July 2016





Abstract

Our world today is generating huge amounts of graph data such as social networks, biological networks, and the
semantic web. Many of these real-world graphs are edge-labelled graphs, i.e. each edge has a label that denotes
the relationship between the two vertices connected by the edge. A fundamental research problem on these is
how to handle reachability in these kinds of graphs: can vertex u reach vertex v using only edges with particular
labels? There has not been very much research on this topic yet. Hence we have come up with our own solution
based on an index. We dealt with the problem by looking for several algorithms that can deal with these queries.
We ran several experiments to examine their performance relative to a baseline algorithm. The results show that
there is a clear performance improvement by building the index we develop here.

Keywords: LCR, Label-constrained reachability, Labelled graph, Landmarks, Index

Landmark indexing for scalable evaluation of label-constrained reachability queries iii





Contents

Contents v

1 Introduction 1
1.1 Problem motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Problem statement 3
2.1 Reachability in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Label-constrained reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Auxiliary de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Literature analysis 7
3.1 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 2-hop cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Label-constrained reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Bonchi et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Zou et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Fletcher and Yoshida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Methods 19
4.1 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Best e�ort Zou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 General comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 LandmarkedIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Partial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 NeighbourExchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.5 Joindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.6 ClusteredExact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Index maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Adding an edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Removing an edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3 Changing edge label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.4 Adding a node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.5 Removing a node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 Query for all nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Distance queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Landmark indexing for scalable evaluation of label-constrained reachability queries v



CONTENTS

5 Experimental design 37
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.3 Summary of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Experiments 43
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Part 1: small graphs (0 < jEj � 5; 000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Datasets and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.2 Index construction time (s) and size (MB) . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.3 Total speed-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Part 2: medium graphs (5; 000 < jEj � 500; 000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.1 Datasets and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.2 Index construction time (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.3 Index size (MB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.4 Index construction time (s) and index size (MB) when jLj � 8 . . . . . . . . . . . . . . . 50
6.3.5 Total speed-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.6 Total speed-ups when jLj � 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.7 Individual speed-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Part 3: large graphs (jEj > 500; 000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4.1 LI+OTH+EXTv1: Index construction time (s) and size (MB) . . . . . . . . . . . . . . . 56
6.4.2 LI+OTH+EXTv1: Total speed-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.3 LI+OTH+EXTv2: Index construction time (s) and size (MB) . . . . . . . . . . . . . . . 60
6.4.4 LI+OTH+EXTv2: Total speed-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5.1 Adding an edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6.1 Query for all nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6.2 Distance queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusion 67
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

Appendix 69

vi Landmark indexing for scalable evaluation of label-constrained reachability queries



Chapter 1

Introduction

In this chapter we introduce the problem studied in this thesis, we provide an overview of the state of the art,
explain brie
y our contributions and give a thesis outline.

1.1 Problem motivation

Our world today is generating huge amounts of graph data such as social networks, biological networks, and the
semantic web. The sheer size of these graphs (e.g. Google Knowlede Graph has 570 million vertices/objects and
18 billion edges/facts) turns a simple query into a di�cult one. One of these queries is \reachability", i.e. the
question on whether we can from a point (or vertex) A reach another point B in the graph using the edges of
the graph.

Many real-world graphs are edge-labelled graphs. This means that edges in the graph have a label from a
pre-de�ned label set. This changes a reachability-query into a so-called \label-constrained reachability" query or
\LCR"-query. The question for such a query is: \can we reach from point A another point B in the graph using
only certain types of edges?".

Examples of graphs for which there are labels are numerous.

In Social networks each person is represented as a vertex. Any person can have an interaction with another
person if they are related in some way. Examples of such relationships could be colleague, friend or family
(sister-of, brother-of, son-of). It can be interesting to look at more complicated relationships between people.
When we want to know whether person A is a remote relative of person B we might look to explore the graph
using only edges brother-of, sister-of, son-of, etc.

In Bioinformatics there is a need to understand metabolic chain reactions in cellular systems. For this a
metabolic network is used. In such a network, each vertex represents a chemical compound. An edge indicates
that one compound can transform into another. The edge label records the enzymes that are needed to control
the reaction. The basic question is to whether there is a pathway between two compounds where the enzymes
are present under certain conditions.

RDF-graphs consist of triplets (or facts) that indicate that entity A is related to entity B through a certain
relationship. Information from multiple sources (e.g. IMDb, Facebook or Wikipedia) may be combined. A given
person A might create a FOAF-record describing personal information, interests and friendships. This may be
linked to for instance a movie review this user has written on another website. A query could be \how is a
respondent B to the movie review written by person A related to person A" or \in what ways are two particular
movie reviews X and Y written by user A related".

1.2 State of the art

There is not much work on the topic of \LCR". The baseline solution is just running BFS on the graph. BFS
is the baseline, as it builds no index and has the maximal query answering time. Any other method builds an
index and uses this to speed up its query answering time.

Landmark indexing for scalable evaluation of label-constrained reachability queries 1



CHAPTER 1. INTRODUCTION

Zou et al. [11] have proposed their solution. We were unable to obtain a version of their code and hence we
made our own best-e�ort implementation of it. The time to construct their index is very low compared to those
of other papers and to the index construction times of our methods.

Then there is Bonchi et al. [1]. They aimed at answering a query similar but more di�cult than the query
we study. Nevertheless the results in their paper can be used as a comparison for our results.

1.3 Contributions

This study contributes to a few novel things. The �rst is exploring the existing (Zou) and baseline (BFS)
solutions and evaluating their performance. The next is trying to come up with our own solutions to the problem
(PartialIndex, LI, ClusteredExact and DoubleBFS) and evaluating their performance as well. Finally
we demonstrate that our major contribution (LI+OTH+EXTv2) is scalable and can be extended to answer
richer queries as well.

There is a public GitHub-repository1 containing all the code and the thesis.

1.4 Thesis outline

Chapter 2 de�nes the problem we study in our thesis. Chapter 3 gives a literature overview on \reachability"
and \LCR". Also we discuss some of the ideas for actual algorithms. Chapter 4 explains the actual methods used
in the experiments and the concepts behind them. These methods are based on the discussion in the literature
review. Chapter 5 discusses the experimental design and the datasets used. Chapter 6 shows the results of the
experiments. Chapter 7 concludes on all material and provides work that can be done in the future.

1https://github.com/DeLaChance/LCR.git

2 Landmark indexing for scalable evaluation of label-constrained reachability queries

https://github.com/DeLaChance/LCR.git


Chapter 2

Problem statement

This chapter de�nes two notions, i.e. \reachability" and \label-constrained reachability" which is abbreviated to
\LCR".

2.1 Reachability in graphs

De�nition 2.1.1 de�nes a graph.

De�nition 2.1.1. Graph: A graph G = (V;E) is a pair where V is a set of vertices or nodes and E � V � V is
a set of edges. The number of vertices is jV j = n. The number of edges is jEj = m. When a vertex v is in the
graph, we say v 2 V . When an edge from a vertex v to w is in the graph, we say (v; w) 2 E. In an undirected
graph, we have that (v; w) 2 E , (w; v) 2 E. For each pair of vertices (v; w) there is at most one edge.

Figure 2.1 shows an example of a graph. The circles are called nodes or vertices and the arrows are called
edges. The circles have an number inside them and this is called the vertex identi�er (or vertex id).

The notion of \reachability" (De�nition 2.2.2) and a \path" (De�nition 2.1.2) can formally be de�ned as:

De�nition 2.1.2. Path: Let G = (V;E) be a (directed) graph. Let s; t 2 V be two arbitrary nodes. A path P
exists in G from s to t if and only if we have one of the following three cases.

1. s = t. In this case P = hsi.
2. (s; t) 2 E. In this case P = hs; ti.
3. There exists a sequence of k � 1 vertices w1; : : : wk such that (s; w1) 2 E, for all 1 � i � k�1 (wi; wi+1) 2 E

and (wk; t) 2 E. In this case P = hs; w1; : : : ; wk; si.
Let Len(P ) � 1 be the length of the path, which is the number of vertices in the path. Let Pi with 1 � i �

Len(P ) be the i’th vertex of the path.

De�nition 2.1.3. Reachability: Let G = (V;E) be a (directed). Let s; t 2 V be two arbitrary nodes. If there
exists a path P from s to t, we say t is reachable from s or s ; t.

The use of reachability queries in graphs has been studied extensively [10, Chapter 6] [1, 9]. A reachability
query basically asks whether we can reach from a vertex v 2 V another vertex w 2 V . By this we mean that we
can move from v to w in G using any edge in the graph. The vertices that are traversed by going from v to w
are said to be a path. In Figure 2.1 vertex 1 can reach vertex 5 over the orange colored vertices. The path that
connects 1 to 5 is h1; 2; 3; 4; 5i.

For large scale graphs determining reachability is highly challenging. Certain trade-o�s need to be made
between index size, query answer time and index construction time. Methods that build up a transitive closure
of the graph create an index of size O(n2) in O(nm) time, but are able to answer a query in O(1) time [10,
Chapter 6]. One could think of a transitive closure as a binary matrix of size n � n. Answering these queries
on the 
y by running a depth- or breadth-�rst search live which has a running time of O(n + m) but has zero
construction time and index size. For large graphs both methods are unacceptable. For example, storing a
transitive closure for n = 1; 000; 000 requires 125GB. We need methods that have lower storage requirements at
the expense of a higher query time.

Landmark indexing for scalable evaluation of label-constrained reachability queries 3



CHAPTER 2. PROBLEM STATEMENT

1 5

2

3

4

6

7 8

Figure 2.1: An example of a graph with jV j = 8 and jEj = 9. The orange colored vertices are a path P of the
form h1; 2; 3; 4; 5i. The length of the path, i.e. Len(P ), is 5. For each pair of vertices (v; w) with v; w 2 V there
is at most one edge.

2.2 Label-constrained reachability

First we de�ne a labelled graph. A labelled graph is a graph that has a set of labels, such that each edge e 2 E
has one speci�c label.

De�nition 2.2.1. Labelled graph: A labelled (directed) graph is a triple G = (V;E;L). L is a set of labels and
E � V � V � L. An edge from v 2 V to w 2 V can be written as (v; w) 2 E or (v; w; l) 2 E where l 2 L.
Moreover let Label(e) : E ! L be a mapping from edge e 2 E to its corresponding label. Any l 2 L is called a
\label" and any L � L is called a \label set".

In this thesis, we study the problem of label constrained reachability (LCR). Formally this can be de�ned as:

De�nition 2.2.2. Label-constrained reachability (LCR): Let G = (V;E;L) be a (directed) labelled graph. Let
s; t 2 V be two arbitrary nodes. Let L � L be a label set. We say that there is a L-path from s to t if there
exists a path P from s to t such that for each edge (Pi; Pi+1; l) 2 E with 1 � i � Len(P ) we have that l 2 L.

When this is the case, we also write s
L
; t.

An example of a directed labelled graph can be seen in Figure 2.2. There exists a fa; bg-path from 1 to 5:
h1; 3; 5i. From now on when we show a picture of a labelled graph we wish to stick to the following convention:
red is label a, blue is label b, green is label c and orange is label d.

a

ab

b

c c

cd d

1

2

3

4

5

6

Figure 2.2: An example of a graph with labels. From node 1 to 6 we can see for instance an fa; cg-path:
(h1; 2; 4; 6i). There is also an fa; dg-path, a fb; cg-path and a fb; dg-path. Hence query q = (1; 6; fa; cg) is
answered by true whereas q = (1; 6; fcg) is answered by false.

4 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 2. PROBLEM STATEMENT

LCR was introduced by Jin et al. [5] and further studied by Zou et al. [11] and Chen et al. [2]. The study of
LCR was particularly motivated by the study of \regular path queries". These kinds of queries are prevalent in
practical graph query languages such as SPARQL 1.11 and Cypher2. One can also think of the Facebook-graph
(1.35 billion nodes3), where the edge labels indicate a type of relationship (’friend’,’colleague’ or ’partner’), or
Google Knowledge graph (570 million nodes, 18 billion edges4), where the edge labels could indicate that two
entities are a synonym or entity A is a generalization of entity B, as examples of edge-labelled graphs.

A LCR-query q that determines the existence of a L-path from s to t could be de�ned as:

De�nition 2.2.3. LCR-query: Let G = (V;E;L) be a (directed) labelled graph. Let s; t 2 V and L � L. Then,

we can de�ne a query q 2 V �V �2L as (s; t; L). If s
L
; t, then q is said to be true (or a True-query). Otherwise,

q is said to be false (or a False-query).

An example query on the graph in Figure 2.2 could be (1; 6; fa; cg) which would yield true. On the contrary,
query (1; 6; fcg) would be false. The query could also be written as: (1; 6; (a+ c)�), where (a+ c)� indicates that
we are allowed to pick any number of a or c’s in our path from 1 to 6. One could easily think of more enhanced
queries like: \Is there a path from 1 to 6 using 4 a’s �rst and then at most 3 b’s?" or \What is the distance in
terms of the number of edges or unique labels?". However, this is not in the scope of our work. We mainly focus
on the �rst type of queries, although we do elaborate on the possibilities to extend our solution to these types of
queries.

2.3 The problem

The problem we study is to �nd a way to answer reachability queries in labelled graphs e�ciently and accurately.
Trade-o�s between index size, query time, index construction time and accuracy have to be made in this regard.
Also, we need to take into account that an index might update from time to time due to updates of the graph
(node insertion, node removal, edge insertion, edge removal or label change). The frequency of the updates needs
to be taken into account.

On the one hand, we can use a slightly adapted version of BFS (or DFS) to answer queries. This approach
has the maximal query time but no minimal index construction time. BFS also has minimal update costs.

On the other hand, we can build an index for the full graph that answers all possible queries instantly. This
approach has the minimal query time but the maximal index construction time and index size. We assume index
construction time and size are correlated. For large graphs building a full index is too cumbersome. Also, updates
might require a lot of re-work.

Other approaches will mostly lie into the middle of this spectrum. At the expense of a higher query time, the
index time will be reduced.

2.4 Auxiliary definitions

Below we give some auxiliary de�nitions that will be used along the thesis.

The �rst de�nitions (De�nitions 2.4.1, 2.4.2, 2.4.3 and 2.4.4) can be used both for labelled and unlabelled
graphs. De�nition 2.4.1 de�nes for each vertex v 2 V two subsets, the set of vertices that can be reached from v
and the set of vertices that can reach v. De�nition 2.4.2 de�nes a strongly connected component (SCC). This is
used by Zouand to de�ne the connectedness of datasets. De�nition 2.4.3 de�nes the property ‘simple’ for a path
which is used by De�nition 2.4.4. De�nition 2.4.4 de�nes the set of paths between two points, which is used by
De�nition 2.4.6.

De�nition 2.4.1. Ancestors and descendants: In a directed graph for a given node v 2 V a set of ancestors and
descendants can be de�ned. Formally, we can de�ne the set of ancestors as ANCS(v) = fw 2 V j w can reach
vg and the set of descendants DESC(v) = fw 2 V j v can reach wg. Note that v 2 ANCS(v) ^ v 2 DESC(v).

1http://www.w3.org/TR/sparql11-query/, see Section 9: Property paths
2http://neo4j.com/docs/stable/cypher-query-lang.html
3https://nl.wikipedia.org/wiki/Facebook
4http://www.cnet.com/news/googles-knowledge-graph-tripled-in-size-in-seven-months/

Landmark indexing for scalable evaluation of label-constrained reachability queries 5



CHAPTER 2. PROBLEM STATEMENT

De�nition 2.4.2. Strongly connected component: In a directed graph, a strongly connected component (SCC)
is a maximal subset of the nodes A � V s.t. 8[v; v0 2 A j v ; v0]. A weakly connected component (WCC) is a
subset A s.t. 8[v; v0 2 A j v ; v0 _ v0 ; v].

De�nition 2.4.3. Simple path: Let G be a (directed) graph. Let s; t 2 V . Let P be a path from s to t. P
is said to be ‘simple’ if and only if for each Pi with 1 � i � Len(P ) we have that there does not exist Pj with
1 � j � Len(P ) and j 6= i such that Pi = Pj .

De�nition 2.4.4. Set of paths: In a (directed) graph, the set of simple paths between s and t can be expressed
as Paths(s; t). For s = t, we have that Paths(s; t) = ;.

De�nitions 2.4.5 de�nes the notion of a \path label", i.e. the union of all labels of edges that are between
vertices of the path. Note that there can never be multiple edges between two vertices and hence LP is unique
for any path P . De�nition 2.4.6 claims that a path P is minimal if its path label is pairwise incomparable to
that of any other path P 0 2 Paths(s; t). De�nition 2.4.7 de�nes the set of all minimal paths between s and t.
This de�nition is used by our analysis of algorithm LI. Figure 2.3 shows an example graph G with Paths(s; t)
and MinPaths(s; t) de�ned for two particular vertices.

De�nition 2.4.5. Path label: In a labelled (directed) graph, let Labels(P ) be de�ned as:
SLen(P )�1

i=1 Label(Pi; Pi+1).
This is also called \the label of a path" or LP .

De�nition 2.4.6. A minimal path: Let G be a (directed) labelled graph. Let s; t 2 V . Let P 2 Paths(s; t). P
is said to be a minimal path if and only if for all other P 0 2 Paths(s; t) we have that LP � LP 0 .

De�nition 2.4.7. Set of all minimal paths: Let G be a (directed) labelled graph. Let s; t 2 V . Let MinPaths(s; t)
be the maximal subset of Paths(s; t) such that for all P 2 MinPaths(s; t) we have that P is minimal.

1

4

3

2

5

Paths(1; 5) = fh1; 2; 5i; h1; 3; 5i; h1; 4; 5i; h1; 4; 3; 5ig
MinPaths(1; 5) = fh1; 2; 5i; h1; 4; 3; 5ig

Figure 2.3: An example graph G illustrating the de�nitions. Path h1; 2; 1; 2; 5i has not been included in Paths(1; 5)
because it is not simple. Path P1 = h1; 3; 5i is not included to MinPaths(1; 5) because of path P2 = h1; 4; 3; 5i.
We have that LP2

= fbg, whereas LP1
= fa; bg. Hence path P1 is not minimal.

6 Landmark indexing for scalable evaluation of label-constrained reachability queries



Chapter 3

Literature analysis

In this chapter we review a number of papers and chapters that have studied the topics of reachability and LCR.
First we review techniques to deal with reachability. Then we go over techniques for answering LCR-queries or
some extension of LCR.

3.1 Reachability

In this section we review one method that can answer reachability queries v ; w for v; w 2 V by building an
index.

3.1.1 2-hop cover

A 2-hop cover can only be built for a directed acyclic graph (DAG). A DAG can be created out of a directed graph
by �nding a set of strongly connected components and representing each node as such a SCC (see De�nition
2.4.2). Tarjan’s algorithm is an algorithm that can do this.

In a 2-hop cover [10, Chapter 6], we assign to each v 2 V a 2-hop code which consists of two lists In(v) �
ANCS(v) and Out(v) � DESC(v). These lists contain (a subset of) the set of ancestors of v, i.e. ANCS(v),
and the set of descendants of v, , i.e. DESC(v). A valid 2-hop cover is achieved if and only if for every u; v 2 V
with u ; v we have that In(v) \ Out(u) 6= ;.

A trivial 2-hop cover is the full 2-hop cover. This means that we include for each v 2 V all ancestors of v to
In(v) and all descendants of v to Out(v). This clearly gives no advantage over storing a transitive closure TC. A
transitive closure is a n� n matrix such that u ; v if and only if entry (i; j) in TC is 1, where i and j are the
vertex id’s of u and v.

The goal is to �nd a minimum 2-hop cover. However �nding such a cover is NP-hard [10, Chapter 6].

1 2 3

Figure 3.1: A simple graph. In the table below, i.e. Table 3.1, one can see a full hop-cover versus a minimum
one.

In Figure 3.1, we can see a simple graph. Its full-hop cover and a minimum cover can be seen in the Table
3.1 below.

Cohen’s 2-hop cover approximation

Cohen et al. [3] gives an approximation algorithm which gives a cover at most O(log (n)) larger than the minimum
2-hop cover. The worst case query time is O(m1=2) and the index size is O(nm1=2).

Algorithm 1 shows this approximation algorithm. Let TC be the transitive closure of G. (u; v) 2 TC
implies that u can reach v. Consider a node w. Let Aw � ANCS(w) and Dw � DESC(w). A cluster for
w Cw = S(Aw; w;Dw) indicates that every node u 2 Aw can reach any node v 2 Dw. The storage of Cw is

Landmark indexing for scalable evaluation of label-constrained reachability queries 7



CHAPTER 3. LITERATURE ANALYSIS

Table 3.1: This table shows in the 2nd and 3rd column a full 2-hop cover and in the 4th and 5th a minimum
2-hop cover.

vertex full In full Out minimum In minimum Out
1 ; f1; 2; 3g ; f1; 2g
2 f1g f2; 3g f1g f2; 3g
3 f2; 3g f3g f2g ;

jCwj = jAwj+ jDwj. A cluster Cw indicates that any node in Aw � V that can reach any node in Dw � V with
a path that goes through w.

Initially we have that for each w 2 V Aw = ASCS(w) and Dw = DESC(w) and that TC 0 = TC. As long as
TC 0 is non-empty, i.e. there exists a 1 in the binary matrix of TC 0, we continue. We look for a cluster Cw that
maximizes the equation on line 5. This is computed by looking at the number of tuples (u; v) where u 2 Aw and
v 2 Dw for which the matrix entry (u; v) in TC is 1. One particular Cw is chosen and for that cluster we remove
all (u; v) from TC 0 and add w to In(v) and Out(u).

An interesting observation here is that a full transitive closure is computed at the beginning, whereas one
particular reason for using a 2-hop cover was that a transitive closure would use too much memory.

Algorithm 1 2Hop-Cover(G)

1: compute TC
2: TC 0  TC
3: In(v);Out(v) ; for all v 2 V
4: while TC 0 6= ; do
5: �nd maxw2 jCw \ TC 0j=(jAwj+ jDwj)
6: for u 2 Aw ^ v 2 Dw do
7: remove (u; v) from TC
8: add w to In(v)
9: add w to Out(u)

10: end for
11: end while

2-hop cover maintenance

The graph can be updated in four di�erent ways: adding or removing a new node or adding or removing an edge.
For labelled graphs also updates of a label may be considered. In [10, Chapter 6], two methods are described to
deal with the removal of a node v in a DAG when having a 2-hop code index.

The �rst method de�nes a set of nodes VREL = ANCS(v) [ DESC(v) that consists of all ancestors v and
all descendants of v. Let GREL = (VREL; EREL) be the subgraph of G where EREL is the maximal subset of E
such that for any (s; t) 2 EREL we have that s; t 2 VREL.

A 2-hop cover L0 = (In’;Out’) is computed for GREL. Next, we look at all connections (a; d) 2 E of which
a 2 VREL _ d 2 VREL. If a 2 VREL, then we have that d 2 VREL, Out(a) = Out’(a) and In(d) = In’(d). If
d 62 VREL, then In(d) = (In(d) n VREL) [ In’(d) and Out(d) = (Out(d) n VREL) [ Out’(d). The downside of this
method is the large size of GREL and thereby the high cost of computation.

The second method trades computing time for storage. Suppose we have that a 2 ANCS(v) and d 2
DESC(v). Let W � V be the set of all nodes on simple paths from a to d, excluding a and d. Obviously v 2W .
The trade-o� between computing time and storage can be found in storing some nodes w 2 W in Out(a) and
In(d). If node v 2 W gets deleted, we can safely delete v in all Out(a) and In(d) because there is another route.
Of course this method leads to a much lower compression rate.

Applicability to LCR

We review the 2-hop cover method because it can be a part of an algorithm for building an index for LCR-queries.
The idea is used by Fletcher and Yoshida [4] in their LCR-index.

8 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 3. LITERATURE ANALYSIS

LCR adds a whole new dimension to the data. Reachability is like LCR, but then with jLj = 1. Setting jLj > 1
makes it impossible to reduce a group of nodes to a single node like with a SCC without losing information.

A way to use a 2-hop cover for LCR is to �rst build a 2-hop cover ignoring the edge labels. For any v 2 V
and w 2 In(v) and for any v 2 V and w 2 Out(v) we �nd MinPaths(v; w).

3.2 Label-constrained reachability

In this section we discuss two papers [?, 1] and the ideas taken from unpublished notes of Fletcher and Yoshida
[4]. The paper by Zou et al. is about building an index for evaluating LCR-queries. The paper by Bonchi et al.
[1] is about a more di�cult query than a LCR-query. The notes provide us with yet another two algorithms for
building an index for LCR-queries.

3.2.1 Bonchi et al.

Bonchi et al. [1] tackle the problem of �nding the distance of the shortest path P between two nodes v and w
such that LP � L for a query (v; w; L). This is an extension of \LCR", because a distance is returned if v can
reach w and the need to �nd a shortest distance implies we need to store any path P 0 with LP 0 � LP if P 0 is
a shorter path than P . Two approaches are given that use landmarks in which the �rst method is more precise
and in which the second is less precise but has a smaller index and needs less construction time.

Both approaches build on the de�nition of SP-minimality which is similar to De�nition 2.4.7. A set of
landmarks X � V is de�ned. dX(s; t) denotes the distance between s and t using only edges with labels in X.
For simplicity, each edge has a weight of 1. A vertex-pair (u; x); u 2 V ^ x 2 X is said to be SP-minimal w.r.t. a
label-set T if and only if there is no S � T s.t. dT (u; x) = dS(u; x). One should note that the shortest distance
can only strictly increase by taking a subset of the labels, because less edges can be used than before.

The �rst method runs single-shortest path (SSSP) between all landmarks x 2 X � V and all v 2 V for a set
of candidate label sets C � 2(L). The brute force method takes O(2jCjk(m+ njCj)).

However, there are some ways to improve on this running time. Three methods to prune the candidate label
sets are mentioned. The �rst is to look at the labels of edges incident on a landmark x. These labels must be
present in a candidate set. The second is the observation that for a given label set L we have that dL(x; u) � jLj
because otherwise at least one label l 2 L is not used in a path from u to x. The third and last observation uses
a history of a set of vertices Vt that are at distance t from the landmark x using a SP-minimal path. The precise
details of this last optimization are not entirely clear to us.

The second method assigns a particular label l 2 L to each landmark x 2 X. Let lx be that particular label.
For each node v 2 V we store the \mono-chromatic" distance to each landmark, i.e. dlx

(v; x). The \mono-
chromatic" distance is obtained by only using edges of a single type, e.g. only using edges in the label set fag.
The distances between landmarks are computed using a \bi-chromatic" distance metric, that is using two types
of labels e.g. fa; bg. Given two landmarks x1; x2 2 X the distance between x1 and x2 would be dflx1 ;lx2g(x1; x2).
Having k landmarks this can be obtained by doing k breadth-�rst searches for each node. Hence, we need O(kn)
space and O(k(m + n)) time. However this solution might return results that are either wrong or far o�. For
instance, given two landmarks x1; x2 2 X we can have that dflx1

;lx2
g(x1; x2) = 1 as there is no flx1

; lx2
g-path

between the two, but there might be a flx1
; lx2

; lg-path between x1 and x2 with l 2 L. In this case, a query
q = (x1; x2; flx1 ; lx2 ; lg) would incorrectly return 1.

3.2.2 Zou et al.

In [11] a solution is proposed to solve LCR-queries. It is one of the few paper about \LCR". The results of the
paper are good, in the sense that the index construction time is comparatively low. Hence we have decided to
treat it quite detailedly.

In the paper multiple methods for building an index for LCR-queries are being treated. We are only interested
in the transitive-closure method, as this method has the most promising results. Moreover we only studied the
algorithm that builds the index and did not look at the parts about maintenance on which the paper elaborates
as well.

We have divided the transitive-closure method into 5 steps. First we give an algorithm that can build a
transitive closure for a strongly-connected component (SCC). Then, we explain each of the 4 subsequent steps.

Landmark indexing for scalable evaluation of label-constrained reachability queries 9



CHAPTER 3. LITERATURE ANALYSIS

From the paper some implementation details remained ambiguous. Moreover there is no proof of correctness
for the entire method. Only some parts of the algorithm, e.g. the optimization, have a proof of correctness.

The paper claims that the running time of the full method is O(max jV j3; jV j2 �Dd).

De�nitions

The paper has de�ned some of the de�nitions in a di�erent way than we do.
Let G = (V;E; 2L) be a directed labelled graph. Each edge e 2 E has a label set instead of a label. This is a

major di�erence. Let � : E ! 2L be a mapping to a label set.
A ‘single-source transitive closure’ for a graph G is the following: for all nodes u 2 V we have that MG(u;�)

can answer any query q = (u;w; L) with w 2 V and L � L correctly.
Let P1; P2 2 Paths(s; t) for some s; t 2 V . A path P2 covers a path P1 if LP2 � LP1 , where LP is the \path

label" of P (see De�nition 2.4.5). The \distance of a path P" is jLP j.
Prune(S) is an operator that removes any path P 0 that is covered by another path P in the set S, essentially

creating a minimal path set (see De�nition 2.4.7).
� concatenates a label set with a set of paths and their associated label sets. For example, given an edge

e = (u; v; fag) 2 E and a path P = hv; wi with Labels(P ) = fbg, we would have that �(e) � fPg yields fP 0g,
where P 0 = hu; v; wi and LP 0 = fa; bg.

Finding single-source transitive closure

First we need an e�cient algorithm to �nd the ‘single-source transitive closure’ for a graph G = (V;E; 2L).
A Dijkstra-like method is proposed to build this index. The algorithm maintains two variables: a heap (or

min-priority queue) H and a list RS. H can contain tuples T of the form (L(P ); P; w) for w 2 V . H sorts the
tuples according to the number of labels in L(P ), i.e. the tuple T for which jL(P )j is minimized is on top of H.
We say that a tuple T1 covers another tuple T2 if and only if we have that w1 = w2 and L(p1) � L(p2). RS is
initially empty. During the execution of the algorithm it is �lled with tuples.

We start at a vertex u 2 V . Initially, the heap H is �lled with all neighbour-tuples of u, i.e. for each
(u;w; L) 2 E we add an entry of the form (L; hui; w). Then we iterate over the heap taking an entry (or tuple)
per iteration. Let T1 = (L(P ); P; w) be the entry taken from the heap. If T1 is covered by some T2 2 RS then
there is no need to process T1 and we can continue. Otherwise, we add L(P ) to MG(u;w) and T1 to RS. After
this we can generate neighbour-tuples for w. Any neighbour tuple should have a simple path P and should not
already be covered by some tuple on the heap H.

In Figure 3.2 we see a graph for which we could run this algorithm. Let’s say we wish to compute MG(u;�).
First we would generate u’s neighbour-tuples, which are (fbg; hui; v) and (fag; hui; w). Next we would generate
for instance the tuple (fa; bg; fu;wg; v) because it is a neighbour tuple of w. However the tuple (fbg; fug; v) 2 RS
already covers this tuple and hence we do not add this to our index and process the next entry on the heap.

u

v

u

wy

x

a

b
b

b

a

a

Figure 3.2: A labelled graph as an example. The neighbour-tuples of u are (fbg; hui; v) and (fag; hui; w).

The running time of this algorithm is O(Dd) where D is the maximal out-degree and d is the diameter of the
graph. This is the theoretical maximum number of paths from any node u 2 V .

10 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 3. LITERATURE ANALYSIS

Step 1: Creating a DAG

The �rst step of Zou’s algorithm is to transform a graph G into a DAG D.

First a set k of SCC’s hC1; : : : ; Cki is found for the graph G. Each Ci � V and
Sk

i=1(Ci) = V . We assume the
classical de�nition of a SCC (see De�nition 2.4.2) is used here and not some new de�nition entailed to labelled
graphs. From Figure 3.3 another thing could be assumed, which is merging all vertices v 2 A s.t. there is a
flg-path between any v; w 2 A where l 2 L.

Next we generate MCi(u;�) using the Dijkstra-like method discussed in the previous section for each Ci with
1 � i � k.

Figure 3.3: Figure 4 from paper [11]. It shows a labeled graph G on the left and the ’classical’ SCC’s on the
right.

Next we can generate a DAG D = (VD; ED; 2
L). Each vertex v 2 Ci, where Ci is the i’th SCC, is labelled as

either: an in-portal, an out-portal, an internal vertex or both an in- and out-portal. Looking at Figure 3.3, we
can say that vertex 6 is an internal vertex and that vertex 3 is both an in- and out-portal. Let outp(Ci) be the
set of out-portals of Ci and let inp(Ci) be the set of in-portals of Ci.

Let Bi be a bipartite graph. For each p1 2 outp(Ci) we add a vertex to Bi. The same is done for each
p2 2 inp(Ci). p1 is mapped to one v 2 V and p2 is mapped to some v0 2 V .

In case p1 = p2 we add two vertices to Bi. Both map to the same vertex v 2 V . Also, we add an edge to Bi

of the form (p1; p2; ;).
In case p1 6= p2 we look for all label sets L in MCi(p1; p2). For each such label set we add an edge of the form

(p1; p2; L). Figure 3.4 shows an example of a transformation of a SCC Ci to a bipartite graph Bi.

By merging all bipartite graphs Bi we get D. In Figure 3.5 you can see an example of the full process. Note
that the edges in D are label sets and not labels.

One can be curious as to how e�ective this approach would be in graphs in which (almost) every node in
the graph is an in- and/or out-portal. Then there needs to be an edge from every node in the SCC to every other
node, which is quadratic in the number of nodes in the SCC. There might be even more edges in D than in G.
Thus, the e�ectiveness of this approach really depends on the percentage of nodes that are serving as either in-
and/or out-portals.

Figure 3.4 illustrates this case. On the left a part of a graph eligible to become a SCC is displayed. On the
right the result. We see that the number of edges has increased a lot.

Landmark indexing for scalable evaluation of label-constrained reachability queries 11



CHAPTER 3. LITERATURE ANALYSIS

1 2

34

1

1�

2

2�

3

3�

4

4�

Figure 3.4: A part of G eligible to become a SCC Ci on the left. Nodes 1 to 4 form a SCC. On the right we
see the resulting bipartite graph Bi. A dashed line indicates an edge with no label set, because the end points
of that edge represent the same vertex in Ci. A colored edge indicates a connection between two portals in Ci

that are connected through edges with only that color. A dotted green edge indicates the portals are connected
through a combination of red and blue edges. We see that the new number of edges is much higher than in the
original.

Step 2: using D

As D is a DAG we can generate a reversed topological order RT for it. The internal vertices of any SCC Ci are
not in D. Only the vertices that serve as an in- or out-portal of any Ci are in D.

Let u 2 RT . First we set for each node MG(u;�) to MCi
(u;�) if u 2 Ci. For each out-edge (u; v; L) 2 ED we

do the following. We set MG(u;�) to MG(u;�) [ Prune(�(u; v) �MG(v;�)). This takes all the entries (w;L0)
from MG(v;�)) for w 2 V and tries to insert (w;L0 [ L) into MG(u;�)).

Figure 3.5 illustrates the idea. The �gure displays the graph as it is, but you might as well see the set of
bipartite graphs D as displayed on the right part of the �gure. Changes are propagated from bottom to top in
this graph.

We start at vertex 12 2 C3 after having computed its internal transitive closure. As 12 has no children, we
go to C2. For each out-portal in C2 (which is 110) connected to an in-portal in C3 (which is 12), we concatenate
all entries of the local transitive closure of the in-portal with the edge label of the edge between that in- and
out-portal. In the case of C2 this would set MC2

(110; 12) to Prune(fbg �MC3
(12;�) = fbg. For each in-portal

of C2 (which are vertices 10 and 11) we look at all the other out-portals in C2 (which is 110). In the case
of C2 and vertex 10 this would set MC2(10; 110) to Prune(fag �MC2(110;�)) [ Prune(fbg �MC2(110;�)), as
there is an fag and a fbg-path connecting 10 and 11 in C2. We do not need to do anything for vertex 11, as
MC2

(11;�) = MC2
(110;�). After we have completed this process for C2 we do the same for C1.

Step 3: Inner to out

Now we have only covered the vertices v 2 VD � V , i.e. we have not covered the internal (or inner) vertices
of each SCC. To get MG(u;�) for all nodes u 2 V we need to look to the in- and out-portals of each SCC
respectively.

The inner vertices are processed in an order PT that adheres to RT . In case the in- and out-portals of Cj

were processed before the the in- and out-portals of Ci in RT , then the inner vertices of Cj will be processed
before the inner vertices of Ci in PT .

12 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 3. LITERATURE ANALYSIS

Reversed topological order [12; 110; 11; 10; 80; 90]

C2

C1

C3

D

8 9

10 11 12

1
23

4

567 80 90

10

110

11

12

Figure 3.5: On the left a graph with SCC’s C1, C2 and C3, which could also be represented by their related
bipartite graphs. The edge labels are indicated by the color. A dashed line indicates an edge with no label, which
happens when two nodes in D represent the same vertex in G. Inner vertices are orange, out-portal are green
and in-portals are red and nodes serving as both are white. The internal vertices are numbered. On the right the
graph D holding all bipartite components. Changes are propagated upwards along all edges in the graph where
the transitive closure of a node is concatenated with the edge label.

For each inner vertex v 2 PT and out-portal p 2 Ci we set MG(v;�) to
S

p2outp(Ci)(Prune(�(v; p)�MG(p;�)).

Step 4: Final step

The �nal step is then to iterate over all Ci. For any v 62 Ci, u 2 Ci and u0 2 outp(Ci) we set MG(v; u) =
Prune(MG(v; u0)�MG(u0; u))[MG(v; u). In this way any inner vertex of Cj ‘knows about’ the inner vertices in
Ci.

We did not understand the necessity of this �nal step. In step 2 the in- and out-portals p 2 Ci learn about
all inner vertices v 2 Cj in case the in- and out-portals of Cj preceded those of Ci in RT . In step 3 the inner
vertices v 2 Ci take the entries of the out-portals p 2 outp(Ci). If we have that for v 2 Ci and w 2 Cj v ; w,
then v should ‘know about’ w at the end of step 3.

Optimization

The paper has an optimization to this algorithm which improves the results dramatically. For instance, for a
100k graph the optimization could reduce the index construction time from 5; 000 seconds to about 15 seconds.
It tries to optimize the computation of MCi

(u;�).
A minor change to the Dijkstra-like algorithm is made. Suppose we wish to compute MCi

(u;�) for u 2 V .
Moreover we have already computed MCi

(v;�) for another v 2 V and (u; v) 2 E, then we can start by setting
MCi

(u;�) to MCi
(u;�) [ f�(u; v)�MCi

(v;�)g.

Zou results

The code was written in C++ and the experiments were conducted on a P4@3.0Ghz machine 2 GB RAM running
Linux Ubuntu.

A number of synthetic datasets were generated using either the Erdos-Renyi (ER) or the Scale-Free (SF)
model. ER is a classical random graph. jEj edges are chosen randomly from jV j(jV j � 1) possible edges. Each
edge in this model is equally likely which may make it not comparable to real-life networks. SF graphs try to
include the notion of preferential attachment, i.e. a node with a lot of connections (in and/or out) may be more
likely to be connected to or from. Hence, we get a skewed out-degree distribution of the graph. The out-degree

Landmark indexing for scalable evaluation of label-constrained reachability queries 13



CHAPTER 3. LITERATURE ANALYSIS

distribution of such a graph follows the shape of an exponential distribution and can be speci�ed by the following
4 parameters: jV j, the minimal degree of a node, the maximal degree of a node and 
1. Typically, 2 � 
 � 3.

We have that jLj = 18. The number of labels in any query was jLj � 0:3. This means that each query (s; t; L)
has jLj = 6.

In Figure 3.6, we can see the results for ER-graphs of di�erent sizes. jdj = 1:5 means that the average de-
gree per node was 1:5. We see that the optimized version of the transitive-closure method performs much better.
Looking at the last column we can see that the query times obtained by this method are roughly equal to the
query times obtained by doing a double-sided BFS, i.e. a BFS with two threads.

Figure 3.6: Table 4 from paper [11]. For di�erent sizes of ER-graphs it shows the time to build the graph using
the transitive-closure method and the optimized version of it, the size in KB and the query time in ms. In the
last column we see the query times obtained by a double-threaded BFS.

In Figure 3.7 we see the e�ects of increasing the density in ER-graphs. The number of vertices has been set
to jV j = 10; 000.

In Figure 3.8 we see the results for SF-graphs. There is a major di�erence here compared to 3.6. The paper
argues that most nodes in these graphs have a very low degree and hence much of the search space can be pruned
early on.

One curious thing to note here is that the index size of any synthetic graph in these experiments is relatively
low. Most do not exceed a megabyte. In our experiments (see Table 6.3) almost any index would have a size
that exceeds this. In Figure 3.6 we see that an ER-graph with 10k vertices and a degree of 1:5 (i.e. 15k edges)
has an index with a size of 33; 000 KB. The 10k ER-graphs in Figure 3.7 with a higher degree all have an index
with a lower size, e.g. for d = 5 we see an index with a size of 186KB.

Looking at Figure 3.7 we see a 300 to 400 speed-up in the index construction time between the normal (IT)
and the optimized version (IT-opt). We have implemented a similar optimization for our major contribution (see
Section 4.2.2). However we have not observed an improvement of this magnitude for the index construction time.

3.2.3 Fletcher and Yoshida

There are two possible algorithms taken from unpublished notes of Fletcher and Yoshida [4] for determining
reachability in labelled graphs. One algorithm DoubleBFS performs two breadth-�rst searches (BFS’es) from
each node v 2 V . The other algorithm is an iteration-based algorithm in which nodes send messages to their
neighbours.

1http://tinyurl.com/zzt8qgq

14 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 3. LITERATURE ANALYSIS

Figure 3.7: Table 5 from paper [11]. For di�erent densities of 10k ER-graphs it shows the time to build the graph
using the transitive-closure method and the optimized version of it, the size in KB and the query time in ms.
Interestingly the index size is very small. In the last column we see the query times obtained by a double-threaded
BFS.

Figure 3.8: Table 7 from paper [11]. For di�erent sizes of SF-graphs it shows the time to build the graph using
the transitive-closure method and the optimized version of it, the size in KB and the query time in ms.

DoubleBFS and NeighbourExchange

In this section we describe two methods (DoubleBFS and NeighbourExchange) that can be used for building
a full exact index.

Both algorithms try to create two arrays Out(v); In(v) similar to the idea of a 2-hop cover. We de�ne In(v) =
f(s; L) j 9[P 2 MinPaths(v; s) j Labels(P ) = L]g and Out(v) = f(s; L) j 9[P 2 MinPaths(s; v) j Labels(P ) = L]g.
The formula to answer a reachability query q = (s; t; L) in the labelled-graph is:

Q(s; t; L) = 9[v 2 V j 9[Ls; Lt � L j (v; Ls) 2 Out(s) ^ (v; Lt) 2 In(t) ^ Ls � L^ � Lt � L]].

First, some ordering of the vertices hv1; : : : ; vni is created. This ordering has little or no e�ect on the algorithms
discussed here, but it might have in more sophisticated versions of these algorithms later on.

The �rst algorithm loops over all n vertices in the ordering that has been created. From each vi, we start

Landmark indexing for scalable evaluation of label-constrained reachability queries 15



CHAPTER 3. LITERATURE ANALYSIS

Table 3.2: This table shows the �rst and only round of running NeighbourExchange on the graph in Figure
3.9. A node �rst processes its updates and then sends new updates to its out-neighbours for each change that
was made.

Vertex-
id

Receive Send

1 ; (1; fag)
2 (1; fag) (1; fa; bg); (2; fbg; (2; fa; cg); (2; fcg)
3 (1; fa; bg); (2; fbg) (1; fa; bg); (2; fa; bg)
4 (1; fa; cg); (2; fcg); (2; fa; bg); (3; fag) ;

two Breadth-First searches (BFS’es): one using the direction of the edges and one using the opposite direction.
Each time we hit a node (v; L) we try to add it to Out(vi) or In(vi) respectively.

The second algorithm NeighbourExchange starts with a loop that continues as long as there is a node v
which had a change in its In(v) or Out(v). During each such iteration we loop over all vi with 1 � i � n. A
vertex vi 2 V can send an update (x; L) to any w 2 V , where x 2 V is the source of the update and L � L is
the propagated label set. Each vi �rst processes its updates. For any applied update (x; L), i.e. it was inserted
into the index of vi, and for any neighbour (vi; w; l) with l 2 L vi sends an update to w of the form (x; L [ flg).

Both algorithms use a form of pruning. Suppose we wish to add (u; L) to either In(vi) or Out(vi) and we have
that Q(vi; u; L) is already true, we do the following. DoubleBFS would not push any of u’s neighbours on the
queue. NeighbourExchange would not push the update (u; L) to any of vi’s neighbours.

In Figure 3.9 and Table 3.2, we can see how algorithm NeighbourExchange works. In the table we see
the messages that are being exchanged during the �rst round and how that e�ects the In(v) of each node v 2 V .

a

b c

a

12

3 4

Figure 3.9: A graph with labels. In Table 3.2 we see the updates during the �rst round of the algorithm
NeighbourExchange.

While working on the code for DoubleBFS and NeighbourExchange and running experiments for it, we
came along some issues.

Firstly, NeighbourExchange and DoubleBFS build both In and Out, but having one of these su�ces to
answer any query directly. This halves the memory usage. Secondly, NeighbourExchange and DoubleBFS
do a lot of redundant computation. Suppose we have a graph like in Figure 3.10 in which the black-box in the
middle could be any kind of graph which makes the red nodes reachable from the blue nodes. For each blue node
we have to redo a BFS through the black box on the red nodes. We might as well compute Out(A) �rst and then
re-use it each time a BFS hits A.

Managing the index size: union or intersection

The index size could become a real bottleneck for larger jV j when building a full exact index. A solution to this
by Fletcher and Yoshida [4] is to not add all entries to the index, but instead merge the label sets of some of the
entries.

16 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 3. LITERATURE ANALYSIS

? A

B

C

D

Figure 3.10: A graph. The black box could be any graph which makes the red nodes reachable from the blue
nodes.

Suppose we have an entry of the form (w; ffa; bg); (w; fb; cg); (w; fc; d; egg) in In(v) for some v; w 2 V . We
could try to reduce the size of the index by intersecting the label sets or taking the union of the label sets. A
union would yield (w; fa; b; c; d; eg. An intersection would yield (w; fbg). A query (v; w; fb; dg) would return false
in the �rst case and true in the second case, whereas we know the query is a False-query considering the original
entry. On the other hand, the True-query (v; w; fb; cg) would return false in the �rst case and true in the second
case. Hence, a union might produce false negatives, whereas an intersection might produce false positives.

Merging the label sets should only be done whenever the number of label sets of an entry exceeds some budget
b � 0. As soon as we add a new label set L2 to an entry containing b label sets, we merge it with an existing
label set L1. In case we use a union-policy, we merge L2 with a label set L1 such that jL1 [ L2j is minimal. In
case we use an intersection-policy, we merge L2 with a label set L1 such that jL1 \L2j is minimal. Moreover, we
give the merged label sets a 
ag such that we know it is a merged entry.

Landmark indexing for scalable evaluation of label-constrained reachability queries 17





Chapter 4

Methods

In this chapter we discuss the methods either used in at least one experiment or that we have at least strongly
considered using (e.g. Joindex). Also we discuss index maintenance and extensions to other queries which are
richer than LCR-queries. For our major contribution (LI) we give a proof of correctness and a worst-case running
time and memory usage analysis.

4.1 Existing methods

This section discusses existing methods to answer LCR-queries.

4.1.1 BFS

BFS is the baseline idea. It has no index. The time to construct is the ‘index’ is equal the time to load the graph
into memory. The same holds for the size of the ’index’. Updates are as simple as adding or removing a node
or vertex from the graph. In many cases BFS is a good solution, as it is relatively fast, requires no construction
and maintenance and has a low memory usage.

Algorithm 2 shows the precise implementation for a query (v; w; L). Just like normal BFS, this BFS has a
running time complexity of O(jV j+ jEj).

Algorithm 2 BFS(v; w; L)

1: Let marked : V �! f0; 1g be a mapping with for all v 2 V marked[v] = 0
2: Let q be a queue
3: q.push(s)
4: while q is not empty do
5: v  q:pop()
6: marked[v] 1
7: if v = w then
8: return True
9: end if

10: for (v; w; l) 2 E ^marked[w] = 0 do
11: if l 2 L then
12: q:push(w)
13: end if
14: end for
15: end while
16: return False

The variable marked at line 1 has been implemented using a bitset, which makes it possible to modify and
check for any value in constant time rather than in O(log (n)) at the expense of O(n) memory usage.

Landmark indexing for scalable evaluation of label-constrained reachability queries 19



CHAPTER 4. METHODS

4.1.2 Best effort Zou

This method is a best e�ort approach to implement Zou’s algorithm [11].
Let G be a labelled directed graph (De�nition 2.2.1). Let MG(u;�) � V � 2L. This is the same as Ind(u)

in our implementation. Hence, one might as well replace MG(u;�) by Ind(u). The operation MG(u;�) =
Prune(MG(u; v) �MG(v;�)) is implemented by looking at any (v; L) 2 Ind(u) and concatenating (v; L) to any
(w;L0) 2 Ind(v) which results in (w;L[L0). (w;L[L0) is attempted to be added to Ind(u) by using tryInsert
(Algorithm 11, Section 4.2.2).

The algorithm consists of a number of steps:

1. Generate a set of k SCC’s C� = fC1; : : : ; Ckg, by using Tarjan’s algorithm for G.

2. For each Ci 2 C� we build an index MCi =
S

u2Ci
(MCi(u;�)) answering all queries local to Ci. After this

step, for any u; v 2 Ci with a L-path from u to v we have that there exists an entry (v; L0) in MCi(u;�)
with L0 � L.

3. We �nd the in- and out-portals of each SCC Ci, i.e. we �nd those vertices v 2 Ci such that there exists an
incoming edge (w; v) 2 E or an outgoing edge (v; w) 2 E where w 62 Ci. We de�ne these sets as IN(Ci) and
OUT(Ci) respectively.

4. We generate an acyclic graph D = (VD; ED;L).

The vertices v 2 VD are in- and out-portals of a SCC Ci in G. In case a vertex v 2 Ci is both an in- and
out-portal we generate a replica vertex v0 which is added to VD. Between any such v and v0 there is an
edge: (v; v0; f;g.
The edges e 2 ED � V �V �2L have label sets rather than labels onto them. Let � : E ! 2L be a function
for D that maps each edge to a particular label set. Between any two v; w 2 VD there can be multiple
edges, but these need to have di�erent label sets.

For each v 2 In(Ci) and w 2 In(Ci) with v 6= w we look for all label sets L in MCi(v; w) and generate an
edge of the form (v; w; L). This edge is added to D.

5. D is acyclic and can be topologically sorted. This is done, after which we reverse the order to create an
order RT .

6. For u 2 RT and all children v 2 VD of u we set MG(u;�) to Prune(
S

(u;v)2ED
(�(u; v)�MCi(v;�))). This

puts an entry (w; �(u; v) [ L2) in MG(u;�), if there is an entry (w;L2) in MG(v;�).

7. For each out-portal ui that is part of Ci we look for all inner vertices uj of any Cj with j 6= i and set
MG(ui;�) = Prune(MG(ui; uj) �MG(uj ;�)) [MG(ui;�). In this way the out-portal ‘knows about’ the
inner vertices of other SCC’s as well. This step was not in the original paper, but necessary to get our
implementation fully working in the end.

8. For each inner vertex ui in Ci we look at all out-portals pi of Ci and set MG(ui;�) to the union of all
out-portals, i.e. we set MG(ui;�) to

S
pi2OUT(Ci)(Prune(MG(ui; pi) �MG(pi;�))). This puts any entry

(uj ; L1 [ L2) in MG(ui;�), if there is an entry (pi; L1) in MG(ui; pi) and an entry (uj ; L2) in MG(pi; uj).

9. For each inner vertex uj with j 6= i we look for an in-portal pi such that uj ; pi and any other vertex
ui 6= pi. We set MG(uj ;�) to Prune(MG(uj ; pi)� (MG(pi; ui)) [MG(uj ;�).

We think steps 7 and 9 are redundant, even though step 9 is in the paper. Given two vertices u 2 Ci and

v 2 Cj such that u
L
; v we should have that there exists some out-portal u0 2 OUT(u0) such that L 2MG(u0; v)

at the end of step 6. Step 8 should then include L to MG(u; v) via u0. This did not happen in some rare cases.
Hence we included step 7 to get a fully working version.

We decided not to try to �x these issues or implement the optimization described in the paper, because the
results were already quite disappointing, i.e. they were not competitive to e.g. DoubleBFS and not in line with
the results in the original paper. The di�erence in index construction time between DoubleBFS and Zou was
at least a factor 10. We did not see how this gap could be bridged. Steps 2, 7, 8 and 9 took the most time. The
approach works very bad for graphs for which there is at least one relatively large SCC. Chapter 6 elaborates on
Zou with experimental results as well.

We included the idea of step 2 of the algorithm into our implementations of DoubleBFS and LI, i.e. sort
the entries of the heap according to the number of labels in the label set.

20 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

4.2 Our contributions

In this section we discuss our contributions for answering LCR-queries. The approach LI with its extensions is
our major contribution.

4.2.1 General comments

Let Ind � V � V � 2L be an index for all nodes v 2 V . Let Ind(v) � V � 2L be the index for node v and let
Ind(v; w) � 2L be a list of (minimal) label sets connecting v and w.

Ind(v) is said to be minimal if for any two di�erent pairs (u; L) and (u; L0) in Ind(v) we have that neither
L � L0 or L0 � L. An index Ind is said to be minimal if and only if for all v 2 V we have that Ind(v) is minimal.

4.2.2 LandmarkedIndex

While writing and testing the code we found that BFS had a low query answering time, e.g. on a jV j = 1; 000-
graph the query answering time would often be in an order of magnitude of 10�6. We also saw that building the
full index takes a lot of time and memory. Building a full index is often not needed to achieve a speed-up. For
instance, if a su�ciently large subset of the nodes V 0 � V is (fully) indexed, we already can achieve a speed-up.
Hence, we decided to opt for an approach that is similar to BFS but uses an index.

Q=(1; 2; fa; bg)
1

2

3 4

5 6

Figure 4.1: The query is (1; 2; fa; bg). The red edges are a, the blue edges b and the green edges c. Also let the
red vertices 3 and 4 be landmarks. The query is a True-query, as 1 can reach 4 and 4 can reach 2.

LandmarkedIndex builds a complete index for a subset V 0 � V of jV 0j = k nodes, also called landmarks. All
the remaining vertices are called non-landmarks. At query evaluation time, we run a normal BFS for a query
(v; w; L). However, when we hit a node v0 that is a landmark, we try to resolve the query directly. If the answer
is true, we are done. If the answer is false, we do not need to process any of the out-neighbours of v0 saving time
compared to BFS.

We introduce three extensions to the basic LI approach. Table 4.1 shows the name and the present extensions
of each version of LI that was used in at least one experiment. Table 5.2 in Chapter 4 gives a summary of all
methods.

Basic idea

First we select k landmarks. This can be done in various ways, but the default way is picking the k vertices
with the highest total degree. k has been speci�ed before and is typically a fraction of n. After this we create
a mapping isL : V ! h�1; 0; : : : k � 1i that maps any vertex v 2 V to either �1 if it is not a landmark and a
positive integer in the range 0 : : : k � 1 if it is a landmark. We say v 2 V 0 or vi 2 V for i � 1 if v is a landmark
and v 2 V n V 0 or v0 2 V if v is not a landmark.

Landmark indexing for scalable evaluation of label-constrained reachability queries 21



CHAPTER 4. METHODS

Table 4.1: This table shows the name and the present extensions of each version of LI that was used in at least
one experiment.

Method name Ext. 1 Ext. 2 Ext. 3

LI

LI+EXTv1 3

LI+OTH 3

LI+OTH+EXTv1 3 3

LI+OTH+EXTv2 3 3

The basic approach, i.e. without any extensions, runs Algorithm 3 for any landmark node �rst. The i+ 1’th
call of the algorithm pushes a pair (vi; fg) to the queue initially. Then, it iterates until the queue is empty. For
each entry (u; L) obtained on line 4 we call tryInsert. It tries to insert (u; L) into Ind(vi) and returns true if
and only if this succeeded. tryInsert only succeeds whenever L is incomparable to any other L0 in Ind(vi; u) or
whenever L is only a subset of some of the entries in L0. Moreover, it removes any superset L0 of L in Ind(vi; u).
Hence, tryInsert preserves the minimality of Ind(vi; u). Finally, we add all pairs (w;L [ flg) to q for each
(u;w; l) 2 E. The purpose of forwardProp is explained in the following section.

Algorithm 3 LabelledBFSPerNode(v)

1: Let q be a queue
2: q:push(v; fg)
3: while q is not empty do
4: (u; L) q:pop()
5: if tryInsert(u; v; L) = False then
6: continue
7: end if
8: if hasBeenIndexed(u) = 1 then
9: forwardProp(v; u; L)

10: continue
11: end if
12: for (u;w; l) 2 E do
13: q.push(w;L [ flg)
14: end for
15: end while
16: hasBeenIndexed(v) 1

Algorithm 4 tryInsert(u; v; L)

1: if v = u then
2: return True
3: end if
4: if 9[(u; L0) 2 Ind(v) j L0 � L] then
5: return False
6: end if
7: remove any (u; L0) s.t. L � L0 from Ind(v)
8: add (u; L) to Ind(v)
9: return True

22 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

Algorithm 5 forwardProp(v; u; L)

1: for (w;L0) 2 Ind(u) do
2: tryInsert(v; w; L [ L0)
3: end for

Propagation

In our code we used by default ’forward propagation’. While building the index for a node vj with j � i, we
might visit a node vi which has already been full indexed. When there is a L1-path from vj to vi, we can say
that any entry (u; L1 [ L2) could be appended to Ind(vj) where (u; L2) 2 Ind(vi). The idea came from studying
the optimization of Zou’s algorithm [11]. Forward propagation is used by the basic approach LI.

During construction we maintain a mapping that indicates which vertices v 2 V have already been fully
indexed by using hasBeenIndexed : V ! f0; 1g. hasBeenIndexed(vi) = 0 if and only if landmark vi has not been
fully indexed. Otherwise, we have that hasBeenIndexed(vi) = 1.

Heap

Algorithm 3 can explore parts of the graph multiple times. This can hurt the performance. Inspired by Zou et
al. [11] we changed the queue into a heap (or a min priority queue) where the heap entries are sorted on the
number of labels in the label set. The entry (u; L) for which jLj is minimal is on top of q. In this way we are
assured that we never insert (u; L) before (u; L0) to Ind(vi) when L � L0. Hence tryInsert never has to remove
any entries. The heap might incur some overhead, but on the other hand might save time when a large part of
the graph is traversed multiple times. The heap is used by the basic approach LI.

Basic query algorithm

Algorithm 6 is the pseudocode for resolving a query for LI+OTH. To get the version without any of the extensions
you should ignore lines 5-13.

We start by exploring the graph using a BFS at line 14. Only when we hit a landmark v0 2 V 0 during this
BFS, we try to resolve the query directly. This is done by calling Algorithm 7. This looks for an entry of the
form (w;L0) 2 Ind(v0). It returns true if and only if such an entry exists and L0 � L. When this ‘direct attempt’
fails we do not need to look at any of the out-edges of v0, because we know w cannot be reached from v0.

First and third extension

In Figure 4.1 we see that vertex 1 can reach landmark 3, but 3 cannot reach vertex 2 over fa; bg. However, 3
can reach two other vertices: vertices 5 and 6. If one of these vertices were able to reach 2 then 3 could reach 2.
Hence there is no point in evaluating any vertex that has a fa; bg-path from vertex 3.

This notion can be generalized. The basic idea for the �rst extension is the following. Given a query
q = (v; w; L) we might stumble upon a landmark v0 one way or another. If a direct attempt (v0; w; L) fails, we
know that any vertex w0 that has a L-path from v0 cannot reach w. Hence it can be pruned. We also call a query
that prunes in this way an ‘extensive query’.

When we use the �rst extension, we choose to store some extra information for each landmark v0 2 V . We
store l0 = jLj extra lists containing all vertices that can be reached using one particular label only. If a query
(v0; w; L) fails from a landmark v0, we can prune all vertices that are in one of the in total l0 lists if the corres-
ponding label of that list is in L.

Let LP(v) : L ! 2V be the variable holding these lists for each v 2 V 0. LP is �lled during each iteration of
Algorithm 3 after line 7. We obtain an entry (u; L) at line 4. As long as L = flg and u 6= v we insert u to
LP(v)(l).

One could think of maintaining more lists, i.e. also adding lists representing the all label sets with two or
three labels. However this can be quite expensive in cost of memory as there can be

�jLj
3

�
such lists, which is

O(jLj3). There is also going to be a lot of redundancy in these lists.

As the �rst extension did not provide enough speed-up for False-queries for when k � n
50 (see Chapter 6,

Landmark indexing for scalable evaluation of label-constrained reachability queries 23



CHAPTER 4. METHODS

Algorithm 6 queryLM(v; w; L)

1: if isL(v) � 0 then
2: return queryDirect(v; w; L)
3: else
4: Let marked : V ! f0; 1g be a mapping
5: for v0 2 fv0 j (v0; L) 2 Ind(v)g do
6: // v0 is always a landmark
7: for L0 2 Ind(v; v0) ^ L0 � L do
8: if queryDirect(v0; w; L) = True then
9: return True

10: end if
11: marked[v0] 1
12: end for
13: end for
14: Let q be a queue
15: q.push(v)
16: while q is not empty do
17: u q:pop()
18: marked[u] 1
19: if u = w then
20: return True
21: end if
22: if isL(u) � 0 then
23: if queryDirect(u;w; L) = True then
24: return True
25: end if
26: continue
27: end if
28: for (u; u0; l) 2 E ^marked[u0] = 0 do
29: if l 2 L then
30: q:push(u0)
31: end if
32: end for
33: end while
34: return False
35: end if

Algorithm 7 queryDirect(v; w; L)

1: // v is a landmark
2: for L0 2 Ind(v; w) do
3: if L0 � L then
4: return True
5: end if
6: end for
7: return False

Section 6:4) we needed to revisit the idea of the �rst extension. This extension can only be used as a substitute
for the �rst extension and it uses the same principle. It is either the �rst or the third extension, but never both.

For each landmark v0 2 V we maintain l0 � 2Dmax entries with Dmax = jLj=4 + 1. The variable holding these
entries for a landmark v0 2 V 0 is called seqE(v0) � 2V � 2L in our code. Each entry (L;B) 2 seqE consists of a
set B � V and a label set L. Each B is a ‘bitset’ of n bits in which a bit j is set if and only if we can reach the
corresponding vertex w which has vertex id j. Hence reading or writing for a speci�c bit takes O(1) time.

The third extension inserts some extra code to Algorithm 3 after line 8. Each time an entry (u; L) has been

24 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

discovered for Ind(v) on line 4, we can do two things. Either, we create a new entry (L;B) 2 V � L where
B = fug. Or, we �nd the already existing entry (L;B) and set B to B [ fug.

The third extension also inserts some extra code to Algorithm 3 after line 15. Given two entries (L1; B1); (L2; B2) 2
seqE where L1 � L2 we set B2 to B2 [B1. After this is done for all entries for all entries in seqE(v). We sort the
entries (L;B) 2 seqE descendingly w.r.t. jLj.

The advantage of the third extension over the �rst is that we can use larger label sets, i.e. from 1 to Dmax.
We chose to create a maximal distance, as we found that medium-size label sets can often cover a large subset
of the nodes in graphs with a high degree or an exponential label set distribution, and can be used a majority of
the queries we generated. The second advantage is that we can quickly join the bitset marked used by the query
algorithm (Algorithm 6) with the bitset B used by any entry (L;B) 2 seqE(v). Joining can be done in n

64 time
on a 64-bit machine.

Second extension

After all landmark vertices have been fully indexed, the second extension can add a number of entries (vi; L)
(where vi is a landmark) to Ind(v0) for all non-landmark vertices v0 2 V .

We choose b to be a constant, typically a low value. Each v0 adds at most b entries to Ind(v0). After it has
found this many paths or it cannot �nd any more entries, it stops.

The algorithm for doing this is very similar to Algorithm 3. The di�erences are listed below.

1. We only add entries (vi; L) to Ind(v0) with i � 1.

2. We stop immediately after having successfully inserted b entries to Ind(v0).

3. We use both landmarked and non-landmarked nodes for forwardProp, i.e. we copy the entries from each
indexed node v 2 V regardless of whether it is a landmark. However in case v 2 V 0 we only look at entries
(vj ; L) 2 Ind(v) with j � 1. hasBeenIndexed is set to 1 at the end for any v0 2 V as well.

4. We add a variable marked : V ! f0; 1g before line 3. Each entry (u; L) found on line 4 sets marked(u) 1.
In case we have that marked(u) = 1 we continue, i.e. we skip processing entry (u; L).

Query algorithm with extensions

Adding the second extension to LI enables lines 5-13 of Algorithm 6. In these lines we look for all entries
(vi; L

0) 2 Ind(v) with i � 1.

The di�erence between LI+OTH and LI+OTH+EXTv1 is that the �rst call of queryDirect has been
replaced by a call to queryExtensiveDirect (in case v is not a landmark). The di�erence between LI+OTH
and LI+OTH+EXTv2 is that any call queryDirect has been replaced by a call to queryExtensiveDirect.

Algorithm 8 consists of two versions. One is intended for the �rst extension and one is intended for the third
extension. Both prune all w0 that can be reached from a landmark v0 with label set L that could not reach the
query-target w with that same label set.

Space complexity

We analyze the worst-case memory usage for LI+OTH+EXTv1 and LI+OTH+EXTv2. k is the number of
landmarks and b is the budget per non-landmark node.

Considering only the landmarks, the memory usage can in the worst case be O(jV j � k � 2jLj). Each landmark
v0 2 V 0 can index up to jV j � 1 other nodes and for each such node we can store at most 2jLj paths.

Each landmark v0 (k in total) can also have jLj lists in LP and each such list can be of length n at most. This
results in O(jLj � n) extra storage for v0.

Each landmark v0 can also have 2Dmax = 2jLj=4+1 entries in seqE. Each consists of a set of at most O(n) (B)
and a constant O(1) (L). This results in O(2jLj � n) extra storage for v0 2 V .

Each remaining non-landmark vertex v0 2 V (n� k in total) can store up to b entries, which takes O(b).

Hence in total the memory usage is: O(n � (b+ k2jLj)) (LI+OTH+EXTv1 and LI+OTH+EXTv2).

Landmark indexing for scalable evaluation of label-constrained reachability queries 25



CHAPTER 4. METHODS

Algorithm 8 queryExtensiveDirect(v; w; L;marked)

1: // �rst extension
2: if queryDirect(v; w; L) = True then
3: return True
4: end if
5: for l 2 L do
6: for v0 2 LP(v)(l) do
7: marked(v0) 1
8: end for
9: end for

1: // third extension
2: if queryDirect(v; w; L) = True then
3: return True
4: end if
5: for (L0; B) 2 seqE do
6: if L0 � L then
7: marked marked [B
8: break
9: end if

10: end for

Index construction time complexity

We analyze the worst-case running time for LI+OTH+EXTv1 and for LI+OTH+EXTv2.

For each non-landmark v0 2 V we can visit all vertices v 2 V and make either b (non-landmark) or k
(landmark) tryInsert-calls.

For each landmark v0 2 V 0 we can have that tryInsert returns true at most 2jLj times. Hence each edge
can be visited by each landmark at most that many times. As we also visit all the vertices building the index for
each landmark takes at most O(k(n+m)2kLj).

For a landmark v0 2 V 0 �lling seqE(v0) takes at most 2jLj time per call to tryInsert, as in the worst case we
need to loop over at most 2jLj entries to �nd a speci�c entry. Adding a vertex u 2 V to a set V � for an entry
(L0; V �) 2 seqE can be done in constant time.

For a landmark v0 2 V 0 inserting a certain u 2 V for a pair (u; flg) to LP(v0)(l) takes O(log (n)) per call to
tryInsert.

The index construction time complexity is O(n22jLj � (b+ k) + kDd2jLj) (LI+OTH+EXTv2) and O(n22jLj �
(b+ k) + kDd log (n)) (LI+OTH+EXTv1).

Query answering time complexity

The running time of Algorithm 7, that is queryDirect, is O(2jLj + log (n)) as there are at most 2jLj label sets
between any two vertices which need to be compared. Finding any speci�c w in Ind(v) takes at most log (n) time.

The running time of Algorithm 8, that is queryExtensiveDirect, is that of queryDirect plus the worst
case time of doing at most 2jLj comparisons and setting at most n bits in marked. Hence this takes O(n+ 2Lj).

In case of LI+OTH+EXTv1 or LI+OTH+EXTv2, the total worst case running time of Algorithm 6 is
O(n+m+ k � (2jLj+n)). At most k direct attempts to resolve a query are made, either on lines 5-13 or on lines
23-25. The graph exploration part of Algorithm 6 takes at most O(n+m).

Overview of running time and memory usage analysis

Table 4.2 shows an overview of the worst-case index construction time, index size and query answering time for
LI+OTH+EXTv1 and LI+OTH+EXTv2.

26 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

Table 4.2: This table shows an overview of the worst-case index construction time, index size and query answering
time for LI+OTH+EXTv1 and LI+OTH+EXTv2.

Description LI+OTH+EXTv1 LI+OTH+EXTv2

Worst-case index size O(n � (b+ k2jLj)) O(n � (b+ k2jLj))

Worst-case index construction time O(n22jLj � (b + k) + k(n +
m)2jLj)

O(n22jLj � (b + k) + k(n +
m)2jLj)

Worst-case query answering time O(n+m+ k � (2jLj + n)) O(n+m+ k � (2jLj + n))

Proof of correctness

Let v; w 2 V and let L � L. We say query(v; w; L) = True if and only if there is a L-path from v to w. Otherwise
we say query(v; w; L) = False. We begin by proving that query(v; w; L) = True , there exists (w;L0) 2 Ind(v)
with L0 � L.

Proposition 1. Let V 0 � V be the set of landmark vertices. Let hv1; : : : ; vki be an ordering of the k landmark
vertices. Let Ind(vj) be the index of the j’th landmark constructed by Algorithm 3. We wish to establish that
for any w 2 V (1) query(vj ; w; L) = True implies that there exists (w;L0) 2 Ind(vj) with L0 � L and (2)
query(vj ; w; L) = False implies that there does not exist (w;L0) 2 Ind(vj) with L0 � L. We do this by induction
on 1 � j � k.

Proof. Base case: j = 1.

Algorithm 3 has only been called for v1 in this case.

(1): Assume query(vj ; w; L) = True. Then there is a L-path P from vj to w. Lines 12-16 have found
any label set (minimal or not) connecting v to some u 2 DESCS(vj), where DESCS(vj) is the set of descend-
ants of vj . Only line 5 could have blocked adding (w;L) to Ind(vj) in this case. Let (u; L0) be the �rst vertex in
path P where the if-condition on line 5 is true, i.e. tryInsert returns false. This only happens if there exists
(u; L�) 2 Ind(vj) with L� � L0. This argument can be repeated for any next vertex in path P and hence we have
that there exists (w;L0) 2 Ind(vj) where L0 � L.

(2): Assume query(vj ; w; L) = False. Then there is no L-path P from vj to w. If there is no such path
lines 12-16 will never push an entry of the form (w;L0) s.t. L0 � L. Hence such an entry can never appear in
Ind(v).

Step: 1 < j � k. We assume that for v1; : : : ; vj�1 we have that (1) and (2) are true (IH).

Algorithm 3 has been called for hv1; : : : ; vji in this case.

(1): Assume query(vj ; w; L) = True. Then there is a L-path P from vj to w. Lines 12-16 have found
any label set (minimal or not) connecting v to some u 2 DESC(vj) (see De�nition 2.4.1), where DESC(vj) is
the set of descendants of v. W.r.t. line 5 we have the same argument as in the base case. Line 8 could have
been true for any vi with i � j � 1. Let vi (with label set L1 � L) be the �rst vertex on path P such that this
happens. In that case by the induction hypothesis we have that there exists (w;L2) 2 Ind(vi) where L2 � L.
The entry (w;L1 [ L2) will be added to Ind(vj).

(2): Assume query(vj ; w; L) = False. Then there is no L-path P from vj to w. If there is no such path
lines 12-16 will never push an entry of the form (w;L0) s.t. L0 � L. As (2) holds for any vi with i � j � 1 an
incorrect entry is not added by any of the vi to Ind(vj).

Corollary 4.2.0.1. We wish to establish that query(vj ; w; L) = True , there exists (w;L0) 2 Ind(vj) where
L0 � L.

Landmark indexing for scalable evaluation of label-constrained reachability queries 27



CHAPTER 4. METHODS

Proof. We have that either query(vj ; w; L) = True or query(vj ; w; L) = False. From Theorem 1 we get that
query(vj ; w; L) = False ) there does not exist (w;L0) 2 Ind(vj) where L0 � L . By contraposition this implies
that there exists (w;L0) 2 Ind(vj) where L0 � L ) query(vj ; w; L) = True.

Corollary 4.2.0.2. After building the index for all non-landmark vertices v0 2 V , we have that for landmark
vi 2 V with i � 1 there exists (vi; L

0) 2 Ind(v0) with L0 � L ) query(v0; vi; L) = True.

Proof. Let v0 2 V be an arbitrary non-landmark node. The entries (v0; L0) 2 Ind(v0) where v0 is a landmark
obtained for non-landmark nodes v0 2 V are created by an algorithm with the same structure as Algorithm 3.
There are four di�erences compared to Algorithm 3: at most b entries can be added to Ind(v0), only entries of the
form (vi; L

0) with i � 1 are added, each vertex u in an entry (u; L) is visited at most once on line 4 of Algorithm
3 and both landmark and non-landmark vertices are used for forward pruning.

The di�erences are restrictions on the number and the type of those entries that can be added to Ind(v0).
The entries that satisfy the restrictions, are still valid entries. Hence, by Proposition 1 and Corollary 4.2.0.2 we
get that there exists (vi; L

0) 2 Ind(v0) with L0 � L ) query(v0; vi; L).

Next we wish to verify the correctness of queryDirect and queryExtensiveDirect.

Proposition 2. queryDirect returns true if and only if query(v; w; L) = True. queryExtensiveDirect
only prunes a subset of the vertices V � � V s.t. for all v� 2 V � we have that query(v�; w; L) = False.

Proof. By Corollary 4.2.0.1 we know that queryDirect return true if and only if query(v; w; L) = True.
Variables LP and seqE used by the �rst and third extension respectively are �lled by using entries (u; L0)

obtained in the loop in lines 3-16 of Algorithm 3. As each such entry is in Ind(v) and query(v; w; L) = True ,
there exists (w;L0) 2 Ind(v) with L0 � L by Corollary 4.2.0.1, we have that any vertex u included in seqE and
LP is reachable from v using L0.

Lines 5-9 (�rst extension) or 5-10 (third extension) are only reached in case queryDirect returns false on
line 2. Any vertex v� 2 V � set marked on line 7 (both extensions) can be reached by some subset L0 � L from
v. If such v� were able to reach w over L then v could reach w as well. Hence such v� cannot reach w and can
correctly be pruned, i.e. included to marked.

Finally we wish to prove the correctness of queryLM.

Theorem 4.2.1. Let v; w 2 V and L � L. We have that algorithm 6 (using either LI , LI+OTH, LI+OTH+EXTv1
or LI+OTH+EXTv2) returns true if and only if query(v; w; L) = True.

Proof. This can be proven by a case distinction.

� Case 1: On line 2 we run queryDirect for (v; w; L). Because of Proposition 1 and Proposition 2, the
statement holds.

� Case 2: On line 8 we run queryDirect (or queryExtensiveDirect) for (v0; w; L) where v0 is a
landmark that can be reached from v using L (Corollary 4.2.0.2). Because Proposition 2 and Proposition
1, the statement holds and we prune a subset of the correct vertices, i.e. those vertices that have no L-path
to w, in case of queryExtensiveDirect.

� Case 3: On line 8 we run queryDirect (or queryExtensiveDirect) for (v0; w; L) where v0 is a
landmark that can be reached from v using L. The v to v0 path has been discovered in the loop from lines
16-33. Because of Proposition 1, the statement holds. Because of Proposition 2 we prune a subset of the
correct vertices in case of queryExtensiveDirect.

� Case 4: In this case the loop on lines 16-33 ended. There cannot be a L-path from v to w as no
queryDirect (or queryExtensiveDirect) call found such a path, only correct vertices were pruned
according to Proposition 2 and this path was not found through graph exploration (Lines 16-33). The
algorithm returns false.

28 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

DoubleBFS

DoubleBFS is a special case of LI, i.e. k = n where the number of landmarks k equals the number of vertices
n. Any extension is irrelevant in this case as any query is answered by queryDirect.

4.2.3 Partial

PartialIndex also builds an index for a subset of k nodes like LI, but does not build a full index to cut down
the index size. Rather it chooses a budget b which is a fraction of n, e.g. n

4 . Each of the k nodes then index up
to b nodes fully ignoring any other vertices. The di�erence with LI is that at query evaluation time we have to
evaluate the out edges of a node v0. Otherwise, we might return wrong results.

PartialIndex has a frequency. The frequency determines the number of nodes that needs to be hit before
we try to resolve a query directly. Having to resolve a lot of direct queries can slow down the query evaluation
and also often have no purpose if the sources of the direct queries are close to each other. Figure 4.2 shows an
example. In the �nal implementation the frequency is roughly O(

p
(n)).

?

v

Figure 4.2: Suppose we start a query at orange vertex v. Let the box on the right be a large graph and the
cyan-colored vertices be vertices for which there is a partial index. Each of these also has a partial index. Having
to run a direct query for each of these will most likely yield the same result.

4.2.4 NeighbourExchange

This method is based on the discussion in Chapter 2 Section 3.2.3 with some di�erences applied. The algorithm
builds a full index. Algorithm 9 shows a pseudocode.

On lines 3 to 7 we initialize Upd with the direct neighbour updates. This is necessary to kick o� the entire
algorithm. Next, we start a loop at line 8 that continues as long as there are updates to the index. We loop over
any node v 2 V and check whether there are entries in Upd[v]. We add an entry (w;L) on line 16 to Ind(v) if
and only if it does not violate the minimality of the index. Next, we add the neighbours of w.

One of the disadvantages of NeighbourExchange is that it has to use Upd and Ind. The memory usage
of Upd can grow considerably depending on the order in which the updates are processed. Another disadvantage
is that we see no way to use propagation for this index.

4.2.5 Joindex

This method is based on the discussion in Section 3.2.3 with some di�erences applied. Joindex can both be
used with intersection or union.

The algorithm to construct Joindex is very similar to that of DoubleBFS or NeighbourExchange. We
need two (exact) indices In and Out. First, we need to determine a budget b which is the maximum number of
entries per pair (u; v) for some u; v 2 V and decide whether we wish to use intersection or union to merge the
entries. For union we do the following. While adding an entry (u; L) to Ind(v), we verify whether this would
result in exceeding b. If this is the case, we compare L to all b entries L0 that are in the index. The entry (u; v; L0)
for which jL0 [Lj is minimized, is merged with (u; v; L) yielding an entry (u; v; L[L0) for which a join 
ag is set

Landmark indexing for scalable evaluation of label-constrained reachability queries 29



CHAPTER 4. METHODS

Algorithm 9 NeighbourExchange()

1: c True
2: let Upd � V � V � 2L

3: for v 2 V do
4: for (v; w; l) 2 E do
5: add (v; flg) to Upd[w]
6: end for
7: end for
8: while c =True do
9: c False

10: for v 2 V do
11: d False
12: for (w;L) 2 Upd[v] do
13: if tryInsert(v; w; L) = True then
14: c True
15: d True
16: end if
17: if d = True then
18: for (v; w0; l) 2 E do
19: if l 2 L then
20: add (v; flg [ L) to Upd[w0]
21: end if
22: end for
23: end if
24: end for
25: Upd[v] ;
26: end for
27: end while

indicating it has been merged (the most signi�cant bit). For intersection, we do the same except the resulting
entry is (u; v; L \ L0). At query evaluation time, the join 
ag can be used.

Algorithm 10 shows the query algorithm in case Joindex uses union to merge entries. A query (v; w; L) is
resolved by looking for a node s.t. u 2 Out(v) \ In(w). If we have that (u; L) 2 Out(v) and (u; L) 2 In(w) and
neither has a join 
ag on, we return True. Only in case the left or right part (u; L0) has a join 
ag, indicated by
J(u; L0), and the entry is a superset of (u; L), we need to recur on that part. If we have tried out all u, then we
return False. The algorithm for answering Joindex queries using intersection is very similar.

In the end we decided not to fully implement Joindex, for the following reasons.

1. Joindex needs two times the index, In and Out, and hence has a double memory consumption for at least
some time period.

2. Joindex only decreases the index size but not the construction time. LI and PartialIndex decrease both
the construction time and index size.

3. Joindex increases the query evaluation time. NeighbourExchange or DoubleBFS can answer a query
in O(log jV j+ 2jLj), whereas Joindex needs O(jV j+ jEj).

4.2.6 ClusteredExact

This method is based on the observation that separating the graph into some subgraphs and building a full index
for each of these subgraphs individually is more e�cient than for the whole graph.

First, we create a clustering. Each of the N nodes is assigned to one of the K clusters. An exact index is
generated, e.g. by using DoubleBFS, for each cluster.

30 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

Algorithm 10 JoindexQueryUnion(v; w; L;marked)

1: if jLj = 0 then
2: return False
3: end if
4: if v = w then
5: return True
6: end if
7: for u 2 (Out(v) \ In(w)^marked[u] = 0 do
8: if 9[(u; L0) 2 Out(v) j L0 � L] then
9: if 9[(u; L0) 2 In(w) j L0 � L] then

10: return True
11: else
12: if 9[(u; L0) 2 In(w) j L0 � L ^ J(u; L0)] then
13: marked[u] 1
14: JoindexQueryUnion(u;w; L;marked)
15: marked[u] 0
16: end if
17: end if
18: else
19: if 9[(u; L0) 2 Out(v) j L0 � L ^ J(u; L0)] then
20: marked[u] 1
21: JoindexQueryUnion(v; u; L;marked)
22: marked[u] 0
23: end if
24: end if
25: end for
26: return False

The query evaluation algorithm is the most tricky part about this approach. Algorithm 11 gives a pseudocode.
cID : V ! h0; : : : ;K � 1i maps each vertex to a certain cluster. outP gives the list of vertices that are out ports
for that cluster. Line 6 checks whether the query can be resolved directly because x and w are in the same
cluster. Otherwise, we loop over all out-ports p of the cluster x belongs to. It is checked whether x can reach p
using L and whether the label l of an edge (p; s) is in L. If this is the case, we push s onto the stack.

Landmark indexing for scalable evaluation of label-constrained reachability queries 31



CHAPTER 4. METHODS

Algorithm 11 ClusteredExactQuery(v; w; L)

1: Let marked : V ! f0; 1g
2: Let q be a queue
3: while q is not empty do
4: x q:pop()
5: if cID[x] = cID[w] then
6: if directQuery(x;w; L) = True then
7: return True
8: end if
9: end if

10: if marked[x] = 1 then
11: continue
12: end if
13: marked[x] 1
14: for p 2 outP[cID[x]] do
15: if directQuery(x,p) = True then
16: for (p; s; l) 2 E ^ l 2 L do
17: push s onto q
18: end for
19: end if
20: end for
21: end while

4.3 Implementation details

Let G = (V;E;L) be an arbitrary labelled directed graph.
There is a di�erence between labels and label sets. A label is an individual element in L, e.g. a 2 fa; b; cg.

Labels are represented by a number in the range 0:::jLj�1. Label sets are represented as bitsets which means that
if L � L0 we mean that in our code L and L0 have a non-empty bit-intersection, e.g. L = fa; bg = 3 = (00000011)
and L0 = fa; b; cg = 7 = (00000111) have a non-empty bit-intersection namely the �rst and second bit whereas
4 = (00000100) = fcg and 2 = (00000010) = fbg have none. 0 denotes the empty label set.

The code has the ability to scale down the number of bits used in a label set, e.g. if jLj = 8 we can use just a
byte, thereby cutting down the index size. However for all experiments we set the size of a label set to 4 bytes.
We did this because there were some datasets in our experiments with jLj � 8 and a few with jLj � 16.

An index Ind can have two modes: blocked mode and non-blocked mode. In blocked mode we store the index
as a triple-array with dimensions: jV j � jV j � j2Lj, in which the third dimension can scale depending on the
actual number of label sets for a given pair (v; w). In non-blocked mode we store the index for each node v 2 V
as a list of tuples of the form: (w;L�) where L� is a list of label sets. Blocked mode can cut down the index
construction time compared to non-blocked mode, but takes much more memory and is not scalable. Hence we
only used non-blocked mode in our experiments.

4.4 Index maintenance

In this section we stress the issue of index maintenance. Suppose that after running LI, PartialIndex,
DoubleBFS, ClusteredExactor NeighbourExchangewe have built an index Ind(v) for every v 2 V . There
can be 5 update events:

1. Addition of a node v

2. Removal of a node v

3. Addition of an edge (v; w; l)

4. Removal of an edge (v; w; l)

32 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

5. Changing edge label (v; w; l) to (v; w; l0)

A choice we made for all approaches is to build a minimal index, i.e. for each pair of nodes (v; w) we have that
all label sets L and L0 are no super- or subset of each other. This can have implications for index maintenance,
as the removal of one edge can necessitate rebuilding a part of the index. This part can become quite large. Like
discussed in Section 3.1.1 storing some redundant information might help making maintenance easier.

Figure 4.3 illustrates this problem. Suppose we would remove edge (2; 3; fag), then we need to update 0 and
add entries fa; bg and fa; cg to (0; 4) while removing fag. For graphs with a lot of cycles this problem can get
even worse.

0 4

1

2

3

Figure 4.3: A simple graph, where edge color indicate the label. Let red be fag, blue be fbg and green be fcg.
Vertex 0 can reach vertex 4 over several paths, but only has to store fag, because all other paths are supersets
of that path.

The maintenance algorithms below were built to work on an index with LI.

4.4.1 Adding an edge

Suppose we add an edge of the form (v; w; l) to our graph. Then any entry of the form (v0; w0; L) that visited v
during construction might be altered. Only for vertex w we can be sure that no entry is modi�ed, as any entry
in Ind(w) that could use (v; w; l) is already covered by an entry in Ind(w).

Algorithm 12 shows how to run an update. Vertex v is pushed onto a queue q. While the queue is not empty,
we pop a vertex x (initially v). We run an adapted version of Algorithm 3 called LabelledBFSPerNode’, which
will not attempt tryInsert if it can make a call to forwardProp. This will not do a full reconstruction.
Rather it will try to insert the entry (w; l) into Ind(v) or take the entries from a landmark v0 2 V 0 that has been
fully indexed.

4.4.2 Removing an edge

Removing an edge (v; w; l) consists of two steps. First we need to remove any entry (w0; L) 2 Ind(v0) for all
v0 2 V which would not be in the index if (v; w; l) would not be an edge in the graph. Let A be the set of entries

(v0; w0; L) 2 Ind(v0) for all v0 2 V for which v0
L
; w0 before removing edge (v; w; l) and for which v0

L

6; w0 after
removing edge (v; w; l). Next, we might need to rebuild parts of the index using LabelledBFSPerNode (Algorithm
3) for every v 2 V , because entries that were not part of the index previously could be part of the index after
removal of the edge.

The �rst di�culty lies in a good approximation of A. So far it appears we can only �nd some superset A0 of
A. The second di�culty has to do with the fact that we end up with an index that has some but not all of the
entries. A call to LabelledBFSPerNode originated at a node w assumes that if an entry (v; L) 2 Ind(w) that we
need not to look at any descendants of v. However, this might be wrong in case (v; L) 2 Ind(w), (v; v0; l) 2 E
and (v; L [ flg) 62 Ind(w). The entry (v; L [ flg) might be removed by the �rst step.

Approximating A can be done by the following algorithm. After an edge (v; w; l) has been removed, we can
(temporarily) promote v and w to a landmark and fully index these. Next, we iterate over all w0 2 V . If there

Landmark indexing for scalable evaluation of label-constrained reachability queries 33



CHAPTER 4. METHODS

Algorithm 12 insert(v; w; l)

1: add (v; w; l) to G
2: reset hasBeenIndexed
3: hasBeenIndexed(w) True
4: let q be an empty queue
5: push v to q
6: while q is not empty do
7: if hasBeenIndexed(w) = True then
8: continue
9: end if

10: x q.pop()
11: if x is a landmark then
12: LabelledBFSPerNode’(x)
13: end if
14: for (v; x) 2 E do
15: q:push(v)
16: end for
17: hasBeenIndexed(x) True
18: end while

exists an entries (v0; L1) 2 Ind(w) and (v0; L2) 2 Ind(w0) for some v0 2 V . If L1 [ flg � L2 then we know that w0

can reach v0 with a L2-path and l 2 L2. Hence we can safely remove entry (v0; L2) from Ind(w0). Let A0 be the
resulting approximation and let A0V be fv j (v; L) 2 A0g.

We did not manage to �nd a ’good’ solution for the second part. Either the solution we found for this part
was too slow, i.e. not within 90% of the time of a full rebuild, or the solution would contain errors.

4.4.3 Changing edge label

As this is quite similar to �rst removing and then adding an edge we chose not to implement this case.

4.4.4 Adding a node

Adding a node without any edges is trivial and can be done in constant time.

4.4.5 Removing a node

As adding an edge or removing an edge is already quite expensive we do not expect there to be an e�cient
solution for removing a node. Hence we think a full rebuild is a better solution here.

4.5 Extensions

In this section we discuss several extensions that could be possible based on the indices we have discussed so far.

4.5.1 Query for all nodes

One of the many possible extensions could be to add support for the following type of query: \�nd all v0 s.t.
given a label set L and v 2 V we have that query (v; v0; L) is true". The result of the query could be a mapping
m : V ! f0; 1g. m has the same role as the variable marked in the description of BFS (Section 4.1.1) and we

have that m(v0) = 1, v
L
; v0.

BFS could answer this query by simply continuing searching the graph rather than stopping at the target w.
For each node v 2 V that is traversed, we set m(v)  1. This has a nice O(jV j + jEj) running time. However
this could be too much already.

LI could do the same as BFS, but make use of landmarked vertices. When a landmark v0 is hit, we look at
all (w;L0) in Ind(v0) and test whether L0 � L. If this is, we set m(v) 1.

34 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 4. METHODS

4.5.2 Distance queries

Another extension could be to �nd the distance of a query as well, i.e. given a query q = (v; w; L) �nd the
shortest path P (w.r.t. the number of edges) that connects v and w such that Labels(P ) � L. This kind of query
is answered by Bonchi et al. [1].

There is an important di�erence with \LCR" here though. We wish to �nd a distance d s.t. d = minX(Len(P ))
where X = P 2 Paths(v; w) ^ Labels(P ) � L. This implies we need to store supersets for a pair v and w as well,
given a superset has a shorter distance from v to w. Given two entries (v; w; L1) and (v; w; L2) connecting v and
w with L1 � L2, we need to store both entries if the distance associated to the second entry is less than the
distance of the �rst entry. This will increase the index size.

There are two things we need to change to make e.g. LI capable of answering these kinds of queries.
tryInsert needs to be modi�ed s.t. it only adds an entry (v; w; L1; d1) if for all other entries (v; w; L2; d2)

we either have that L1 6� L2 ^ L2 � L1 or that d1 < d2 ^ L2 � L1. Moreover, it should remove all entries
(v; w; L2; d2) when L1 � L2 and d2 � d1.

The entries for the heap in Algorithm 3 need to include a distance metric w.r.t. the number of edges as well.
Preferably the heap should order its entries by this distance.

Landmark indexing for scalable evaluation of label-constrained reachability queries 35





Chapter 5

Experimental design

In this chapter we describe the datasets and hardware that have been used in our experiments, as well as the
way in which we generated queries for the experiments.

5.1 Datasets

For our experiments we used both synthetic and real data. Table 5.1 shows a full summary of all datasets
including a number of statistics. In total 68 datasets were used.

5.1.1 Synthetic datasets

We generated the synthetic graphs using SNAP [7, 8] using either the ‘Preferential Attachment’ model (pa or
PA) the ‘Erdos-Renyi’ model (er or ER), the ‘Forest Fire’ model (� or FF) or the ‘Power Law’ model (pl or PL).
In case a model (pa, er) would yield an undirected graph the direction would be randomly chosen. The edge

labels can either have a uniform, normal (� = jLj=2; � = jLj=4) or exponential (� = jLj
1:7 ) distribution. In the

last case and in case jLj = 8, we found that roughly 60% of the labels have the same value. A dataset with a
uniform, normal or exponential label set distribution is also referred to as a uni-, norm- or exp-dataset.

The synthetic datasets are distinguishable according to �ve measures: the number of vertices (1k, 5k, 125k
or 625k), the average degree per node (2 or 5), the number of labels (8, 10, 12, 14 or 16), the model (pa, �, er,
pl) and the label set distribution (uniform, normal or exponential).

5.1.2 Real datasets

The real datasets are taken from SNAP datasets [7] and KONECT 1 [6]. There are two types of real datasets:
those which already had labels (r2) and those to which labels were added synthetically in the same manner as the
synthetic datasets (r1). In the latter case, this is always an exponential distribution with 8 labels. In Figure 5.1,
we can see the label distribution of some r2-datasets. We removed edges of the form (v; v) 2 E for any v 2 V .

� Robots has been taken from Trustlet 2 and was published on June 2014. It is a trust-network where user
A can give a certain level of trust to user B by using a certain type of edge.

� Advogato has been taken from KONECT and was published on April 2016. Advogato is an online
community platform for developers of free software launched in 1999. Nodes are users of Advogato and the
directed edges represent trust relationships. A trust link is called a \certi�cation" on Advogato, and three
di�erent levels of certi�cations are possible on Advogato, corresponding to three di�erent edge labels.

� yagoFacts-small is a sample taken from Max-Planck Institut 3. YAGO is a huge semantic knowledge
base, derived from Wikipedia WordNet and GeoNames. Currently, YAGO has knowledge of more than 10

1http://konect.uni-koblenz.de/networks/
2http://tinyurl.com/gnexfoy
3http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/

Landmark indexing for scalable evaluation of label-constrained reachability queries 37



CHAPTER 5. EXPERIMENTAL DESIGN

Figure 5.1: A cumulative distribution of the label set for the real datasets with an already existing label set
distribution, i.e. the label set distribution was not synthetically added. Robots and Advogato have jLj = 4,
jmd has jLj = 25 and yagofacts has jLj = 32.

million entities (like persons, organizations, cities, etc.) and contains more than 120 million facts about
these entities.

� jmd is a sample taken from the RDF-dump of Jamendo. Jamendo is a large repository of Creative Commons
licensed music, based in France.

� subeljCoraL8 has been taken from KONECT and was put online on April 2016. Nodes represent scienti�c
papers. An edge between two nodes indicates that the left node cites the right node.

� arXivheppL8exp has been taken from KONECT and was put online on April 2016. It is the network of
publications in the arXiv’s High Energy Physics Phenomenology (hep-ph) section.

� p2p-GnutellaL8exp has been taken from KONECT. It’s a network of Gnutella hosts from 2002. The
nodes represent Gnutella hosts, and the directed edges represent connections between them. The dataset
is from August 31, 2002.

� socSlahdot0902L8exp has been taken from SNAP. The website features user-submitted and editor-
evaluated current primarily technology oriented news. The network contains friend/foe links between the
users of Slashdot. The network was obtained in February 2009.

� soc-sign-epinionsL8 has been taken from SNAP. It is a who-trust-whom online social network of a a
general consumer review site Epinions.com. Members of the site can decide whether to trust each other.
The date it was obtained, is not given. We downloaded it on the 14th of April, 2016.

� NotreDameL8exp has been taken from KONECT. It is the directed network of hyperlinks between the
web pages from the website of the University of Notre Dame. The date it was obtained, is not given. We
downloaded it on the 14th of April, 2016.

� webGoogle has been taken from KONECT. This is a network of web pages connected by hyperlinks. The
data was released in 2002 by Google as a part of the Google Programming Contest.

� webBerkStan has been taken from KONECT. This is the hyperlink network of the websites of the Uni-
versities in Berkley and Stanford. Nodes represent web pages, and directed edges represent hyperlinks.

38 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 5. EXPERIMENTAL DESIGN

� webStanford has been taken from KONECT. This is the directed network of hyperlinks between the web
pages from the website of the Stanford University.

� socPokecRelationShipsL8exp has been taken from KONECT. This is the friendship network from the
Slovak social network Pokec. Nodes are users of Pokec and directed edges represent friendships.

� zhishihudongL8exp has been taken from KONECT. These are \related to" links between articles of the
Chinese online encyclopedia Hudong (, http://www.hudong.com/).

� usPatentsL8exp has been taken from KONECT. This is the citation network of patents registered with
the United States Patent and Trademark O�ce. Each node is a patent, and a directed edge represents a
patent and an edge represents a citation.

5.1.3 Summary of datasets

Table 5.1 shows a full overview of all the datasets that were used in at least one experiment.

Table 5.1: A listing of all datasets with statistics. The model is one of the following: er (Erdos-Renyi), �
(Forest-Fire), pl (PowerLaw), pa (Preferential Attachment), r1 (real data, but synthetically added labels) and r2
(real data, real labels). max SCC % indicates the percentage of nodes that are in the largest strongly connected
component (SCC). #� is the number of triangles in the graph, i.e. u; v; w 2 V s.t. (u; v); (v; w); (w; u) 2 E. In
the model column, pa stands for ’preferential attachment’, pl for ’powerlaw’ and � for ’forest �re’, whereas none
indicates the dataset is a real one.

name jV j jEj jLj model max
SCC
%

#� dia

ERV1kD2L8uni 1,000 2,000 8 er 0.63 0 18
ERV1kD5L8uni 1,000 5,000 8 er 0.98 35 9
�1k-0.2-0.4 1,000 2,552 8 � 0.48 405 15
pl-1kL8a2.0exp 1,000 2,306 8 pl 0.42 200 10
plV1kL8a2.0exp 1,000 2,306 8 pl 0.41 195 8
V1kD2L12exp 1,000 1,997 12 pa 0.56 12 13
V1kD2L8exp 1,000 1,997 8 pa 0.61 15 16
V1kD2L8norm 1,000 1,997 8 pa 0.54 13 13
V1kD2L8uni 1,000 1,997 8 pa 0.55 16 13
V1kD5L8exp 1,000 4,985 8 pa 0.97 184 8
V1kD5L8norm 1,000 4,985 8 pa 0.97 212 8
V1kD5L8uni 1,000 4,985 8 pa 0.97 198 7
robots 1,484 2,960 4 r1 0.14 37 10
ERV5kD2L8uni 5,000 10,000 8 er 0.63 1 27
�5k-0.2-0.4 5,000 12,718 8 � 0.43 2,004 17
pl-5kL8a2.0exp 5,000 15,634 8 pl 0.44 2,246 10
plV5kL8a2.0exp 5,000 15,634 8 pl 0.44 2,237 10
V5kD10L8exp 5,000 49,945 8 pa 0.99 2,161 7
V5kD2L12exp 5,000 9,997 12 pa 0.55 31 16
V5kD2L8exp 5,000 9,997 8 pa 0.56 30 19
V5kD2L8norm 5,000 9,997 8 pa 0.56 27 20
V5kD2L8uni 5,000 9,997 8 pa 0.55 28 18
V5kD5L8exp 5,000 24,985 8 pa 0.97 406 9
advogato 5,417 51,327 4 r1 0.59 4,175 10
yagoFacts-small 10,000 22,122 32 r1 0.00 34 13
subeljCoraL8exp 23,167 91,500 8 r2 0.17 793 41
ERV25kD2L8uni 25,000 50,000 8 er 0.63 3 31
plV25L8ka2.0exp 25,000 90,449 8 pl 0.45 14,086 11
V25kD2L12exp 25,000 49,997 12 pa 0.55 43 23

Landmark indexing for scalable evaluation of label-constrained reachability queries 39

http://www.hudong.com/


CHAPTER 5. EXPERIMENTAL DESIGN

Table 5.1: A listing of all datasets with statistics. The model is one of the following: er (Erdos-Renyi), �
(Forest-Fire), pl (PowerLaw), pa (Preferential Attachment), r1 (real data, but synthetically added labels) and r2
(real data, real labels). max SCC % indicates the percentage of nodes that are in the largest strongly connected
component (SCC). #� is the number of triangles in the graph, i.e. u; v; w 2 V s.t. (u; v); (v; w); (w; u) 2 E. In
the model column, pa stands for ’preferential attachment’, pl for ’powerlaw’ and � for ’forest �re’, whereas none
indicates the dataset is a real one.

name jV j jEj jLj model max
SCC
%

#� dia

V25kD2L8exp 25,000 49,997 8 pa 0.55 47 23
V25kD2L8norm 25,000 49,997 8 pa 0.55 52 24
V25kD2L8uni 25,000 49,997 8 pa 0.56 40 22
V25kD3L10exp 25,000 74,994 10 pa 0.84 154 15
V25kD3L12exp 25,000 74,994 12 pa 0.83 160 16
V25kD3L14exp 25,000 74,994 14 pa 0.83 155 16
V25kD3L16exp 25,000 74,994 16 pa 0.84 152 16
V25kD3L8exp 25,000 74,994 8 pa 0.83 159 17
V25kD4L10exp 25,000 99,990 10 pa 0.93 376 13
V25kD4L12exp 25,000 99,990 12 pa 0.93 421 14
V25kD4L14exp 25,000 99,990 14 pa 0.93 373 13
V25kD4L16exp 25,000 99,990 16 pa 0.93 388 13
V25kD4L8exp 25,000 99,990 8 pa 0.93 357 13
V25kD5L10exp 25,000 124,985 10 pa 0.97 666 11
V25kD5L12exp 25,000 124,985 12 pa 0.97 669 12
V25kD5L14exp 25,000 124,985 14 pa 0.97 653 12
V25kD5L16exp 25,000 124,985 16 pa 0.97 655 12
V25kD5L8exp 25,000 124,985 8 pa 0.97 645 11
arXivhepphL8exp 34,547 421,534 8 r2 0.36 248 45
p2p-GnutellaL8exp 62,587 147,892 8 r2 0.22 56 28
socSlashdotL8exp 82,168 870,161 8 r2 0.86 12,296 12
ERV125kD2L8uni 125,000 250,000 8 er 0.63 0 37
plV125L8ka2.0exp 125,000 518,207 8 pl 0.46 91,482 11
V125kD2L12exp 125,000 249,997 12 pa 0.56 71 24
V125kD2L8exp 125,000 249,997 8 pa 0.56 69 24
V125kD2L8norm 125,000 249,997 8 pa 0.56 81 27
V125kD2L8uni 125,000 249,997 8 pa 0.56 66 27
V125kD5L8exp 125,000 624,985 8 pa 0.97 994 14
soc-sign-
epinionsL8exp

131,828 840,799 8 r2 0.31 73,928 17

webStanfordL8exp 281,904 2,312,497 8 r2 0.53 94,008 591
NotreDameL8exp 325,730 1,469,679 8 r2 0.16 52,100 72
citeseerL8exp 384,414 1,751,463 8 r2 0.04 1,566 71
twitterL8exp 465,018 834,797 8 r2 0.00 54 15
jmd 486,320 1,049,647 26 r1 0.00 0 5
V625kD5L8exp 625,000 3,124,985 8 pa 0.99 1894 16
plV625ka2.0L8exp 625,000 2,897,916 8 pa 0.97 350,125 14
webBerkstanL8exp 685,231 7,600,595 8 r2 0.48 318,370 670
webGoogleL8exp 875,713 5,105,039 8 r2 0.97 306,723 24
socPokecRelation- 1,632,803 30,622,534 8 r2 1 653,121 14
shipsL8exp
zhishihudongL8exp 2,452,715 18,854,882 8 r2 0.98 2,004,783 108
usPatentsL8exp 3,774,769 16,518,947 8 r2 0.00 0 23

40 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 5. EXPERIMENTAL DESIGN

5.2 Queries

We strived to generate a ‘realistic query workload’. By this we meant two things. Queries q = (v; w; L) should
not have a L-path P from v to w where Len(P ) is very low, because this favours BFS over other approaches, e.g.
LI. We do not wish that a large part of our queries has the same starting point, as this might favour for instance LI.

For each dataset, both synthetic and real, we generated three query sets. The number of labels in a query
varies between the three query sets and is: bjLj=4c, bjLj=2c and jLj � 2 for the datasets when jLj � 8 and 1, 2
and 3 otherwise. Each query set consists of 200 (for graphs with jEj < 5; 000) or 2; 000 queries (otherwise). The
�rst half consists of True-queries and the second half consists of False-queries.

For each query we took into account the di�culty. The di�culty of a query q = (s; t; L) can be de�ned in the
following way: the number of vertices visited during our implementation of BFS from s to t before reaching a
conclusion, i.e. returning false or true. Our queue is a FIFO-queue and all edges for a given v 2 V of the form
(v; w; l) are sorted in ascending order according to the vertex id of w. This di�culty can be in
uenced by �ve
main factors: the distance between s and t in the graph, the number of labels in L, whether the result of the
query is true or false, whether it is cyclic or whether it has a skewed out-degree distribution. False queries with a
large label set may explore much larger sections of the graph than true queries with the same label set, because
a True-query stops after hitting its target. Similarly a graph with a very skewed out-degree distribution has a
low diameter and hence has more di�culty generating di�cult queries. One can see that if we were to omit this
requirement and the di�culty of all queries in a dataset would be for instance relatively low, it could bene�t
BFS’s performance compared to that of any index.

Queries for a particular query set are generated in the following way over a set of rounds. Let nq be the
desired number of True- or False-queries. Each round starts by choosing a random vertex v 2 V and a random
minimal di�culty dmin. The minimal di�culty is between dlog2(n)e and n=10 (for n � 500; 000) and between
dlog2(n) + 10e and n=100 otherwise. We generate up to k0 = nq=100 random label sets L. The labels in the label
set are chosen randomly according to a uniform distribution. Then, it is tested whether (v; w; L) is True or False
using BFS and how many vertices where visited while doing this. Let d be this number of vertices. If d � dmin,
we add the query to the True- or False-set depending on it’s outcome until we have nq queries of both types.
The parameters k0 and dmin can respectively increase and decrease by 1 for each 100 rounds passed.

The parameters mentioned are chosen to ensure that the queries either have no L-path or a L-path of su�cient
length, that a small part of the queries have the same starting vertex v 2 V and that for any dataset we were able
to generate queries in the end. For some datasets, particularly acyclic datasets like jmd, it is hard to generate
di�cult queries. This is why we allowed the parameters k0 and dmin to scale with the number of rounds. For a
similar reason we chose to set the maximal di�culty to n=100 for n � 500; 000, because the di�culty does not
grow linearly with the number of nodes, at least for the True-queries.

5.3 Hardware

We used a server on the National Institute of Informatics (NII) in Tokyo, Japan. The server has 258GB of
memory and a 2.9@Ghz 32-core processor. However, we did not let any of our experiments exceed an index size
of 128GB and we set a 6 hour time limit. The experiments were all single-threaded. The OS is Linux Ubuntu.

5.4 Methods

Table 5.2 describes all methods used in at least one experiment with an abbreviation.

Landmark indexing for scalable evaluation of label-constrained reachability queries 41



Table 5.2: Summary of all used methods with an abbreviation, description and main parameters.

method abbreviation description parameters

BFS BFS Regular BFS, no indexing. none

Zou Zou Zou-method, exact index. none

ClusteredExact Clus Clustered-method, exact index. K: number of clusters

NeighbourExchange Nei Neighbour-exchange method, ex-
act index.

none

PartialIndex Par Partial-index, a partial index. b: budget per node

LI L Landmarked, exact index, no ex-
tension.

k: number of landmarks (always
required)

LI+EXTv1 L2 Landmarked second extension. b: budget per non-landmark
node

LI+OTH+EXTv1 L12 Landmarked �rst and second ex-
tension.

b: budget per non-landmark
node

LI+OTH+EXTv2 L23 Landmarked second and third
extension.

b: budget per non-landmark
node.

DoubleBFS DBFS Landmarked where k = N . None.



Chapter 6

Experiments

In this chapter we describe the experimental results of the methods described in Chapter 5, as summarized in
Table 5.2.

6.1 Introduction

The experiments have been divided into three parts, based on the maximum number of edges that are in the
datasets of each of these parts: 0 < jEj � 5; 000 (small), 5; 000 < jEj � 500; 000 (medium) and jEj � 500; 000
(large).

The �rst part includes all methods discussed in Chapter 5 (PartialIndex, LI, Zou, NeighbourExchange,
Joindex, ClusteredExact and DoubleBFS) and is meant to select the more promising methods out of the
less promising ones.

The second part shows the e�ect of the out-degree and label set distribution and the size of the label set jLj
on the index construction time and index size.

The third part shows the limits of our major contribution, i.e. LI+OTH+EXTv2.

The goal of an index is to speed up the query answering process relative to BFS.

When we discuss the speed-ups over BFS in this section, we mean \total speed-ups". A total speed-up over
a query condition is equal to the sum of all query times of BFS over that query condition over the sum of all
query times of a di�erent method over that query condition. We do wish to note that the individual speed-ups
can be very di�erent from this. An \individual speed-up" is the time that a query q took using BFS over the
time that it took using a di�erent method. We may have that the \total speed-up" is about 2:0 but that about
30% of the queries has an \individual speed-up" of at least 100. An \average speed-up" is the average over all
individual speed-ups for all queries within a certain query condition.

A query condition Qc is a pair of the form (fTrue; Falseg; jLj) where L � L. Let nq be the number of queries
in a certain query condition and let qj for 1 � j � nq be the j’th query belonging to Qc. Let TM (Qc; j) be the
time taken by method M to answer query qj belonging to Qc. Table 6.1 shows the calculations for the speed-ups

Table 6.1: Speed-ups calculations, showing the di�erence between \total", \average" and \individual" speed-up.

Name Formula

Total speed-up for Qc and M 0
Pnq

i=1(TBF S(Qc;i))Pnq
i=1(TM0 (Qc;i))

Average speed-up for Qc and M 0
Pnq

i=1
(T(Qc;i))

(TM0 (Qc;i))

Individual speed-up for Qc, qj and M 0 TBF S(Qc; j)=TM 0(Qc; j)

Landmark indexing for scalable evaluation of label-constrained reachability queries 43



CHAPTER 6. EXPERIMENTS

6.2 Part 1: small graphs (0 < jEj � 5; 000)

6.2.1 Datasets and methods

We used the methods PartialIndex, LI+OTH(k = n=10; b = k=10), LI+OTH+EXTv1(k = n=10; b = k=10)
Zou, NeighbourExchange, ClusteredExact (with 5 clusters) and DoubleBFS. NeighbourExchange
used blocked mode, which improved the index construction time at the cost of a larger index size. k is the number
of landmarks for LI and b is the number of entries (vi; L) 2 v0 for non-landmark vertices v0 2 V .

6.2.2 Index construction time (s) and size (MB)

Table 6.2: Index construction time (s) for the 7 methods and all datasets.

dataset BFS Zou Clus Nei Par L2 L12 DBFS

ERV1kD2L8uni 0.01 1,099.13 0.03 13.56 0.13 0.86 0.86 3.18
ERV1kD5L8uni 0.01 1,219.76 0.89 51.94 1.18 3.91 3.92 17.61
�1k-0.2-0.4 0.01 43.48 0.06 3.38 0.14 0.06 0.06 0.22
plV1kL8a2.0exp 0.01 39.60 0.06 2.19 0.15 0.13 0.13 0.39
robots 0.01 11.99 0.07 1.49 0.07 0.06 0.06 0.11
V1kD2L12exp 0.01 39.96 0.03 3.15 0.07 0.03 0.03 0.19
V1kD2L8exp 0.01 41.48 0.03 3.51 0.06 0.03 0.03 0.20
V1kD2L8norm 0.01 308.75 0.04 6.22 0.12 0.17 0.17 0.55
V1kD2L8uni 0.01 502.83 0.05 6.04 0.15 0.25 0.25 0.75
V1kD5L8exp 0.01 191.39 0.17 9.74 0.38 0.28 0.27 1.01
V1kD5L8norm 0.01 611.15 0.30 17.53 0.91 0.53 0.53 2.60
V1kD5L8uni 0.01 908.33 0.37 19.15 1.01 0.69 0.69 3.44

Average 0.01 418.15 0.18 11.49 0.36 0.58 0.58 2.52

Table 6.3: Index size (MB) for the 7 methods and all datasets.

dataset BFS Zou Clus Nei Par L2 L12 DBFS

ERV1kD2L8uni 0.03 26.64 0.04 36.49 1.53 3.87 3.88 26.76
ERV1kD5L8uni 0.08 88.54 9.50 85.58 8.00 9.47 9.49 88.68
�1k-0.2-0.4 0.04 8.61 1.03 15.52 1.70 1.52 1.54 8.73
plV1kL8a2.0exp 0.03 7.02 0.65 15.30 1.67 1.23 1.24 7.15
robots 0.04 4.84 0.90 28.26 1.15 1.76 1.78 4.95
V1kD2L12exp 0.03 10.70 0.37 15.78 1.41 1.36 1.39 10.87
V1kD2L8exp 0.03 11.66 0.38 15.87 1.48 1.47 1.48 11.77
V1kD2L8norm 0.03 17.35 0.47 23.74 1.90 2.61 2.63 17.47
V1kD2L8uni 0.03 21.36 0.77 27.96 2.26 3.33 3.35 21.48
V1kD5L8exp 0.07 29.26 4.23 26.10 4.65 3.84 3.86 29.39
V1kD5L8norm 0.07 49.21 4.82 46.40 7.69 5.86 5.89 49.35
V1kD5L8uni 0.07 57.28 5.75 54.40 8.88 6.73 6.76 57.42

Average 0.05 27.71 2.41 32.62 3.53 3.59 3.61 27.84

Tables 6.2 and 6.3 show the results for all datasets and methods. The abbreviations for the methods are listed
in Table 4.2.

We see that Zou needs far more time to build the index than the other methods. The index size of Zou
is almost identical to that of DoubleBFS. Especially in the cases of a uniform distribution we see that the
construction time of Zou explodes.

44 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

We took a look at the log �les of the experiments. This shows us how much time each step of Zou consumed.
We see that Zou needs a few seconds (e.g. 7 seconds for dataset V1kD2L8uni) for building the index of each
SCC which is step 2 of the process. We know that checking the simpleness of a path P for each triple (L(P ); P; d)
is computationally expensive (see Section 4.1.2).

The last steps, i.e. 7 to 9, took roughly 80% of the total time in most cases. During these steps we had
to make some costly operations frequently, e.g. Prune() in combination with �. A lot of these operations are
redundant, if we were to use some ordering of the vertices.

To give an example, suppose we have two inner vertices vi;1; vi;2 2 Ci where Ci is the i’th SCC and vi;1

has one out-edge (vi;1; vi;2; l) 2 E. Moreover, suppose vi;2 has already ‘taken the entries’ from every out-portal
pi 2 Ci. For vertex vi;1 it might be more e�cient to just ‘take the entries’ of vi;2 rather than doing this for all
pi 2 Ci. However, this is not done.

We think that especially during these last steps a more e�cient implementation should be possible. It should
be possible to remove at least one step, as step 7 is not in the original paper. A more e�cient implementation of
the Prune()-operator thereby using a di�erent data structure should be possible. However, as the �rst 6 already
take considerably more time than DoubleBFS (which is on average 165 times faster), we do not think it can
compete with the other methods. The gap between DoubleBFS on one side and Zou on the other is simply
too large. Hence we have decided to refrain from using Zou in the next 2 parts of the experiment.

The index construction time of NeighbourExchange is also high compared DoubleBFS. We were not able
to come up with some form of pruning for NeighbourExchange. Hence we have decided to refrain from using
NeighbourExchange in the next 2 parts of the experiment.

6.2.3 Total speed-ups

We chose to only analyse the total speed-ups of ClusteredExact, PartialIndex and LI (both approaches)
and DoubleBFS, because NeighbourExchange and Zou have an index construction time that is not com-
petitive with the other approaches to start with. Table 6.4 shows the total speed-up per query condition for
ClusteredExact and PartialIndex and Table 6.5 does the same for LI.

The results for ClusteredExact are bad. Any 0:01-value in the table indicates that the total speed-up of
ClusteredExact was at least 100 times slower in that case. The quality of the clustering seems to play a big
role here. From the experiment logs we can see that a lot of direct and failed attempts were made to reach either
an out-port or to reach the target from an in-port. This has to do with the relatively high number of edges
between the clusters.

Looking at Tables 6.2 and 6.3 the index construction time and index size of PartialIndex were good, but
the total speed-ups achieved by this method are bad. Only for True-queries there is a signi�cant speed-up. This
is due to the fact that when we hit a landmark v0 when answering query (v; w; L) we can either have a direct hit
(i.e. there is a L-path from v0 to w) or not. Unlike LI PartialIndex does not have any advantage over BFS in
the latter case.

When we look at Table 6.5 we see that the speed-ups for LI+OTH+EXTv1are slightly above those of
LI+OTH in some cases and LI+OTH is clearly better in the remaining cases. There is not a clear winner here.

The speed-ups achieved by DoubleBFS, i.e. LIwith k = n, are way higher than all the other speed-ups.
However we must note here that the actual query answer times are very low for LI+OTH+EXTv1 (many in
the range of 10�7. There might be some inaccuracy here. LI+OTH+EXTv1 can answer any query immediately
and does not have to initialize for instance a queue or bitset for any query. These might be explanations as to
why the di�erence is so big.

The total speed-ups for ER-datasets and uniformly distributed datasets are much higher. This is due to
the fact that ER-datasets have a more evenly distributed out-degree distribution and that uniformly distributed
datasets allow for more minimal label sets between any pair of nodes.

We do wish to note that the speed-ups are total speed-ups. The average or individual speed-up can be very
di�erent. In the next section we look into this as well.

Landmark indexing for scalable evaluation of label-constrained reachability queries 45



CHAPTER 6. EXPERIMENTS

Table 6.4: Total speed-up per condition (query set and True/False-queries) for ClusteredExactand Par-
tialIndex.

dataset qs1,true qs1,false qs2,true qs2,false qs3,true qs3,false
jLj=4 jLj=2 jLj � 2

ClusteredExact

�1k-0.2-0.4 0.11 0.01 0.08 0.01 0.33 0.01
ERV1kD2L8uni 0.01 0.01 0.01 0.01 0.01 0.01
plV1kL8a2.0exp 0.01 0.01 0.01 0.01 0.01 0.01
V1kD2L12exp 0.01 0.01 0.01 0.01 0.01 0.01
V1kD2L8exp 0.01 0.01 0.01 0.01 0.01 0.01
V1kD2L8norm 0.01 0.01 0.01 0.01 0.01 0.01
V1kD2L8uni 0.01 0.01 0.01 0.01 0.01 0.01
V1kD5L8exp 0.03 0.01 0.01 0.01 0.02 0.01
V1kD5L8norm 0.01 0.01 0.02 0.01 0.04 0.01
V1kD5L8uni 0.01 0.01 0.01 0.01 0.02 0.01
robots 0.01 0.01 0.01 0.01 0.01 0.01

.02 .01 .01 .01 .04 .01

PartialIndex

�1k-0.2-0.4 16.45 0.89 25.38 0.92 20.04 0.93
ERV1kD2L8uni 0.81 0.40 1.04 0.83 2.33 0.92
plV1kL8a2.0exp 5.90 0.93 9.43 0.95 16.61 0.95
V1kD2L12exp 2.85 0.92 7.31 0.94 32.55 0.96
V1kD2L8exp 5.44 0.93 15.97 0.98 24.93 1.08
V1kD2L8norm 2.05 0.82 3.10 0.89 3.56 0.92
V1kD2L8uni 1.40 0.77 3.87 0.85 11.65 0.91
V1kD5L8exp 18.97 0.89 16.72 0.80 40.05 0.85
V1kD5L8norm 10.54 0.73 18.90 0.82 17.79 0.85
V1kD5L8uni 5.83 0.75 19.08 0.85 23.21 0.87
robots 2.30 0.95 4.04 0.93 7.49 0.94

6.59 .81 11.34 .88 18.20 .92

46 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Table 6.5: Total speed-up per condition (query set and True/False-queries) for LI+OTH (k = n=10) and (k = n)
and DoubleBFS.

method name qs1,true qs1,false qs2,true qs2,false qs3,true qs3,false
jLj=4 jLj=2 jLj � 2

LI+OTH (k=n=10,b=k=10)

�1k-0.2-0.4 50.35 67.78 82.62 63.69 78.95 72.48
ERV1kD2L8uni 1.49 1.45 9.39 5.83 23.70 10.23
plV1kL8a2.0exp 134.04 158.41 143.64 134.72 170.08 162.39
V1kD2L12exp 51.34 97.17 42.83 102.12 88.46 101.84
V1kD2L8exp 66.42 122.55 66.05 138.35 73.42 172.11
V1kD2L8norm 15.59 10.48 30.23 33.30 50.58 85.88
V1kD2L8uni 12.34 6.43 24.31 34.37 43.75 91.44
V1kD5L8exp 31.20 2.91 37.13 28.90 75.18 16.54
V1kD5L8norm 22.02 31.86 28.73 11.47 30.88 4.23
V1kD5L8uni 23.01 34.33 31.13 24.05 38.09 3.57
robots 63.67 35.84 126.30 112.40 137.61 244.54

42.86 51.74 56.57 62.65 73.70 87.75

LI+OTH+EXTv1 (k=n=10,b=k=10)

�1k-0.2-0.4 54.69 51.79 85.21 51.80 73.40 51.90
ERV1kD2L8uni 1.51 1.47 9.37 5.94 24.00 10.96
plV1kL8a2.0exp 139.65 134.77 144.60 111.14 168.89 118.95
V1kD2L12exp 63.32 85.99 76.97 90.78 92.60 86.21
V1kD2L8exp 67.47 85.15 65.09 130.52 71.35 82.27
V1kD2L8norm 14.82 9.65 30.20 30.23 47.05 66.67
V1kD2L8uni 11.45 6.33 23.59 33.85 48.85 79.25
V1kD5L8exp 31.14 3.68 36.84 28.86 73.24 20.78
V1kD5L8norm 23.50 30.62 32.05 18.38 32.72 6.94
V1kD5L8uni 23.25 33.88 31.18 28.62 39.71 4.91
robots 61.14 27.07 117.69 85.42 133.44 250.62

44.72 42.76 59.34 55.95 73.20 70.86

DoubleBFS

�1k-0.2-0.4 155.91 2,844.84 178.56 3,220.82 199.93 3,537.62
ERV1kD2L8uni 7.17 64.35 41.55 416.49 211.83 1,953.72
plV1kL8a2.0exp 307.42 2,745.11 334.78 2,577.43 359.59 3,153.61
V1kD2L12exp 163.63 2,538.65 205.62 3,140.89 239.10 3,315.53
V1kD2L8exp 142.05 2,536.86 136.78 3,059.71 192.43 3,907.76
V1kD2L8norm 45.45 413.86 106.00 1,209.13 159.92 2,418.49
V1kD2L8uni 39.08 328.03 101.76 1,243.88 128.82 2,453.83
V1kD5L8exp 193.94 5,292.36 180.60 1,628.22 250.92 3,836.84
V1kD5L8norm 143.23 2,081.43 181.40 5,600.57 175.60 7,547.58
V1kD5L8uni 114.19 2,311.32 180.97 6,473.33 256.51 8,372.60
robots 97.79 695.46 260.54 1,889.16 304.76 2,379.20

128.16 1,986.57 173.50 2,769.05 225.40 3,897.88

Landmark indexing for scalable evaluation of label-constrained reachability queries 47



CHAPTER 6. EXPERIMENTS

6.3 Part 2: medium graphs (5; 000 < jEj � 500; 000)

6.3.1 Datasets and methods

In this experiment we included all datasets that have more than 5; 000 and edges and at most 500; 000 edges.
The methods we used include LI+OTH (k = n=20; b = 20), LI+OTH (k = n=20; b = 0), LI+OTH+EXTv1
(k = n=20; b = 20) and LI+OTH+EXTv1 (k = n=10; b = 20). We set the budget to either 20 or 0. In case
b = 0 one could argue that LI+OTH is the same as LI. k is the number of landmarks and b the budget per
non-landmark.

For the datasets of the type Preferential-Attachment (or PA-datasets) that have 25; 000 vertices and with a
degree � 3 and L > 8 we only ran LI+OTH+EXTv1 (k = n=10; b = 20)

6.3.2 Index construction time (s)

Table 6.6: Index construction time (s) for the 4 methods and all datasets. For the dataset ERV125kD2L8uni
no index was produced within the 6 hours time limit. The table has been divided into a few sections: the top
one contains the real datasets, the second one the ER-datasets, the third one the Forest-Fire datasets, the fourth
one the Power-Law datasets and the last one the Preferential-Attachment datasets.

dataset BFS L12( n
20 ; 20) L1( n

20 ; 20) L2( n
20 ; 0) L12( n

10 ; 20)

advogato 0.01 0.84 0.82 0.80 1.48
yagoFacts-small 27.87 28.04 28.04 28.03 28.04
subeljCoraL8exp 0.01 5.27 5.16 5.09 8.94
arXivhepphL8exp 0.06 291.75 292.83 293.22 417.95
p2p-GnutellaL8exp 0.02 103.05 102.19 101.50 173.48

ERV5kD2L8uni 0.01 26.98 27.03 26.98 41.33
ERV25kD2L8uni 0.02 978.67 977.01 1,069.33 1,448.87
ERV125kD2L8uni - - - - -

�5k-0.2-0.4 0.01 1.05 1.03 1.02 1.58

plV5kL8a2.0exp 0.01 1.48 1.46 1.45 2.40
plV25L8ka2.0exp 0.03 30.44 30.37 31.08 50.17

V5kD2L8exp 0.01 0.36 0.35 0.34 0.61
V5kD2L8norm 0.01 3.49 3.46 3.45 5.09
V5kD2L8uni 0.01 5.51 5.55 5.48 7.78
V25kD2L8exp 0.01 9.81 9.65 9.48 16.54
V25kD2L8norm 0.02 110.03 110.09 109.99 156.99
V25kD2L8uni 0.01 157.78 157.49 157.38 216.81
V125kD2L8exp 0.03 262.30 267.49 254.91 445.85
V125kD2L8norm 0.03 2,944.69 2,956.99 2,953.46 4,182.90
V125kD2L8uni 0.03 4,341.67 4,380.90 4,372.79 6,080.10

Total average 1.48 489.64 492.52 496.09 699.31

The top section of Table 6.6 contains the real datasets. There is quite some di�erence when we look at the index
construction times of these datasets, e.g. subeljCoraL8exp (23k edges) took roughly 5 seconds whereas arX-
ivheppL8exp (34k edges) took way longer. A clear di�erence between these two is the out-degree distribution.
subeljCoraL8exp has a more skewed out-degree distribution, i.e. a few nodes have a very high degree, whereas
arXivheppL8exp has a more balanced out-degree distribution. We have seen this e�ect multiple times, e.g. the
ER-datasets have an almost uniform out-degree distribution.

The graph construction time of yagoFacts-small is quite high: 27:87 seconds. The only thing that makes
this dataset very di�erent from other datasets is the fact that it has jLj = 32. However this does not explain
why the graph construction time is this high.

48 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

The ER-datasets have a uniform label set distribution and a close to uniform out-degree distribution. Hence
these datasets are di�cult to process. This explains why we were unable to build an index within the time
limit of 6 hours (21; 600 s) for the dataset ERV125kD2L8uni. From ERV125kD2L8uni’s experiment logs we
discovered that the index construction process had built around 50% of the landmarks, when the time limit was
reached. By that time the index had reached a size of 20GB.

Looking at the PA-datasets and the label set distribution in Table 6.6 we see a large di�erence between the
datasets with a uniform and normal label set distribution on the one hand and the exponential distribution on
the other hand. For jV j = 5k, jV j = 25k and jV j = 125k we can see that the index construction takes about 13
times longer for a dataset with a uniform label set distribution than for that same dataset with an exponential
distribution.

6.3.3 Index size (MB)

Table 6.7: Index size (MB) for the 4 methods and all datasets. The sections in the table are the in Table 6.6.

dataset BFS L12( n
20 ; 20) L1( n

20 ; 20) L2( n
20 ; 0) L12( n

10 ; 20)

advogato 0.82 27.57 27.46 27.44 54.60
yagoFacts-small 0.28 0.51 0.30 0.30 0.74
subeljCoraL8exp 1.46 54.94 54.67 54.67 109.86
arXivhepphL8exp 6.74 613.21 611.96 611.92 1,281.71
p2p-GnutellaL8exp 2.36 3,668.12 3,667.25 3,667.24 7,298.90

ERV5kD2L8uni 0.16 62.00 61.97 61.97 119.71
ERV25kD2L8uni 0.80 1,645.72 1,645.56 1,645.56 3,151.02
ERV125kD2L8uni - - - - -

�5k-0.2-0.4 0.20 17.08 17.03 16.93 32.22

plV5kL8a2.0exp 0.25 17.38 17.29 17.29 32.71
plV25L8ka2.0exp 1.44 421.25 420.68 420.68 811.87

V5kD2L8exp 0.15 18.12 18.08 17.99 35.22
V5kD2L8norm 0.15 39.09 39.05 38.94 71.66
V5kD2L8uni 0.15 46.39 46.35 46.25 84.70
V25kD2L8exp 0.79 437.62 437.38 437.16 857.19
V25kD2L8norm 0.79 992.47 992.25 992.00 1,830.24
V25kD2L8uni 0.79 1,169.63 1,169.43 1,169.17 2,121.92
V125kD2L8exp 3.99 10,787.30 10,786.07 10,785.39 21,291.71
V125kD2L8norm 3.99 24,381.91 24,380.83 24,380.22 45,072.80
V125kD2L8uni 3.99 29,044.04 29,043.01 29,042.46 53,146.00

Total average 1.54 3,865.49 3,865.09 3,864.93 7,231.83

The top section of Table 6.7 shows the real datasets. An interesting observation here is that construction time is
not directly related to index size. For example p2p-GnutellaL8exp has the largest index size in the last column
7:3GB roughly, which took less than 2 minutes to build. In contrast, arXivhepphL8exp took almost 5 minutes
and ended up with a smaller index. An explanation for this could be in the fact that p2p-GnutellaL8exp has
a more skewed degree distributions than arXivhepphL8exp. Landmarks are those vertices with a high total
degree. When j < k landmarks have already been constructed and a landmark vj 2 V needs to be constructed,
there is a higher chance in a graph like p2p-GnutellaL8exp (with a skewed out-degree distribution) that it will
hit a landmark vi with 0 < i � j than in a graph like arXivhepphL8exp.

There is a high rate of growth of the index size, looking at the second section of Table 6.7 which contains
the ER-datasets. In the last column of the table, we see that the index size grows from 119MB to 3; 151MB (26
increase). Dataset ERV25kD2L8uni has a larger index size (3:1GB) compared to its PA-counterpart (2:1GB)

Landmark indexing for scalable evaluation of label-constrained reachability queries 49



CHAPTER 6. EXPERIMENTS

looking at the last column.

There is a high rate of growth of the index size, looking at the �fth section of Table 6.7 which contains the
PA-datasets. The index size of a PA-exp-dataset (i.e. with an exponential label set distribution) grows in the
following way: 11:77 ! 35:22 ! 857:19 ! 21; 291:92. This makes for a rate of growth of roughly 24, except
for the �rst step. In case of a PA-norm-dataset the numbers are: 17:47 ! 71:66 ! 1; 830:24 ! 45; 072:80.
This makes for a rate of growth of roughly 25, except for the �rst step. In case of a PA-uni-dataset we get:
21:48! 84:7! 1; 830:24! 53; 146. This makes for an average rate of growth of 27 for the last two steps. This
demonstrates that each time the number of vertices is multiplied by a factor 5, the index size of a PA-dataset
indiscriminate of the label set distribution is multiplied by at least a factor 24.

However, there is a clear di�erence between the datasets with a uniform and normal label set distribution
on the one hand and the exponential distribution on the other hand. If we look at the last column again of
the �fth section of Table 6.7, a PA-uni-dataset has an index size roughly 2:4 times larger than its corresponding
PA-exp-dataset for jV j = 5k, jV j = 25k and jV j = 125k. For example, V25kD2L8uni has an index size of
2; 122MB and V25kD2L8exp has one of 857MB.

6.3.4 Index construction time (s) and index size (MB) when jLj � 8

Table 6.8: Index construction time (s) for the datasets of the type ’Preferential-Attachment’ having 25; 000 edges
and a degree of either 3; 4 or 5 and at least 8 labels using LI+OTH+EXTv1(k = N=20; b = 20).

Degree jLj = 8 jLj = 10 jLj = 12 jLj = 14 jLj = 16

3 33.75 70.92 223.31 1,058.74 4,219.61

4 72.44 215.71 721.78 3,554.97 -

5 113.46 353.74 1,414.50 6,527.27 -

Table 6.9: Index size (MB) for the datasets of the type ’Preferential-Attachment’ having 25; 000 edges and a
degree of either 3; 4 or 5 and at least 8 labels using LI+OTH+EXTv1(k = N=20; b = 20).

Degree jLj = 8 jLj = 10 jLj = 12 jLj = 14 jLj = 16

3 736.01 953.55 1,496.42 2,783.56 4,219.61

4 1,022.86 1,566.40 2,677.61 5,404.49 -

5 1,250.53 2,004.95 3,720.64 7,238.79 -

We had a di�erent set-up for the PA-exp-datasets with n � 25; 000 and D � 3 and L � 8. Table 6.8 and 6.9
show the index construction time (s) and index size (MB) for these datasets. Figures 6.1 and �g:pap�g2 show
the same data. When D � 4 and jL = 16, we were unable to build an index within the 6 hours time limit.

There is an interaction e�ect between the degree D and the size of the label set jLj looking at Figures 6.1
and �g:pap�g2. The line with D = 5 has the strongest growth which can be seen in the �gures. Increasing the
label set size by 2 will make the index construction time and index size grow exponentially. This growth is much
stronger for the index construction time. This can be explained by the fact that the index construction time
complexity of LI+OTH+EXTv1 has a 2jLj-term and a m = D �n-term, whereas the time complexity the index
size does not have a m-term.

6.3.5 Total speed-ups

Table 6.10 shows the mean query answering time (ms) of BFS. We can see that the mean query answering time
is often a low value in an order of magnitude of 10�4 seconds.

In Tables 6.11, 6.10 and 6.12 we see the total speed-up for queries of the �rst, second and third query sets
respectively. We can compare the di�erent methods against each other by looking at the respective columns.

50 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

8 10 12 14 16
0

0:2

0:4

0:6

0:8

1

�104

jLj

In
d

ex
co

n
st

ru
ct

io
n

ti
m

e
(s

)

D = 2
D = 3
D = 4
D = 5

Figure 6.1: Index construction time (s) for PA-datasets with n = 25; 000, as a function of the label set size jLj.
The di�erent lines indicate the degree (either 2,3,4 or 5) of the datasets.

8 10 12 14 16
0

2;000

4;000

6;000

8;000

jLj

In
d

ex
si

ze
(M

B
)

D = 2
D = 3
D = 4
D = 5

Figure 6.2: Index size (MB) for PA-datasets with n = 25; 000, as a function of the label set size jLj. The di�erent
lines indicate the degree (either 2,3,4 or 5) of the datasets.

When we look at the �rst two columns and compare these against the third and fourth column in the three
tables, we do not observe any advantage of using the �rst extension. Only in a few cases there is a small im-
provement, e.g. advogato in Table 6.11. In the experiments leading up to this experiment we found some gain
in using the �rst extension, but this gain was only exhibited for larger graphs. Therefore we will keep using the
�rst extension.

There is a clear di�erence between LI+OTH with b = 0 and b = 20 looking at the three tables. The True-queries
have a clear improvement in the b = 20-case over the b = 0-case. For the False-queries there is little improvement
or even some disimprovement.

Finding the ideal budget size remains an open issue. We can imagine that a very large budget could increase
the query answering time. For instance, given a query (v; w; L) we might have that v and w are in close proximity
of each other, whereas any landmark v0 2 V 0 is not so close. In this case, a high b-value might �rst visit a large
number landmarks before �nding w through graph exploration.

Landmark indexing for scalable evaluation of label-constrained reachability queries 51



CHAPTER 6. EXPERIMENTS

Table 6.10: Mean query execution time (ms) of BFSfor all datasets per query condition.

method name qs1,true qs2,true qs3,true qs1,false qs2,false qs3,false
jLj=4 jLj=2 jLj � 2

advogato 0.203 0.243 0.246 0.297 0.383 0.370
yagoFacts-small 0.001 0.001 0.002 0.000 0.004 0.004
subeljCoraL8exp 0.225 0.240 0.261 0.337 0.378 0.420
arXivhepphL8exp 1.305 1.077 0.937 1.758 2.139 2.606
p2p-GnutellaL8exp 0.427 0.297 0.302 1.965 2.185 2.241

ERV5kD2L8uni 0.000 0.008 0.079 0.000 0.013 0.121
ERV25kD2L8uni 0.001 0.052 0.389 0.002 0.058 0.674

�5k-0.2-0.4 0.067 0.043 0.044 0.183 0.125 0.169

plV5kL8a2.0exp 0.146 0.155 0.160 0.134 0.173 0.220
plV25L8ka2.0exp 0.841 0.862 0.917 0.823 0.929 1.341

V5kD2L8exp 0.059 0.048 0.049 0.154 0.177 0.191
V5kD2L8norm 0.018 0.042 0.037 0.025 0.076 0.139
V5kD2L8uni 0.007 0.029 0.033 0.007 0.063 0.135
V25kD2L8exp 0.207 0.170 0.147 0.807 0.893 0.877
V25kD2L8norm 0.303 0.143 0.139 0.195 0.385 0.738
V25kD2L8uni 0.041 0.141 0.115 0.049 0.367 0.749
V125kD2L8exp 0.304 0.260 0.279 4.243 3.901 5.066
V125kD2L8norm 0.235 0.267 0.253 0.402 1.856 3.786
V125kD2L8uni 0.101 0.264 0.163 0.251 1.662 4.008

Average 0.24 0.23 0.24 0.61 0.83 1.26

Increasing the number of landmarks, i.e. going from N
20 to N

10 , improves the results to some extent. The total
speed-up of the True-queries gets roughly doubled. The total speed-up of the False-queries does not always
improve.

There is an e�ect of the label set distribution on the speed-ups. When we look at the total speed-ups for
datasets that have an exponential label set distribution, e.g. V5kD2L8exp, and compare these against the
speed-ups for their normal or uniform counterparts, e.g. V5kD2L8uni and V5kD2L8norm, we see that the
speed-ups in the �rst case are higher. The datasets with an exponential label set distribution have one label l that
is on the majority of the edges. The presence of l in a True-query (v; w; L), i.e. l 2 L, increases the probability
that v can reach several landmarks v0 2 V and that one of these landmarks has a L-path to w.

There is an e�ect of the out-degree distribution on the speed-ups. The speed-ups for PL-datasets and
subeljCoraL8exp and p2p-GnutellaL8exp are relatively high. All these datasets have a skewed out-degree
distribution which favours the landmarked approach.

6.3.6 Total speed-ups when jLj � 8

Table 6.14 shows the speed-ups for the PA-exp-datasets with jV j � 25; 000, D � 3 and jLj � 8.
The total speed-ups seem to increase with the degree for both True- and False-queries and seem to decrease

with the label set size for the False-queries, but the numbers do not give a consistent picture.

6.3.7 Individual speed-ups

The speed-ups discussed in the previous section were \total speed-ups". One should be careful here. The actual
speed-up per query could be very di�erent.

In Figure 6.3 we can see the speed-up per query for p2p-GnutellaL8exp and the third query set, i.e. query
conditions (True; jLj � 2) and (False; jLj � 2) using method LI+OTH+EXTv1 (k = n

10 ; b = 20). The total

52 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Table 6.11: Total speed-up for query conditions (True, jLj=4 ) and (False, jLj=4 ).

dataset LI+OTH+EXTv1 LI+OTH LI+OTH+EXTv1 LI+OTH+EXTv1

(20; n=20) (20; n=20) (0; n=20) (20; n=10)

�5k-0.2-0.4 307.78 185.77 311.90 288.89 134.57 293.73 286.96 345.31

ERV5kD2L8uni 0.99 1.06 1.00 1.11 1.01 1.26 1.09 1.16
ERV25kD2L8uni 2.87 3.14 2.98 3.11 3.04 3.56 3.44 3.39

plV5kL8a2.0exp 651.29 319.53 661.20 375.38 346.68 423.30 701.33 662.25
plV25L8ka2.0exp 2,309.31 1,279.65 2,425.09 1,441.89 1,253.13 1,549.01 2,691.57 2,127.51

V5kD2L8exp 273.93 215.95 278.27 294.13 155.54 319.45 315.30 503.51
V5kD2L8norm 73.07 73.16 71.44 76.42 32.25 76.42 72.68 78.02
V5kD2L8uni 23.78 21.94 25.13 24.35 15.00 25.31 27.66 24.64
V5kD5L8exp 259.50 66.00 250.83 78.27 126.80 85.98 224.72 80.78
V25kD2L8exp 699.84 978.21 706.24 1,223.47 347.02 1,240.32 741.49 1,392.55
V25kD2L8norm 783.50 314.64 784.16 356.63 392.31 311.33 811.60 342.90
V25kD2L8uni 112.71 93.06 111.74 94.05 63.07 92.97 122.59 97.22
V125kD2L8exp 416.95 3,104.94 417.12 4,100.90 286.31 4,150.62 434.50 4,679.52
V125kD2L8norm 323.78 451.99 338.66 464.71 206.92 423.22 341.30 474.97
V125kD2L8uni 148.44 263.33 143.24 277.81 93.24 255.58 165.21 288.98

advogato 586.82 4.74 584.11 4.27 375.09 4.27 719.30 28.33
yagoFacts-small 4.55 1.83 4.52 2.08 3.32 2.13 5.27 1.95
subeljCoraL8exp 615.57 234.99 631.11 238.86 311.46 247.32 681.96 386.32
arXivhepphL8exp 687.32 4.97 706.53 4.84 627.12 4.83 1,183.89 20.56
p2p-GnutellaL8exp 1,027.91 5.25 1,044.45 5.49 576.22 5.47 1,346.45 2,020.55

Average 452.63 466.02 460.16 586.53 260.78 595.12 525.91 771.16

speed-ups are 771:22 and 646:22 (Table 6.13). About 55% of the True-queries and 93% of the False-queries have
an individual speed-up that is above these values.

Landmark indexing for scalable evaluation of label-constrained reachability queries 53



CHAPTER 6. EXPERIMENTS

Table 6.12: Total speed-up for query conditions (True, jLj=2 ) and (False, jLj=2 ).

dataset LI+OTH+EXTv1 LI+OTH LI+OTH+EXTv1 LI+OTH+EXTv1

(20; n=20) (20; n=20) (0; n=20) (20; n=10)

�5k-0.2-0.4 164.73 150.02 176.95 216.47 76.16 232.80 196.63 370.89

ERV5kD2L8uni 11.23 12.74 11.47 13.16 10.38 13.83 17.66 24.97
ERV25kD2L8uni 55.11 37.42 55.14 37.46 47.56 39.47 84.21 72.92

plV5kL8a2.0exp 757.26 349.79 756.66 558.84 395.94 591.28 818.06 516.40
plV25L8ka2.0exp 2,491.84 1,239.38 2,598.33 1,501.20 1,342.06 1,586.26 3,074.60 1,989.90

V5kD2L8exp 217.68 239.92 226.79 360.22 109.30 376.70 225.93 342.46
V5kD2L8norm 156.69 166.32 164.23 172.24 63.92 183.34 173.58 190.85
V5kD2L8uni 131.64 160.49 127.38 167.17 76.06 190.87 123.10 179.01
V5kD5L8exp 150.14 22.46 157.36 21.59 81.10 22.73 192.73 182.00
V25kD2L8exp 534.99 660.86 532.77 1,005.91 256.72 1,030.47 589.99 1,378.69
V25kD2L8norm 553.15 626.96 541.12 666.18 300.78 545.65 553.74 661.91
V25kD2L8uni 353.07 554.60 349.54 598.65 183.86 590.92 389.71 646.90
V125kD2L8exp 395.02 1,753.97 397.41 3,519.16 265.31 3,585.02 410.49 3,129.41
V125kD2L8norm 352.67 1,851.65 358.91 1,909.63 225.81 1,755.74 362.25 2,004.46
V125kD2L8uni 324.63 1,488.86 328.73 1,584.35 213.34 1,439.30 409.34 1,616.89

advogato 696.33 3.39 689.43 2.89 483.19 2.89 976.80 14.66
yagoFacts-small 3.86 9.23 4.08 10.84 2.52 10.65 4.73 9.59
subeljCoraL8exp 703.14 238.04 728.82 249.90 312.11 249.98 825.56 453.70
arXivhepphL8exp 959.57 5.45 981.89 5.01 610.50 5.00 1,662.81 21.73
p2p-GnutellaL8exp 668.38 2.73 672.63 2.94 401.28 2.95 771.22 646.25

Average 459.59 578.57 468.49 707.27 255.99 703.59 552.39 832.52

Figure 6.3: Individual speed-ups (sorted in ascending order) for p2p-GnutellaL8exp and query conditions
(True; jLj � 2) and (False; jLj � 2) using LI+OTH+EXTv1 (k = n=10; b = 20).

54 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Table 6.13: Total speed-up for query conditions (True, jLj � 2 ) and (False, jLj � 2 ).

dataset LI+OTH+EXTv1 LI+OTH LI+OTH+EXTv1 LI+OTH+EXTv1

(20; n=20) (20; n=20) (0; n=20) (20; n=10)

�5k-0.2-0.4 217.50 158.84 202.46 277.44 104.16 292.53 194.98 390.77

ERV5kD2L8uni 163.49 5.46 166.75 5.29 106.43 5.34 225.74 76.79
ERV25kD2L8uni 610.40 4.72 604.85 4.72 393.05 4.73 932.80 389.21

plV5kL8a2.0exp 781.53 308.26 786.45 464.32 413.91 498.58 779.24 470.15
plV25L8ka2.0exp 2,694.00 1,137.77 2,832.51 1,649.38 1,361.76 1,673.05 2,846.10 2,020.66

V5kD2L8exp 232.45 225.10 246.24 234.68 113.71 247.78 252.81 414.74
V5kD2L8norm 164.18 192.42 169.53 212.75 62.33 210.08 167.39 302.03
V5kD2L8uni 139.82 326.93 147.65 324.28 67.04 370.80 142.46 361.71
V5kD5L8exp 180.94 278.20 169.91 273.02 74.39 314.76 200.15 399.34
V25kD2L8exp 603.90 212.05 616.39 210.77 307.41 211.70 642.46 1,384.24
V25kD2L8norm 370.65 953.96 389.75 1,020.88 168.51 942.32 405.34 1,151.69
V25kD2L8uni 315.86 897.93 311.52 950.25 160.47 1,003.63 335.32 1,823.13
V125kD2L8exp 381.12 3,119.93 386.20 3,233.09 231.98 3,282.21 475.99 5,386.13
V125kD2L8norm 334.58 4,533.95 340.76 4,828.57 221.42 4,793.20 342.29 5,515.67
V125kD2L8uni 189.58 3,179.83 187.02 3,308.09 125.31 3,181.34 213.12 3,863.40

advogato 1,032.94 5.01 1,027.80 3.69 625.76 3.69 1,207.44 21.32
yagoFacts-small 8.75 10.67 9.11 11.40 4.44 12.67 9.00 10.05
subeljCoraL8exp 788.96 142.83 812.33 140.80 379.78 141.93 947.71 409.45
arXivhepphL8exp 865.54 4.52 902.63 4.31 563.99 4.30 1,597.88 15.14
p2p-GnutellaL8exp 759.17 4.09 794.94 4.36 439.87 4.37 846.21 770.44

Average 510.51 784.25 522.49 1,035.80 525.91 771.16 591.83 1,401.42

Table 6.14: Total speed-ups for all 6 query conditions and PA-datasets using LI+OTH+EXTv1 (k = n=20; b =
20).

degree,jLj qs0,true qs0,false qs1,true qs1,false qs2,true qs2,false

jLj=4 jLj=2 jLj � 2

3; 8 575.65 34.72 491.32 295.45 565.15 711.61
3; 10 629.00 2.38 540.14 307.73 571.57 816.15
3; 12 666.71 21.72 724.43 393.65 585.70 957.84
3; 14 710.23 6.94 682.77 254.04 630.65 846.47
3; 16 977.86 3.00 535.27 10.50 780.25 40.88

4; 8 550.42 113.30 628.94 8.30 649.86 129.08
4; 10 590.96 16.92 508.76 50.65 647.62 485.68
4; 12 595.97 3.82 605.84 514.64 445.91 119.14
4; 14 552.87 62.47 497.39 518.51 493.54 28.38
4; 16 - - - - - -

5; 8 778.94 297.72 614.06 699.38 795.42 64.36
5; 10 682.26 147.58 417.01 827.39 682.71 16.51
5; 12 550.57 5.20 525.59 772.23 436.84 14.68
5; 14 664.51 3.22 790.71 640.55 613.85 11.40
5; 16 - - - - - -

Landmark indexing for scalable evaluation of label-constrained reachability queries 55



CHAPTER 6. EXPERIMENTS

Table 6.15: The datasets included in this part of the experiment with k expressed as the fraction of the number
of vertices n.

Dataset k n

jmd n=50 486,320
citeSeerL8exp n=50 384,414
NotreDameL8exp n=50 325,730
soc-sign-
epinionsL8exp

n=50 131,828

socSlashdotL8exp n=50 82,168

TwitterL8exp n=100 465,018
webBerkstanL8exp n=100 685,231
webStanfordL8exp n=100 281,904
V125kD5L8exp n=100 125,000
pl125ka2.0L8exp n=100 125,000

webGoogleL8exp n=250 875,713
zhishihudongL8exp n=250 2,452,715
usPatentsL8exp n=250 3,774,769
V625kD5L8exp n=250 625,000
pl625ka2.0L8exp n=250 625,000

socPokec n=500 1,632,803

6.4 Part 3: large graphs (jEj > 500; 000)

Table 6.15 shows the datasets divided into four categories where k is either n
50 ;

n
100 ;

n
250 or n

500 . These distinctions
were made to not let exceed any of the datasets the 6 hours time limit and the 128GB memory limit while still
being able to provide a reasonable speed-up.

For n=50 we used LI+OTH with b = 20 and LI+OTH+EXTv1 with b = 20 and b = 40 to demonstrate the
e�ect of the �rst extension here. For the remainder we only used LI+OTH+EXTv1 with b = 20 and b = 40.
We do this to �nd out whether a larger budget works better or not.

6.4.1 LI+OTH+EXTv1: Index construction time (s) and size (MB)

In Table 6.16 we see the index construction time (s) and size (MB) for several datasets and LI+OTH+EXTv1
b = 20 and b = 40. We excluded the data for LI+OTH from the top section of the table as it is very similar to
LI+OTH+EXTv1.

There is very little to no di�erence between b = 20 and b = 40. This surprising as any non-landmarked vertex
v0 2 V needs to do a double amount of work in the second case. However when b = 40 any v 2 V (landmark or
not) that has been indexed, can be used in forward propagation. Hence with b = 40 there are more opportunities
for using forwardProp, which might explain why there is hardly a di�erence in the index construction time
between the two.

socPokec did not complete because it exceeded the maximum memory size of 128GB. By then it had built
around 70% of the landmarks within around 16; 000 seconds, which is at roughly 75% of the maximal time.

jmd has a very small index, because it is acyclic. The same holds for usPatentsL8exp. A large chunk of
the index size for both is due to the graph size as well. It is di�cult to generate di�cult queries for these kinds
of datasets. A di�cult query is a query for which BFS needs to visit a su�ciently large part of the vertices. As
we choose a random starting point for each query, we might end up at a point where visiting enough vertices is
not possible.

The datasets in the upper section of Table 6.16 have their indices built within 800 seconds each. This is in
sharp contrast with the datasets in the second and third section of the table. The datasets in the �rst section
have a very skewed out-degree distribution, which favours LI. The datasets in the third section have a large
number of edges as well.

56 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Table 6.16: Index construction time (s) and index size (MB) for all the datasets involved.

Dataset Time (s) Size (MB) Time (s) Size (MB)

LI+OTH+EXTv1 LI+OTH+EXTv1
b = 20 b = 40

jmd 468.91 22.55 538.28 21.74
NotreDameL8exp 743.47 7,390.52 740.82 7,387.86
citeSeerL8exp 179.4 2,120.12 180.25 2,154.19
soc-sign-
epinionsL8exp

359.05 3,426.55 358.73 3,425.45

socSlashdotL8exp 258.01 3,686.17 257.68 3,684.49

plV125ka2.0L8exp 158.31 1,988.32 157.83 1,987.27
V125kD5L8exp 1,483.89 12,395.29 1,483.46 12,394.51
TwitterL8exp 1,526.82 17,597.71 1,527.14 17,588.68
webBerkstanL8exp 8,555.18 54,040.7 8,549.91 54,034.57
webStanfordL8exp 3,929.01 24,818.4 3,926.55 24,816.83

zhishihudongL8exp 9,971.12 29,738.07 9,958.60 29,736.57
webGoogleL8exp 8,351.06 53,923.01 8,347.77 53,919.79
V625kD5L8exp 12,400.35 66,290.43 12,404.22 66,644.64
plV625ka2.0L8exp 1,955.14 19,446.65 1,960.67 19,441.35
usPatentsL8exp 7,539.27 705.02 7,503.74 563.98

socPokec - - - -

Average 3,858.6 19,839.3 3,859.71 19,853.46

In Figures 6.4 and 6.5 we see the development of the index construction time and the index size as a
function of the percentage of landmarks built. This was only done for the datasets plV625ka2.0L8exp
and webGoogleL8exp. The two datasets exhibit a di�erent development for the index construction time.
plV625ka2.0L8exp has a more linear development, whereas webGoogleL8exp has a stronger development in
the beginning. W.r.t. the index size both datasets exhibit a similar development.

Figure 6.4: On the y-axis we see the percentage of the total time needed to build all landmarks against the per-
centage of landmarks (LI+OTH+EXTv1) that have been built on the x-axis for datasets plV625ka2.0L8exp
and webGoogleL8exp.

Landmark indexing for scalable evaluation of label-constrained reachability queries 57



CHAPTER 6. EXPERIMENTS

Figure 6.5: On the y-axis we see the percentage of the total memory needed to build all landmarks against the per-
centage of landmarks (LI+OTH+EXTv1) that have been built on the x-axis for datasets plV625ka2.0L8exp
and webGoogleL8exp.

d

6.4.2 LI+OTH+EXTv1: Total speed-ups

Table 6.17: Mean query execution time (ms) of BFS for all datasets per query condition.

dataset qs1,true qs2,true qs3,true qs1,false qs2,false qs3,false
jLj=4 jLj=2 jLj � 2

jmd 0.003 0.003 0.003 0.003 0.003 0.003
NotreDameL8exp 0.237 0.183 0.194 0.931 1.826 1.070
soc-sign-
epinionsL8exp

3.818 5.166 4.786 6.930 8.610 9.846

socSlashdotL8exp 3.355 5.345 3.547 7.666 10.641 9.047
citeSeerL8exp 0.861 1.030 1.254 1.582 2.122 2.619

plV125ka2.0L8exp 4.909 4.780 5.171 4.720 5.773 7.466
TwitterL8exp 5.608 5.049 5.826 7.873 7.166 1.785
V125kD5L8exp 0.281 0.165 0.221 6.764 5.380 5.745
webBerkstanL8exp 5.649 5.051 3.464 48.107 30.779 48.158
webStanfordL8exp 4.723 3.891 4.694 16.000 12.346 20.791

V625kD5L8exp 1.065 1.240 1.424 7.304 34.741 75.612
plV625ka2.0L8exp 45.528 47.592 47.831 52.401 63.567 70.526
usPatentsL8exp 0.324 0.407 0.422 0.332 0.416 0.391
webGoogleL8exp 31.727 26.746 26.052 90.562 50.733 89.902
zhishihudongL8exp 10.149 13.326 11.869 36.621 34.458 34.125

Average 7.882 7.998 7.784 19.186 17.904 25.139

Table 6.17 shows the mean query answering times of BFS. Table 6.18 shows the total speed-ups for the
datasets for which we set k = n

50 and the methods LI+OTH+EXTv1 with a budget b = 20 (�rst row),
LI+OTH+EXTv1with b = 40 (second row) and LI+OTH with b = 20 (third row).

58 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Table 6.18: Speed-ups for the methods LI+OTH+EXTv1 with a budget b = 20 (�rst row), LI+OTH+EXTv1
with b = 40 (second row) and LI+OTH with b = 20 (third row) and the datasets for which we set k = n

50 .

dataset qs1,true qs1,false qs2,true qs2,false qs3,true qs3,false
jLj=4 jLj=2 jLj � 2

jmd 7.18 1.27 2.63 1.21 1.16 0.98
6.58 1.08 2.39 1.08 1.14 0.92
7.22 1.28 2.63 1.22 1.18 0.98

NotreDameL8exp 142.24 43.92 107.23 31.07 113.35 16.86
135.8 17.54 105.9 8.61 110.29 12.81
143.42 17.81 108.08 8.74 113.29 13.03

citeSeerL8exp 382.66 123.29 440.74 98.4 552.45 84.3
254.44 86.68 394.09 94.84 571.69 81.23
386.32 123.75 443.33 98.34 563.44 84.02

soc-sign-epinionsL8exp 5,372.24 4.77 6,973.25 4.36 6,801.43 3.4
5,149.79 4.48 6,417.96 2.94 6,132.68 2.9
5,364.51 4.57 7,019.03 3.01 6,780.85 2.99

socSlashdotL8exp 5,302.07 2.42 9,942.41 2.46 6,666.50 3.98
4,215.56 2.09 9,016.06 1.95 6,137.54 2.58
5,289.85 2.15 10,110.35 2.01 6,647.29 2.67

Average 2,241.28 35.13 3,493.25 27.5 2,826.98 21.9
1,952.43 22.37 3,187.28 21.88 2,590.67 20.09
2,238.26 29.91 3,536.68 22.66 2,821.21 20.74

jmd is a special case. It is acyclic, like usPatentsL8exp. This makes the mean query answering times much
lower, as it is more di�cult to generate di�cult queries for acyclic datasets. Because BFS performs relatively
well on acyclic datasets, we get low total speed-ups for jmd.

NotreDameL8exp has signi�cant speed-ups for all query conditions. There is a clear di�erence between
the �rst row (LI+OTH+EXTv1 with b = 20) and the third row here (LI+OTH with b = 20) for Notre-
DameL8exp. The �rst extension pays o� here clearly. However adding more budget to each non-landmark
node, i.e. comparing the �rst and the second row, has a negative e�ect. Similar results can be seen for soc-sign-
epinionsL8exp and socSlashdotL8exp.

Table 6.19 shows the speed-ups for the datasets for which we had set k = n
100 . The speed-ups for TwitterL8exp

are very high, compared to the other speed-ups and even the speed-ups before. The reason for this is that
TwitterL8exp has an extremely skewed out-degree distribution and that we select the landmarks based on
their total degree (in- plus out-degree). Hence any query (v; w; L) will hit a landmark v0 within a few steps. As
the landmarks have a lot of out-edges as well, a relative large space is pruned whenever direct attempt (v0; w; L)
is false. Also note that the mean BFS query times for TwitterL8exp are also on the high side looking at Table
6.16. TwitterL8exp is an exception though if we look at the speed-ups.

Table 6.20 shows the speed-ups for the datasets for which we had set k = n
250 . The results for the True-

queries are still very good, but for the False-queries the results are bad, often close to no total speed-up at all.

The asymmetry between the speed-ups for the True- and False-queries is growing when we compare Table 6.18
with Table 6.19 and Table 6.19 with Table 6.20. This is because the ratio k

n is decreasing. As the graph and
the query di�culty grow, one can imagine that resolving a query (v; w; L) directly through a landmark v0 2 V 0
has more of an e�ect. True-queries have higher total speed-ups, because in practice there will often be multiple
landmarks v0 2 V 0 that have a L-path to w and hitting one of these is su�cient. False-queries do not have this
advantage. Moreover, the �rst extension of LI only works for the �rst direct attempt. In the experiments leading
up to this experiment we tried doing this for multiple landmarks, but this did not yield any better results. A

Landmark indexing for scalable evaluation of label-constrained reachability queries 59



CHAPTER 6. EXPERIMENTS

Table 6.19: Speed-ups for the methods LI+OTH+EXTv1 with a budget b = 20 (�rst row) and
LI+OTH+EXTv1 with b = 40 (second row) and the datasets for which we set k = n

100 .

dataset qs1,true qs1,false qs2,true qs2,false qs3,true qs3,false
jLj=4 jLj=2 jLj � 2

plV125ka2.0L8exp 6,853.96 6.43 7,296.94 7.94 8,102.48 9.42
6,382.26 6.29 7,260.51 7.85 7,818.16 9.26

TwitterL8exp 56,020.11 27,872.16 50,487.78 71,657.92 58,264.06 17,852.12
56,079.89 22,972.38 50,326.67 71,657.92 58,264.06 17,852.12

V125kD5L8exp 336.24 1.22 244.2 1.91 291.17 10.55
263.19 1.17 222.46 1.29 256.7 9.34

webBerkstanL8exp 1,437.66 5.98 1,217.78 4.41 905.13 4.19
1,267.31 5.83 1,135.14 4.3 870 4.07

webStanfordL8exp 3,299.61 25.45 2,566.25 22.88 3,099.08 14.56
3,266.36 21.83 2,700.26 19.45 3,188.28 12.02

Average 13,589.52 5,582.25 12,362.59 14,339.01 14,132.38 3,578.17
13,451.8 4,601.5 12,329.01 14,338.16 14,079.44 3,577.36

better version of the �rst extension is necessary to make the asymmetry between the two smaller.

Table 6.20: Speed-ups for the methods LI+OTH+EXTv1 with a budget b = 20 (�rst row) and
LI+OTH+EXTv1 with b = 40 (second row) and the datasets for which we set k = n

250 .

dataset qs1,true qs1,false qs2,true qs2,false qs3,true qs3,false
jLj=4 jLj=2 jLj � 2

zhishihudongL8exp 775.96 1 999.37 0.89 891.01 0.99
749.67 1 1,026.45 0.9 884.79 1

V625kD5L8exp 320.04 1,572.78 361.58 3.07 402.29 1.22
322.75 1,611.81 371.02 3.05 408.75 1.21

plV625ka2.0L8exp 14,862.82 5.09 15,426.74 5.25 15,565.15 2.07
14,808.65 5.09 15,512.66 5.24 15,475.5 2.07

usPatentsL8exp 1.73 1.31 3.03 1.38 1.56 1.1
1.73 1.31 3.05 1.38 1.59 1.1

webGoogleL8exp 6,379.07 1.42 3,970.09 2.48 5,904.38 1.98
6,442.69 1.4 3,741.13 2.44 5724.36 1.95

Average 4,467.92 316.32 4,152.16 2.61 4,552.88 1.47
4,465.1 324.12 4,130.86 2.6 4,499 1.47

6.4.3 LI+OTH+EXTv2: Index construction time (s) and size (MB)

The disappointing results for the False-queries in Table 6.20 lead us to re-examine the �rst extension, as this
extension was particularly aimed at speeding up the False-queries. We found a di�erent way of using the idea
behind the �rst extension which ended up being called the third extension, i.e. LI+OTH+EXTv2.

Table 6.21 shows the same datasets as Table 6.16 but with a di�erent often lower number of landmarks. The ex-
periments were conducted with the methods LI+OTH+EXTv2 with b = 15 and b = 30 and LI+OTH+EXTv1
with b = 15.

Looking at Table 6.22 we see there is a small di�erence between the LI+OTH+EXTv2 and LI+OTH+EXTv1
methods when we look at the index size and index construction time. Often there is only a few hundreds of MB

60 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Table 6.21: The datasets included in this part of the experiment with k expressed as the fraction of the number
of vertices n.

Dataset k n

jmd n=100 486,320
citeSeerL8exp n=100 384,414
NotreDameL8exp n=100 325,730
soc-sign-
epinionsL8exp

n=100 131,828

socSlashdotL8exp n=100 82,168
V125kD5L8exp n=100 125,000
pl125ka2.0L8exp n=100 125,000
TwitterL8exp n=100 465,018

webBerkstanL8exp n=500 685,231
webStanfordL8exp n=500 281,904
webGoogleL8exp n=500 875,713
zhishihudongL8exp n=500 2,452,715
usPatentsL8exp n=500 3,774,769
V625kD5L8exp n=500 625,000
pl625ka2.0L8exp n=500 625,000

Table 6.22: Index construction time (s) and size (MB) for LI+OTH+EXTv2 with b = 15 or b = 30 and
LI+OTH+EXTv1 with b = 15.

dataset LI+OTH+EXTv2 LI+OTH+EXTv2 LI+OTH+EXTv1
b = 15 b = 30 b = 15

citeSeerL8exp 114.03 1,158.75 115.15 1,181.46 97.63 1,000.99
jmd 23.72 21 23.47 21.05 3.92 18.4
NotreDameL8exp 395.12 4,777.49 394.96 4,782.76 344.13 4,112.74
plV125kL8a2.0L8exp 183.99 2,538.03 184.7 2,538.97 158.85 1,987.15
V125kD5L8exp 957.97 6,467.02 958.84 6,523.72 950.78 6,353.11
soc-sign-epinionsL8exp 205.51 2,390.25 205.9 2,395.20 171.64 1,713.02
socSlashdotL8exp 138.25 2,137.47 138.64 2,146.08 126 1,853.14
TwitterL8exp 889.16 17,632.80 889.17 17,632.80 866.23 17,427.31

zhishihudongL8exp 6,418.79 16,198.93 6,435.23 16,572.12 5,623.60 14,802.09
webBerkstanL8exp 1,604.28 9,879.21 1,603.63 9,888.58 1,580.64 9,476.28
webGoogleL8exp 4,690.88 27,117.16 4,694.70 27,147.40 4,736.21 26,813.72
webStanfordL8exp 295.57 2,557.07 295.98 2,557.07 292.12 2,499.10
usPatentsL8exp 6,463.42 21,915.31 6,399.90 21,915.31 5,561.24 475.39
plV625kL8a2.0L8exp 1,233.28 12,982.43 1,240.02 12,982.43 1,063.14 9,726.56
V625kD5L8exp 6,433.90 34,300.96 6,437.99 34,568.91 6,897.07 32,534.70

Average 2,003.19 10,804.93 2,001.22 10,856.92 1,898.21 8,719.58

di�erence between LI+OTH+EXTv2 and LI+OTH+EXTv1, which is relatively low. The di�erence in the
construction time is often larger but manageable, i.e. no more than 15% increase. Only for jmd the di�erence is
quite large, i.e. 7 times larger.

All datasets have an index construction time below (6; 500 seconds). The datasets in the upper section of the
table all have construction times below 1; 000 seconds. The index size relative to the number of vertices is also
low. Considering the space complexity for k landmarks, i.e. O(b+ jV j � k � 2jLj) (see Section 4.2.2) we have a very
small index size.

Landmark indexing for scalable evaluation of label-constrained reachability queries 61



CHAPTER 6. EXPERIMENTS

6.4.4 LI+OTH+EXTv2: Total speed-ups

Table 6.23 shows the speed-ups for the datasets with k = n
100 . Note that the query times of BFS are still the

same (see Table 6.17). In the �rst two rows of each dataset we see LI+OTH+EXTv2 with b = 15 and b = 30
and in the third row we see LI+OTH+EXTv1 with b = 15. The speed-ups for the True-queries are roughly
comparable for the �rst two rows and the third row, but for the False-queries there is a clear improvement. The
magnitude of the improvement di�ers per dataset.

When we compare the b = 15-version against the b = 30-version there is no clear winner here. In some
occasions one variant works better and in some occasions the other works better.

Table 6.23: Speed-ups for LI+OTH+EXTv2 b = 15 or b = 30 and LI+OTH+EXTv1 b = 15 and the datasets
for which we set k = n

100 .

dataset qs1,true qs1,false qs2,true qs2,false qs3,true qs3,false
jLj=4 jLj=2 jLj � 2

citeSeerL8exp 208.53 82.34 279.52 76.05 389.55 55.04
229.93 81.37 308.25 73.83 443.08 54.91
211.47 2.23 294.43 1.71 407.37 1.33

jmd 7.22 0.98 1.75 0.95 1.1 1
6.78 0.93 1.72 0.96 1.11 1.01
7.14 0.99 1.74 0.98 1.12 0.99

NotreDameL8exp 14.55 91.55 16.51 102.99 65.22 215.55
14.49 87.92 16.29 165.59 65.66 235.31
14.54 4.02 16.24 2.26 65.56 1.77

plV125kL8a2.0L8exp 1,498.19 418.39 1,875.59 671.07 2,561.84 445.03
1,655.61 415.73 1,973.44 689.51 3,101.36 472.22
1,489.66 1.7 1,915.09 2.17 2,559.05 2.76

soc-sign-epinionsL8exp 1,733.57 1,894.27 3,930.49 2,755.08 4,213.19 2,958.56
1,769.20 1,926.03 4,128.76 2,758.99 4,117.01 2,927.49
1,736.41 1.52 3,893.73 1.27 4,145.18 1.49

socSlashdotL8exp 1,065.00 1,274.13 5,971.36 1,992.09 1,503.16 656.8
1,049.51 1,258.57 5,794.21 1,936.08 1,514.89 650.81
1,051.95 1.24 5,961.80 1.26 1,476.11 1.37

TwitterL8exp 54,335.96 27,718.68 48,976.11 69,439.02 56,912.68 17,487.74
54,335.96 27,289.48 48,976.11 69,439.02 56,912.68 17,487.74
54,335.96 27,211.45 48,976.11 69,439.02 56,912.68 17,487.74

Average 8,409.0 4,497.19 8,721.62 10,719.61 9,378.11 3,117.1
8,437.35 4,437.15 8,742.68 10,723.43 9,450.83 3,118.5
8,406.73 3,889.02 8,722.73 9,921.24 9,366.72 2,499.64

Table 6.24 shows the total speed-ups but then for k = N
500 . Again we see a strong performance improvement for

LI+OTH+EXTv2 with respect to the False-queries. The improvement is the highest for jLj=4 which has to do
with the following. When we prune a subset of the graph by using the third extension, the e�ect of this is larger
of queries with a smaller label set because a smaller number of the edges in the graph can be used. A way to
get higher numbers for the False-queries in case jLj = jLj � 2 would be to increase the MAXDIST -parameter,
currently equal to jsLj=4 + 1, of the third extension. This would include more entries into seqE and give queries
with a larger label set the opportunity to prune even more vertices.

The total speed-ups for usPatentsL8exp are bad. We saw the same thing with jmd. This is caused by the
di�culty to generate di�cult queries for acyclic graphs, which makes BFS perform relatively well. Another part
may have to do with the way we build the index. For acyclic graphs we would prefer a di�erent construction
algorithm. For instance, build a landmark for every root of a subtree T 0 where the number of vertices in T 0 is

62 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Table 6.24: Speed-ups for LI+OTH+EXTv2 b = 15 or b = 30 and LI+OTH+EXTv1 b = 15 and the datasets
for which we set k = n

500 .

dataset qs1,true qs1,false qs2,true qs2,false qs3,true qs3,false
jLj=4 jLj=2 jLj � 2

zhishihudongL8exp 803.99 911.96 1,057.82 106.22 954.23 20.77
804.83 911.62 1,062.50 106.35 954.31 20.71
803.63 0.93 1,056.27 0.98 953.79 0.93

webBerkstanL8exp 517.56 342.29 228.37 31.49 894.44 40.62
513.55 341.16 278.72 31.63 877.37 40.69
518.5 1.21 228.94 1.4 895.1 1.32

webGoogleL8exp 4,181.61 5,908.13 2,246.65 17.12 4,385.16 20
4,310.40 6,060.13 2,447.64 17.59 4,638.08 20.24
4,146.34 1.08 2,252.71 1.22 4,388.31 1.25

webStanfordL8exp 1,414.59 239.56 295.47 15.82 2,380.15 13.06
1,381.55 241.09 820.96 15.85 2,446.68 14.4
1,408.43 1.24 293.87 1.13 2,354.91 1.19

usPatentsL8exp 1.12 1.04 1.4 1.16 1.11 0.98
1.11 1.02 1.42 1.15 1.13 0.97
1.09 1 1.34 1.11 1.09 0.98

plV625kL8a2.0L8exp 3,913.11 1,257.15 2,416.38 709.51 2,304.48 246.42
3,924.00 1,233.11 2,981.31 700.4 2,303.75 245.42
3,921.50 1.9 2,417.68 1.63 2,305.84 1.16

V625kD5L8exp 183.49 56.56 218.79 10.93 270.66 3.09
188.2 58.1 254.12 11.24 272.59 3.26
183.64 1.59 217.75 0.72 268.83 0.67

Average 1,573.64 1,245.24 923.55 127.46 1,598.6 49.28
1,589.09 1,263.75 1,120.95 126.32 1,641.99 49.38
1,569.02 1.28 924.08 1.17 1,595.41 1.07

larger than n
K for some constant K.

Landmark indexing for scalable evaluation of label-constrained reachability queries 63



CHAPTER 6. EXPERIMENTS

6.5 Maintenance

We tested the correctness and speed of our maintenance methods by doing the following. First we built a LI I1

for a graph G. Then we applied K = 30 random operations (adding an edge, removing an edge) to G and to
I1. Afterwards, we built another LI I2. To test the correctness of our approach we compared I1 against I2 over
L = 200 random queries. To assess the speed of our approach we calculated the time needed for any of the K
operations as a ratio of the time to build I1. This ratio should be a low value.

6.5.1 Adding an edge

Table 6.25 shows for 4 datasets the percentage of the construction time of I1 (before the updates) that it took to
add a random edge (v; w; l) to the graph and update I1. For example, \Average 0:17" means that K insertions
of a new edge took on average 17% of the initial index construction time.

We can see that on average for label sets with an exponential distribution inserting a new edge takes relatively
more time (roughly 22%) than for datasets with a normal or uniform distribution (4% and 6%). The data in the
table shows that frequent insertion of edges on a large index is not desirable. A more e�cient method is thus
desired.

Table 6.25: To each of the graphs listed in the columns we added 30 random new edges. The ratio of the time
needed to update the index for any new edge and the original index construction time, i.e. before adding any of
the 30 edges, was calculated. The average and standard devation of these 30 ratios are reported in this table.

V5kD2L8uni V5kD2L8norm V5kD2L8exp V25kD2L8exp

Average 0.04 0.06 0.17 0.22
Standard deviation 0.03 0.03 0.11 0.11

6.6 Extensions

6.6.1 Query for all nodes

A QueryAll-query (v; L) returns a subset of vertices V 0 � V where v0 2 V if and only if query (v; v0; L) is true.
We ran 200 queries (half of which jLj = jLj=2 and half of which jLj = jLj � 2) for several datasets. We selected
queries such that each query would hit at least 10% of the vertices. For uni- or norm-datasets this requirement
would not be met if we had set jLj = jLj=4. Hence we omitted these types of queries.

Figures 6.6 and 6.7 show the individual speed-up for QueryAll-queries in two di�erent settings. We varied
the label set distribution in the �rst setting. In the second setting we varied the degree. From the �rst �gure we
can see that the individual speed-ups are higher for an exp-dataset than for a uni- or norm-dataset. The degree
is not that in
uential.

Table 6.26: Average speed-up for QueryAllQueries.

dataset speed-up
jLj = jLj=2

speed-up
jLj = jLj � 2

V5kD2L8uni 1.24 2.49
V5kD2L8norm 1.40 2.90
V5kD2L8exp 5.97 8.86

V25kD3L8exp 4.40 7.55
V25kD4L8exp 4.04 6.95
V25kD5L8exp 3.81 6.80

64 Landmark indexing for scalable evaluation of label-constrained reachability queries



CHAPTER 6. EXPERIMENTS

Figure 6.6: Speed-ups per query for QueryAll-queries for PA-datasets with 5; 000 vertices, a degree of 2, 8 labels
and either a uniform, normal or exponential label set distribution. We used LI+OTH+EXTv1(k = N=10; b =
0).

Figure 6.7: Speed-ups per query for QueryAll-queries for PA-datasets with 25; 000 vertices, a degree of 3, 4 or
5, 8 labels and an exponential label set distribution. We used LI+OTH+EXTv1(k = N=10; b = 0).

6.6.2 Distance queries

Table 6.27 shows the index size and construction time for two versions of LI+OTH+EXTv1 (k = n=10; b = 0)
and some datasets. The �rst version is the normal \LCR"-version. The second version is the version that can
give the distance of the shortest path P for a query (v; w; L) s.t. Labels(P ) � L.

The results show that the index size is always at least 2 times larger. The index construction time can even
grow much stronger. We do wish to note that this solution returns the exact distance, i.e. it does not return an
approximation of the distance.

Landmark indexing for scalable evaluation of label-constrained reachability queries 65



Table 6.27: Index size (MB) and index construction time (s) for LI+OTH+EXTv1and LI+OTH+EXTv1with
distance (k = N=10; b = 0).

dataset size (MB) time (s) size (MB)
WD

time (s) WD ratio (size) ratio (time)

V5kD2L8uni 84:7 8:4 380:6 65:4 4.5 7.7
V5kD2L8norm 71.6 5.4 307.7 39.4 4.3 7.3
V5kD2L8exp 35.2 102.3 0.77 4.5 2.9 5.9
V25kD2L8exp 857.1 20.4 2,871.9 217.6 3.3 10.6
advogato 54.5 1.7 110.1 58.1 2.0 33.9



Chapter 7

Conclusion

In this paper we studied the reachability problem with a label-constraint. This problem has a lot of potential in
real world applications (RDF, social networks and biological networks).

Several methods (LI, PartialIndex, DoubleBFS, NeighbourExchange, ClusteredExact and Zou)
were experimentally compared against each other. The results clearly were in favour of the new approach we have
introduced in this thesis (LI). This method proved to have a signi�cant improvement over BFS considering query
answering times. In combination with the second and third extension, i.e. LI+OTH+EXTv2, we were able
to achieve excellent speed-ups for large datasets using a relatively low number of landmarks. However datasets
with a close to uniform out-degree distribution (like ER-graphs) or datasets with a large label set (jLj � 16) still
remain di�cult. Using just BFS in these cases might be a good solution as this method has an acceptable query
answering time.

We can draw the following conclusions in the end.

1. Our major contribution LI+OTH+EXTv2 achieves excellent speed-ups. There is an asymmetry between
true- and false-queries. True-queries can stop after �nding their target. False-queries have to explore larger
sections of the graph.

2. When the ratio between the number of landmarks k and the number of vertices n k
n is low, then the �rst

and the third extension prove their value and we can still achieve excellent speed-ups. Hence the approach
LI+OTH+EXTv2 is scalable.

3. The (out)-degree distribution is an important parameter for the index construction time and size of
LI+OTH+EXTv2.

4. The label set size jLj of the labelled graph and the degree per node D = n
m are also two important

parameters for the index construction time and size of LI+OTH+EXTv2. There is an interaction e�ect
between the two parameters.

5. Index maintenance for LI+OTH+EXTv2 remains an issue. It is di�cult to estimate which entries in
an index are no longer valid after an update and to create an algorithm that is signi�cantly faster than
rebuilding index.

6. Alternative approaches (PartialIndex, DoubleBFS, NeighbourExchange, ClusteredExact and
Zou) are not competitive to LI+OTH+EXTv2 w.r.t. their speed-ups and/or their index construction
times.

7.1 Future work

One possible extension could be to use our main contribution, i.e. LI+OTH+EXTv2, to also answer richer
queries. One of these could be distance queries. We have only built an index that can answer these types of
queries, but we have not looked into the query algorithm for this. A solution to this problem could return an
exact distance or an approximation of that distance.

Another query could be to �nd a witness of a query (v; w; L), i.e. an actual path P that connects v and w.

Landmark indexing for scalable evaluation of label-constrained reachability queries 67



CHAPTER 7. CONCLUSION

A di�erent way to pick the landmarks is also still an open issue. One could choose to use some centrality
measure instead of the total degree.

The index construction time is still relatively high for the large datasets. It might not be possible to reduce
it further without paying some price in terms of memory or speed-up.

A good maintenance algorithm is still on the list. Addition of edges is still very costly. Removal of edges
might require adding some redundancy, e.g. storing some pairs (u; L0); (u; L) 2 Ind(v) for v 2 V s.t. L0 � L.

One could still look at the potential of making a multi-threaded version of LI. We did not have the time to
study this.

68 Landmark indexing for scalable evaluation of label-constrained reachability queries



Bibliography

[1] Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. Distance oracles in edge-labeled
graphs. In Proceedings of the International Conference on Extending Database Technology (EDBT), pages
547{548, Athens, 2014. 2, 3, 9, 35

[2] Minghan Chen, Yu Gu, Yubin Bao, and Ge Yu. Label and Distance-Constraint Reachability Queries in
Uncertain Graphs. Lecture Notes in Computer Science. Springer International Publishing, 2014. 5

[3] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries via 2-hop
labels. SIAM J Comput, 32(5):1338{1355, 2003. 7

[4] George Fletcher and Yuichi Yoshida. Notes on landmark labeling label-constrained reachability queries.
Unpublished, 2015. 8, 9, 14, 16

[5] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. Computing label-constraint reachab-
ility in graph databases. In ACM SIGMOD, pages 123{134, Indianapolis, 2010. 5

[6] Jrme Kunegis. Konect - the koblenz network collection. In Proc. Int. Conf. on World Wide Web Companion,
pages 1343{1350, Koblenz, 2013. 37

[7] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.

stanford.edu/data, June 2014. 37

[8] Jure Leskovec and Rok Sosi�c. SNAP: A general purpose network analysis and graph mining library in C++.
http://snap.stanford.edu/snap, June 2014. 37

[9] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast and scalable reachability queries on
graphs by pruned labeling with landmarks and paths. In ACM CIKM, pages 1601{1606, San Francisco,
2013. 3

[10] Je�rey Xu Yu and Jiefeng Cheng. Graph Reachability Queries: A Survey. Advances in Database Systems.
Springer US, 2010. 3, 7, 8

[11] Lei Zou, Kun Xu, Je�rey Xu Yu, Lei Chen, Yanghua Xiao, and Dongyan Zhao. E�cient processing of
label-constraint reachability queries in large graphs. Inf. Syst., 40:47{66, 2014. 2, 5, 9, 11, 14, 15, 20, 23

Landmark indexing for scalable evaluation of label-constrained reachability queries 69

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/snap

	Contents
	Introduction
	Problem motivation
	State of the art
	Contributions
	Thesis outline

	Problem statement
	Reachability in graphs
	Label-constrained reachability
	The problem
	Auxiliary definitions

	Literature analysis
	Reachability
	2-hop cover

	Label-constrained reachability
	Bonchi et al.


	Methods
	Existing methods

	Experimental design
	Datasets

	Experiments
	Introduction
	Part 1: small graphs (0 < |E| 5,000)

	Conclusion
	Future work

	Bibliography
	Appendix

