
 Eindhoven University of Technology

MASTER

Lower bounds for preprocessing algorithms based on protrusion replacement

Wulms, J.J.H.M.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

/ Department of
Mathematics and
Computer Science
/ Algorithms

Where innovation starts

Lower bounds for preprocessing
algorithms based on

protrusion replacement
Master Thesis

Jules Wulms

Committee:
Dr. Bart M. P. Jansen

Prof. Dr. Bettina Speckmann
Prof. Dr. Hans L. Bodlaender

Supervisor:
Dr. Bart M. P. Jansen

Eindhoven, Monday 4th July, 2016

0 Image on the front cover shows a planar 6-boundaried graph of treewidth at most 12, details in Chapter 6

Abstract

In general, a kernelization algorithm is an efficient preprocessing procedure that reduces the size
of the input to a difficult computational problem, without changing the answer. For optimization
problems, we know how much the size of an optimum solution changes by reducing the size
of the input using a kernelization algorithm. Garnero et al. [16] recently proposed a new kind
of kernelization algorithm for optimization problems on planar graphs: The algorithm reduces a
subgraph H of planar graph G, to a different subgraph H′ called a representative. Subgraphs H and
H′ are connected to the remainder of G by t vertices. This reduction is done for multiple of such
subgraphs in G, that are also connected to the remainder of G by t vertices.

The size of an optimum solution after reducing H to H′, can be inferred by only looking at
subgraph H and the representative H′: We say that subgraph H is equivalent to representative H′

if there is a constant c, such that the optimum solution of every graph G, that has H as a subgraph,
changes by exactly c, by replacing H by H′. Therefore, the proposed kernelization algorithm
reduces a subgraph H of G to an equivalent representative H′.

For the kernelization algorithm to be fast, one should be able to efficiently find a representative
H′ that is equivalent to a subgraph H in G. This is possible if subgraph H has bounded treewidth
or bounded pathwidth.

Let Rt be a set of these subgraphs called representatives. Garnero et al. showed that an upper
bound on the size of representatives in Rt is doubly-exponentially dependent on t, the number of
vertices with which these subgraphs are connected to the remainder of a graph. We propose lower
bounds for the size of these representatives, also dependent on t.

We give a lower bound of Ω(2t/
√

4t) on the number of vertices of a representative in such a
set Rt for INDEPENDENT SET. This bound holds for sets of planar representatives with bounded
treewidth/pathwidth. We also show that the equivalence relation that we explained before has
at least 22t/

√
4t equivalence classes for INDEPENDENT SET on general graphs. Furthermore, we

improve on the results of Garnero et al. by giving an upper bound of 22t−1 on the number of
equivalence classes for INDEPENDENT SET on general graphs. These bounds even hold for the
number of equivalence classes for planar subgraphs of bounded treewidth/pathwidth.

Lower bounds for protrusion replacement iii

Contents

Contents iv

1 Introduction 1

2 Preliminaries 5

3 Equivalence for Independent Set 8

4 Equivalence classes for general graphs 12

5 Equivalence classes for graphs of bounded treewidth 17

6 Equivalence classes for planar graphs of bounded treewidth 25

7 Size of a representative 36

8 Conclusions 39

Bibliography 41

iv Lower bounds for protrusion replacement

Chapter 1

Introduction

Preprocessing is a widely known technique that is often used, either to reduce data in a data
mining process [23], or to produce a kernel for an algorithmic problem. We are interested in the
latter, namely Kernelization algorithms. The goal of this thesis is to develop lower bounds on the
size of representatives, which are graph-theoretical objects used in a very general kernelization
framework called Meta kernelization.

Background We will not stay within the bounds on classical computational complexity but work
with techniques for (Fixed) Parameterized Complexity [11]. In contrast to classical complexity, in
parameterized complexity we do not only have a problem instance I of size n, but it is coupled
with a parameter k, resulting in a couple (I, k). We look into optimization problems where we
want to find out whether there is an optimum solution to problem Π that has size at least/at
most/exactly k. We want to find an algorithm for such a problem Π, that runs in f (k) · nc time,
where f (k) is any function of input parameter k and c a constant. This is especially interesting for
NP-hard problems, since these are not solvable in polynomial time. The parameterized version of
an NP-hard problem, however, might be solvable in f (k) · nc time for fixed k. We call problems
Fixed-Parameter Tractable, or say they are in complexity class FPT, if there exists such an algorithm.
The algorithms themselves are refered to as FPT algorithms.

Roughly speaking, a kernelization algorithm is an efficient preprocessing algorithm that re-
duces the size of the input to a problem Π. A kernelization algorithm gives a guarantee on the
size of the resulting preprocessed instance, which is expressed in terms of input parameter k to
measure the complexity of the instance. For concreteness, we mention the following well-known
example. An instance (G, k) of the VERTEX COVER problem asks whether there is a set S of k ver-
tices in graph G, such that every edge has at least one endpoint in S. While VERTEX COVER is an
NP-complete problem, there is a polynomial-time algorithm that reduces any input (G, k) to an
input (G′, k) with the same answer and guarantees that G′ has at most 2k vertices.

A more formal definition of kernelization has been given by Bodlaender et al. [2]:

Definition 1. A kernelization algorithm, or in short, a kernel for a parameterized problem Π ⊆
Σ∗ ×N is an algorithm that given (I, k) ∈ Σ∗ ×N, outputs in p(|I| + k) time a pair (I′, k′) ∈
Σ∗ ×N such that

• (I, k) ∈ Π⇔ (I′, k)′ ∈ Π,

Lower bounds for protrusion replacement 1

CHAPTER 1. INTRODUCTION

• |I′|, k′ ≤ g(k),

where g is an arbitrary computable function and p a polynomial. Any function g as above is
referred to as the size of the kernel.

A kernelization algorithm for a parameterized problem is said to produce a polynomial kernel
if g(k) is a polynomial function. If g(k) = O(k) we speak of a linear kernel. Assuming we have
a kernelization algorithm for a decidable problem Π, we can find an FPT algorithm to solve the
problem as follows: We can find a kernel (I′, k′) of size g(k) in p(|I| + k) time, which we can
brute force in f (g(k)) time for some arbitrary function f . Therefore we can solve the problem in
f (g(k)) + p(|I|+ k) time.

Kernelization is an active research area, for which Lokshtanov et al. [21] gave a nice overview.
A very important result by Alber et al. [1] is the discovery of a linear kernel for DOMINATING SET

on planar graphs. Downey and Fellows [11] proved that there is no FPT algorithm for DOMINAT-
ING SET on general graphs. The fact that a linear kernel for DOMINATING SET on planar graphs
was found, inspired other researchers to look for (linear) kernels on planar graphs. This led to
the discovery of linear kernels for a variety of problems, for example FEEDBACK VERTEX SET [4],
CYCLE PACKING [5], INDUCED MATCHING [18] and CONNECTED DOMINATING SET [22].

Guo and Niedermeier [17] also contributed in the discovery of linear kernels, but took it a step
further by proposing a framework to find linear kernels for NP-hard problems on planar graphs.
Their idea was to find a region decomposition of the planar graph, and reducing it using problem
specific reduction rules. This was generalized by Bodlaender et al. [3] to the meta kernelization
framework. They showed that for various NP-complete graph problems on planar graphs, there
exists a kernelization algorithm that reduces any instance (G, k) to an instance (G′, k′) with the
same answer, which has O(k) vertices. Note that they only proved that there exists such an al-
gorithm, no explicit algorithm was proposed, nor an analysis was given of the constants hidden
in the O(k) upper bound on the kernel size. The crucial difference from previous work is that
problem independent rules can now be used to find kernels, instead of having to find new rules
for every problem that kernelization is used on.

The concepts from meta kernelization that are important for this thesis are Boundaried graphs,
Protrusions and Finite Integer Index (FII). While not going into too much detail here, we can say
that t-boundaried graphs are subgraphs of a graph G, that are connected to the remainder of G
by a numbered set of t vertices, called the boundary. When we talk about t-protrusions, we mean
t-boundaried graphs, that have their treewidth bounded by t. This means that a protrusion can be
unbounded in size, but can still be efficiently reduced to an equivalent graph gadgets of constant
size, for problems that have the property FII. Roughly speaking, two t-boundaried graphs F and
H are equivalent for an optimization problem Π, if there exists a constant c, such that for every
instance of problem Π in which F occurs as a subgraph, replacing subgraph F by subgraph H
changes the optimal solution value by exactly c, regardless of what the rest of the graph looks like.

In meta kernelization we find a protrusion decomposition of O(k) protrusions in a graph G, and
replace all protrusions by equivalent graph gadgets of constant size, to get a kernel G′ of O(k) ver-
tices. This reduction via a protrusion decomposition only works efficiently for problems that have
FII and on graphs embeddable in a surface of bounded genus, for example graphs embeddable on
a sphere (genus 0/planar) or torus (genus 1). Refer to Chapter 2 for more elaborate definitions, or
to the paper by Bodlaender et al. [3] for full details on meta kernelization.

As we already pointed out, first it was only proved that meta kernelization existed [3], but
no algorithm was proposed to construct such kernels. This was due to the fact that no algorithm
was given to find the equivalent graph gadgets of constant size, which we will call Representa-

2 Lower bounds for protrusion replacement

tives. Fomin et al. [14] and Kim et al. [19] extended the initial meta kernelization results to other
graph classes, graphs excluding a fixed minor and graphs excluding a fixed topological minor
respectively. Follow-up work by Garnero et al. [16] shows how to construct a kernel using meta
kernelization, and established upper bounds on the size of the constants hidden in the bound on
the kernel size of O(k) vertices. The authors show how to find representatives in a structural way,
which also allows them to find an upper bound on the size of these representatives: Let Rt be a set
of representatives that have boundary size t, one for each equivalence class. The upper bound on
the size of a representative in Rt grows doubly-exponentially with t or in some cases even worse.

Problem setting The goal of this project is to find a lower bound on the number of vertices of a
representative in any set Rt. We propose a process to find this lower bound and go through all the
steps for the INDEPEDENT SET problem (IS), which looks for a maximum set of vertices of which
none are adjacent. In this way, we can compare the existing upper bounds for meta kernelization
on INDEPENDENT SET with our lower bounds, and see if our techniques look promising to find
lower bounds for other problems like DOMINATING SET.

Our results We first find a definition of equivalence that is tailored to INDEPENDENT SET on t-
boundaried graphs. For this definition we propose a nice representation of the equivalence classes,
in the form of monotone functions which we call t-representative functions. For every function f in
the set of t-representative functions Ft, we construct a general graph that is not equivalent to any
other graph we construct for a function f ′ ∈ Ft, that is distinct from f . This results in a tight
lower bound on the number of equivalence classes for general t-boundaried graphs, if we are able
to determine the size of Ft. The definition of equivalence for INDEPENDENT SET on t-boundaried
graphs via t-representative functions also allows us to prove an upper bound of 22t−1 distinct
equivalence classes, which improves on the upper bound given by Garnero et al. [16].

Since we are interested in the number of equivalence classes for protrusions, which have
bounded treewidth, we come up with a construction for t-boundaried graphs of treewidth at most
t + 2, to find a lower bound in the same way as for general graphs. We can do this construction
for the set of monotone Boolean functions that are not always zero. The number of distinct monotone

Boolean functions on t variables is counted by the t-th Dedekind number M(t) ≥ 2(
t

t/2) ≥ 22t/
√

4t. In
this way we find a lower bound of M(t)− 1 on the number of equivalence classes for t-boundaried
graphs of treewidth at most t + 2, since there is exactly one monotone Boolean function that is al-
ways zero.

For the results to be relevant for meta kernelization, they should apply to graphs of a more
restricted graph class: graphs embeddable in a surface of bounded genus. We extend our previous
result to planar graphs by showing that our t-boundaried graphs of treewidth at most t + 2 can be
planarized. The planar t-boundaried graphs that are the result of this planarization have treewidth
at most t + 6 and all M(t)− 1 graphs are still in different equivalence classes.

From the previous results we can conclude that any set of representatives Rt, that consists of
one representative for each equivalence class, has size at least M(t) − 1, if we consider planar
graphs only. We can now count how many distinct planar t-protrusions of size at most x there are,
and if there are less than M(t)− 1, we can conclude that there must be a representative in Rt that
has size x + 1. Using this counting argument, we prove that there is a representative in any set Rt
that has Ω(log M(t)) vertices.

Since the size of the representatives is a big factor in constants of the upper bounds for meta
kernelization, finding this lower bound on the size of these representatives is a meaningful result:

Lower bounds for protrusion replacement 3

CHAPTER 1. INTRODUCTION

It shows how much room for improvement there is for the (upper bound on the) kernel size that
was proposed by Garnero et al. [16]. On top of that, the result can stand on its own, since there are
other (preprocessing) algorithms [13, 12] that use protrusion replacement. Finding lower bounds
on the number of equivalence classes and the size of a representative can allow new results for
these applications as well. To our knowledge, there are no results present in literature of lower
bounds on the number of equivalence classes nor of lower bounds on the size of a representative.

Organization The thesis is structured as follows. In Chapter 2 we give preliminaries and defini-
tions that will be used throughout the other chapters. Chapter 3 works towards the definition of
equivalence for INDEPENDENT SET. In Chapter 4 we use the new definition of equivalence to find
a lower and upper bound on the number of equivalence classes for general t-boundaried graphs.
Chapter 5 proves a lower bound on the number of equivalence classes for t-boundaried graphs
of bounded treewidth, and these results are extended to planar t-boundaried graphs of bounded
treewidth in Chapter 6. Finally we use a counting argument in Chapter 7 to show that any set Rt
that represents all equivalence classes containing a planar graph of treewidth at most t + 6, must
contain at least one graph of size Ω(log M(t)).

4 Lower bounds for protrusion replacement

Chapter 2

Preliminaries

When we talk about a graph G = (V, E), we mean a simple graph, unless stated otherwise: G is
undirected, unweighted and has no self loops or multiple edges between any pair of vertices. The
set of vertices of G is V, while its edge set is E. We denote an edge between vertices u and v by the
unordered pair {u, v}. The intersection V′ ∩ G of a graph G = (V, E) and a vertex set V′ ⊆ V will
be used to indicate the set of vertices in the subgraph that is induced by V′. A Boolean function is a
function of the form f : {0, 1}n → {0, 1}. Sometimes we use functions whose input is dependent
on the subset S of ordered vertex set B = {v1, . . . , vn}. This corresponds to a function with {0, 1}n

as input by setting the i-th variable of the input to 1 if vi ∈ S, and otherwise setting the i-th variable
to 0. An optimum solution for problem Π on graph G will be denoted by OPTΠ(G).

Boundaried Graphs A t-boundaried graph is a graph G = (V, E) with an ordered vertex set
B = {v1, . . . , vt} for which holds that B ⊆ V. We call B the boundary of G. This definition of
boundaried graphs corresponds to the definition of Terminal graphs [10], instead of the definition
for boundaried graphs used by Bodlaender et al. [3].

If we have two t-boundaried graphs G and F, with boundaries BG = {a1, . . . , at} and BF =
{b1, . . . , bt} respectively, we can create graph G⊕ F, with boundary B = {v1, . . . , vt} by Gluing G
and F together. We get the new graph G⊕ F by taking the disjoint union of G and F and gluing the
boundaries of G and F onto each other: Every vertex vi ∈ B is created by identifying ai ∈ BG and
bi ∈ BF. This means that vi is connected to the same vertices as ai and bi are connected to in G and
F respectively. If there are multiple edges between a pair of vertices in G⊕ F that are introduced
by the glueing, then those are removed.

Meta Kernelization A couple of concepts that we introduced in the previous chapter can be
defined more formally. We will use most definitions as defined by Bodlaender et al. [3], with some
small adjustments.

Equivalence of boundaried graphs for graph problem Π is defined as follows. We say that t-
boundaried graphs G1, G2 are equivalent, G1 ≡Π G2, if and only if there exists transposition constant
c, such that for every pair of boundaried graph F and parameter k holds that

(G1 ⊕ F, k + c) ∈ Π⇔ (G2 ⊕ F, k) ∈ Π.

We can change this definition slightly to make it easier to use and understand: for optimization
problems, there is a maximum/minimum k for which (G1 ⊕ F, k) ∈ Π still holds. In that case

Lower bounds for protrusion replacement 5

CHAPTER 2. PRELIMINARIES

also (G2 ⊕ F, k + c) ∈ Π, will still hold. This means that k is the size of a optimum solution
for the problem instance (G1 ⊕ F, k) of this problem Π. More extreme values of k will result in
(G1⊕ F, k) 6∈ Π. This leads to an equivalent definition of equivalence where G1 ≡Π G2 if and only
if there exists constant c such that for all boundaried graphs F

OPTΠ(G1 ⊕ F) = OPTΠ(G2 ⊕ F) + c.

The definition for finite integer index that we are going to use was first introduced by Bodlaender
and van Antwerpen-de Fluiter [6, 10]: The equivalence relation ≡Π of t-boundaried graphs on
optimization problem Π has finite integer index when the number of equivalence classes is finite
for fixed boundary size t. The optimization problem for INDEPENDENT SET has finite integer index
[10].

A t-protrusion is a t-boundaried graph, which has its treewidth bounded by t. One can effi-
ciently solve problems on graphs of bounded treewidth, and one of those problems is finding and
replacing a t-protrusion in a graph G, by an equivalent graph gadget of constant size, for problems
that have FII [3].

Treewidth and Pathwidth We will denote the treewidth of a graph G by tw(G) and its pathwidth
by pw(G). The treewidth of a graph has many equivalent definitions and we will use the definition
by a tree decomposition. A tree decomposition for a graph G = (V, E) is a tree T consisting of sets
of vertices X1, . . . , Xn called bags, with the following properties.

•
⋃

1≤i≤n Xi = V

• The subgraph of T induced by all bags Xi in which a vertex v ∈ V occurs is a connected
tree. Equivalently, if v∈Xi and v ∈ Xj then all bags in the (unique) path between Xi and Xj
contain v.

• For every {u, v} ∈ E there is a bag Xi for which u, v ∈ Xi.

The width of a tree decomposition is the size of its largest bag minus one. The treewidth of
graph G tw(G) is defined as the minimum width of any tree decomposition for G.

The pathwidth of a graph can be defined in a similar way, via a path decomposition. The structure
build from the bags is now a path P, and the subgraph induced by all bags Xi that contain a vertex
v is a connected path. For every graph G holds that the pathwidth pw(G) is the minimum width
of any path decomposition for G. We know that tw(G) ≤ pw(G): This can be easily seen when
comparing tree and path decompositions. Every path decomposition is also a tree decomposition
but not the other way around. A bound on the treewidth of a graph G can therefore be proved by
looking at its pathwidth.

To show that a graph G has bounded pathwidth, we can use a Mixed Search Game [24]. When
doing a mixed search, we see graph G as a network of contaminated tunnels. Initially all edges
are contaminated and the goal is to clean all the edges using cleaners. The cleaners can reside
on vertices and slide along edges. When there is a cleaner on both endpoints of an edge, or a
cleaner slides along an edge, that edge will be cleaned. Clean edges will become contaminated
again if there is a path from a contaminated edge to a clean edge, with no cleaners on its vertices.
Takahashi et al. [24] showed that for ms(G), the minimum number of simultaneous searches that
are sufficient to clean graph G, holds that pw(G) ≤ ms(G) ≤ pw(G) + 1. In particular, this means
that for a graph G we know that pw(G) is at most the number of cleaners we need to execute any
strategy that wins the mixed search game on G.

6 Lower bounds for protrusion replacement

Miscellaneous For real x 6= 1 the following summation is a geometric series [9] and has the value

∑n
k=0 xk = xn+1−1

x−1 . We can then derive that

n

∑
k=m

xk =
n

∑
k=0

xk −
m−1

∑
k=0

xk =
xn+1 − 1

x− 1
− xm − 1

x− 1
=

xn+1 − xm

x− 1
=

x · xn − xm

x− 1
. (2.1)

Furthermore, we can use Stirling’s approximation to find a bound on certain binomial coefficients(
2n
n

)
≥ 22n−1
√

n
=

22n

2
√

n
=

4n
√

4n
.

This approximation can be used to find a more tangible representation of the Dedekind numbers:

M(t) ≥ 2(
t

bt/2c) ≥ 222bt/2c/
√

4bt/2c ≥ 22t/
√

4t.

Lower bounds for protrusion replacement 7

Chapter 3

Equivalence for Independent Set

As we have seen in Chapter 2, equivalence classes for boundaried graphs can be defined using
the size of an optimum solution on the boundaried graph, glued to any other boundaried graph.
In this chapter we find a new definition of equivalence classes, that expresses equivalence for
INDEPENDENT SET more precisely.

Before we can elaborate on the specialized definition of equivalence, we formalize when an
independent set is consistent with a set of vertices S:

Definition 2. Given a t-boundaried graph G with boundary vertices B = {v1, v2, . . . , vt}, we call
an independent set X for G consistent with set S ⊆ B if X ∩ B = S

We can define a function hG on such a set S ⊆ B for t-boundaried graph G, which gives the
size of the maximum independent set that is consistent with S:

Definition 3. The function hG on t-boundaried graph G is defined as

hG(S) := max{|X| | X is an independent set in G and X ∩ B = S}

This function has nice properties with respect to optimum solutions and the gluing operation
on boundaried graphs ⊕.

Lemma 1. For any t-boundaried graph G holds that

1. max
S⊆B

hG(S) = OPTIS(G)

2. hG(S) + hF(S)− |S| = hG⊕F(S)

3. max
S⊆B
{hG(S) + hF(S)− |S|} = OPTIS(G⊕ F)

Proof. Every property can be proved separately:

1. If we observe that an optimum solution is consistent with some S ⊆ B, then this follows
from Definition 3.

2. Gluing two t-boundaried graphs together unifies their boundaries. Therefore, the size of a
maximum independent set of a glued graph consistent with S ⊆ B, is equal to the sum of
maximum independent sets consistent with S of the graphs that are glued together minus
|S|, since the two boundaries are unified.

8 Lower bounds for protrusion replacement

3. Combining the previous two properties, we can derive a third property which interleaves
gluing and optimum solutions:
max
S⊆B
{hG(S) + hF(S)− |S|} = max

S⊆B
hG⊕F(S) = OPTIS(G⊕ F) �

We define another function fG on set S ⊆ B for t-boundaried graph G, which is closely related
to hG:

Definition 4. The function fG on t-boundaried graph G is defined as

fG(S) := max{|X| | X is an independent set in G and X ∩ B ⊆ S}

The relation between fG and hG is fG(S) = max
S′⊆S

hG(S). We will use fG to define equivalence

on boundaried graphs for independent set.

Lemma 2. Let G1, G2 be two t-boundaried graphs with boundary B, then G1 ≡IS G2 if and only if there
exists a constant c such that fG1(S) = fG2(S) + c for all S ⊆ B.

The remainder of this section will work towards proving Lemma 2. We will prove both sides
of the bi-implication separately. For one of the proofs we need a specific relation between fG and
the size of a maximum independent set under the gluing operation graphs, which we will prove
first.

Lemma 3. For all t-boundaried graphs G and F holds that

max
S⊆B
{ fG(S) + fF(S)− |S|} = OPTIS(G⊕ F).

Proof. We prove the equivalence by showing that both ≤ and ≥ hold for this relation:

(≥) Since fG(S) = max
S′⊆S

hG(S), we can conclude that fG(S) ≥ hG(S) for all t-boundaried graphs

G and S ⊆ B. Using this fact together with the third point of Lemma 1, we know that

max
S⊆B
{ fG(S) + fF(S)− |S|} ≥ max

S⊆B
{hG(S) + hF(S)− |S|} = OPTIS(G⊕ F).

(≤) We look at fG(S∗) + fF(S∗)− |S∗|, which uses a set S∗ ⊆ B, for which max
S⊆B
{ fG(S) + fF(S)−

|S|} is maximized. We are going to modify a solution XG for G of size fG(S∗) and a solution XF
for F of size fF(S∗), both consistent with a subset of S∗. Combining these modified solutions will
result in a valid solution for G⊕ F of size at least fG(S∗) + fF(S∗)− |S∗|.

The set XG is an independent set for G and XF is an independent set for F. This means that
they both can contain vertices in their boundaries. However, in G⊕ F these separate boundaries
are unified into a single boundary. As a result, we cannot directly conclude that there is a valid
independent set for G⊕ F of size fG(S∗) + fF(S∗).

We want to show that there is an independent set for G⊕ F of size at least fG(S∗) + fF(S∗)−
|S∗|, which means we can remove up to |S∗| vertices from XG and XF to find a valid solution for
G⊕ F.

Assume without loss of generality that V(G) ∩ V(H) = B (the only vertices common to both
graphs are those in the boundary). Therefore, to find an independent set for G ⊕ F, we need to
remove vertices from the boundaries of G and F, BG = XG ∩ B and BF = XF ∩ B respectively.
Since XG and XF are both consistent with a subset of S∗, we know that BG ∪ BF ⊆ |S∗|.

Lower bounds for protrusion replacement 9

CHAPTER 3. EQUIVALENCE FOR INDEPENDENT SET

We want to remove sets BG \ BF and BF \ BG, since combining XG and BF \ BG leads to a set
that is not an independent set for G ⊕ F. If it would be an independent set, then XG is not an
optimum: we can find a bigger solution for G by adding BF \ BG. Similarly, XF and BG \ BF cannot
be combined to find an independent set.

Consider the multiset X := XG ∪ XF, which contains the vertices of BG ∩ BF twice. Consider
the effect of removing from X one occurrence of each vertex in (BG \ BF) ∪ (BF \ BG) ∪ (BF ∩ BG).
Let X′ denote the result. Since the only vertices that can occur more than once in X are those in
BF ∩ BG, we have that no element occurs more than once in X′ and so it is a simple set. Since
BG ∩ BF was part of both XG and XF, we know that X′ is an independent set for G ⊕ F. We
removed BG \ BF, BF \ BG and BG ∩ BF, which combined are BG ∪ BF. We already established that
BG ∪ BF ⊆ S∗, so we removed at most |S∗| vertices from XG and XF to find an independent set for
G⊕ F of size at least fG(S∗) + fF(S∗)− |S∗|.

We had chosen S∗ in such a way that fG(S∗) + fF(S∗) − |S∗| was the maximum for
max
S⊆B
{ fG(S) + fF(S) − |S|}. This means that we can always find an independent set of size at

least max
S⊆B
{ fG(S) + fF(S)− |S|}. Since any independent set for G⊕ F is smaller or equal in size to

an optimum solution, we can conclude that max
S⊆B
{ fG(S) + fF(S)− |S|} ≤ OPTIS(G⊕ F). �

Now that we have proved Lemma 3, we can proceed with Lemmata 4 and 5, which both prove
one direction of Lemma 2.

Lemma 4. Let G1, G2 be two t-boundaried graphs with boundary B. If there exists a constant c such that
fG1(S) = fG2(S) + c for all S ⊆ B, then G1 ≡IS G2.

Proof. Take an arbitrary t-boundaried graph F and glue it to G1 to get G1⊕ F. Using Lemma 3 and
the assumption that fG1(S) = fG2(S)+ c for all S ⊆ B and some constant c, we show the following:

OPTIS(G1 ⊕ F) = max
S⊆B
{ fG1(S) + fF(S)− |S|}

= max
S⊆B
{ fG2(S) + c + fF(S)− |S|}

= max
S⊆B
{ fG2(S) + fF(S)− |S|}+ c

= OPTIS(G2 ⊕ F) + c

Since we have chosen F as an arbitrary t-boundaried graph, we can conclude that G1 ≡IS G2. �

Lemma 5. Let G1, G2 be two t-boundaried graphs with boundary B = {v1, v2, . . . , vt}. If G1 ≡IS G2,
then there exists a constant c such that fG1(S) = fG2(S) + c for all S ⊆ B.

Proof. To prove that there exists a constant c such that fG1(S) = fG2(S) + c for all S ⊆ B, we
will define t-boundaried graphs FS, which can be glued to any other t-boundaried graph G. By
establishing a relation between OPTIS(G⊕ FS) and fG(S) we can prove the lemma.

For S ⊆ B = {v1, v2, . . . , vt}we define the t-boundaried graph FS with boundary B as the result
of the following process: starting from an edgeless graph with vertex set B, for each vi 6∈ S add
ui, u′i and the edges {vi, ui} and {vi, u′i} to FS.

If we glue FS to any other t-boundaried graph G, an optimum independent set for G⊕ FS will
never include a vertex vi ∈ S, since we get a bigger independent set by taking ui and u′i instead of
vi. As a consequence, ui and u′i will always be included in an optimum solution, since vi will not.

10 Lower bounds for protrusion replacement

Subtracting the number of u vertices (which is equal to 2(t − |S|)) from OPTIS(G ⊕ FS) will
result in the size of a maximal independent set for G, that is consistent with S or a subset of S. This
is exactly the definition of fG(S), which means that:

fG(S) = OPTIS(G⊕ FS)− 2(t− |S|)

Using the above relation and the fact that there exists a constant c such that OPTIS(G1 ⊕ FS) =
OPTIS(G2 ⊕ FS) + c (by definition of equivalence), we can show for arbitrary S ⊆ B that:

fG1(S) = OPTIS(G1 ⊕ FS)− 2(t− |S|)
= OPTIS(G2 ⊕ FS) + c− 2(t− |S|)
= OPTIS(G2 ⊕ FS)− 2(t− |S|) + c

= fG2(S) + c

Since we have chosen S ⊆ B as an arbitrary subset of boundary B, we know that fG1(S) = fG2(S)+
c for all S ⊆ B. Note that this constant c is the same as the c for which equivalence G1 ≡IS G2 holds.
�

Combining Lemmata 4 and 5 proves Lemma 2.

Lower bounds for protrusion replacement 11

Chapter 4

Equivalence classes for general
graphs

Now that we have a definition for equivalence on t-boundaried graphs that is more tailored to
INDEPENDENT SET, we will use it to define general t-boundaried graphs that belong in a specific
equivalence class.

Lemma 2 has given us a way to define an equivalence class for a graph G using a function fG
from S ⊆ {v1, v2, . . . , vt} to a positive integer. Before we are looking into graphs, there are some
more properties of function fG that we are going to prove:

Lemma 6. Let G be a t-boundaried graph with boundary B. The function fG is a monotone function: For
sets S and S′, where S ⊂ S′ ⊆ B, holds that fG(S) ≤ fG(S′).

Proof. Let G be an arbitrary t-boundaried graph with boundary B, and let S and S′ be two sets
such that S ⊂ S′ ⊆ B. By Definition 4 fG(S) is the maximum of all independent sets X, such that
X∩ B ⊆ S. Since we assumed that S ⊂ S′, for each of those X also holds that X∩ B ⊆ S′. Therefore
the maximum of all independent sets X′ for which holds that X′ ∩ B ⊆ S′ is at least as big as fG(S),
hence fG(S′) ≥ fG(S). �

Lemma 7. Let G be a t-boundaried graphs with boundary B. For sets S and S′, where S ⊂ S′ ⊆ B and
|S|+ 1 = |S′|, holds that fG(S) + 1 ≥ fG(S′).

Proof. Let G be an arbitrary t-boundaried graph. Look at an independent set X for G that has size
fG(S′) and is consistent with set SX ⊆ S′, and consider the following case distinction:

• If X does not contain vertex v ∈ (S′ \ S), then SX ⊆ S. In this case fG(S) ≥ fG(S′), and hence
fG(S) = fG(S′) by Lemma 6.

• If X contains the vertex v ∈ (S′ \ S), then X′ = X \ {v} is also an independent set for G. By
construction of X′ and the fact that |S|+ 1 = |S′|, we know that X′ is consistent with a set
SX′ , for which holds that SX′ ⊆ S. This means that fG(S) + 1 ≥ fG(S′).

Hence, for every t-boundaried graph G, it holds that fG(S) + 1 ≥ fG(S′). �

12 Lower bounds for protrusion replacement

We know by Lemma 6 that every function fG is monotone, and Lemma 7 tells us that it can only
increase its function value by at most one, with respect to the value for a subset that is one smaller.
This restricts the number of functions, for which there can possibly be a different equivalence class.

If we have two t-boundaried graphs G1, G2 with boundary B and G1 ≡IS G2, we know that
there exists a constant c such that for every S, fG1(S) = fG2(S) + c. At S = ∅, fG1(S) = x, while
fG2(S) = x + c. For some S′ ⊃ S, the optimum solution for G1 might increase and fG1(S

′) = x + 1,
and for G2 we get fG2(S

′) = x + c + 1. However, this means that fG1(S) = fG2(S) for all S ⊆ B, if
fG1(∅) = fG2(∅).

We can look at equivalence classes from a different perspective, and see them as sets of func-
tions that are monotone and increase by at most one. We can take a particular function from each
set/equivalence class as its representative, by taking all functions that have the same value for
S = ∅.

Definition 5. We call a function f on a set S ⊆ B = {v1, v2, . . . , vt} a t-representative if it has the
following properties.

1. f (∅) = t

2. For sets S and S′, where S ⊂ S′ ⊆ B, holds that f (S) ≤ f (S′).

3. For sets S and S′, where S ⊂ S′ ⊆ B and |S|+ 1 = |S′|, holds that f (S) + 1 ≥ f (S′).

The second and the third property ensure that such a function f has the properties in Lem-
mata 6 and 7, while the first property ensures that this representative function outputs t for S = ∅.

Before we move on to defining those graphs, we first introduce the notion of false twins.

Definition 6. Given graph G = (V, E), we call two vertices v1, v2 ∈ V false twins if they have the
same open neighborhood N(v1) = N(v2).

We call an inclusion-wise maximal set of vertices which are pairwise all false twins a twin class.
Observe that being false twins is an equivalence relation, which means we can partition a graph
into twin classes. The following lemma proves an important property of twin classes with respect
to maximum independent sets.

Lemma 8. Given graph G = (V, E), twin class T ⊆ V and maximal independent set X, either T ⊆ X or
T ∩ X = ∅.

Proof. Assume we have such a maximal independent set X, for graph G. If there is a vertex t ∈ T
for which holds that t ∈ X then T ⊆ X, otherwise we can find a bigger independent set which
does include the vertices in set T \ X and X is not a maximal solution. On the other hand, there is
not necessarily a vertex t ∈ T such that t ∈ X, so in this case T ∩ X = ∅. �

Using t-representative functions and false twins, we can define a graph G that has a particular
function fG.

Lemma 9. For every t-representative function f , there exists a t-boundaried graph G with boundary B =
{v1, v2, . . . , vt}, such that fG(S) = f (S) for every S ⊆ B.

Proof. Assume we have an arbitrary t-representative function f . We construct a t-boundaried
graph G, and make sure that fG(S) = f (S) for every S ⊆ B, using the following process:

Starting from an edgeless graph with vertex set B, add a vertex ui for every vi ∈ B and add an
edge {ui, vi} for every 1 ≤ i ≤ t. For every S, where f (S) > t, we modify G in the following way:
add a vertex vS and add edges depending on whether S contains vi for 1 ≤ i ≤ t:

Lower bounds for protrusion replacement 13

CHAPTER 4. EQUIVALENCE CLASSES FOR GENERAL GRAPHS

• If vi ∈ S, add edge {ui, vS}.

• If vi /∈ S, add edge {vi, vS}.

When we have added all vertices vS, we add edges between every pair of them, creating a single
big clique. Figure 4.1a shows an example of a constructed graph.

vS

v1 u1

v2 u2

v3 u3

v4 u4

(a) Simple graph

vS twinsv1 u1

v2 u2

v3 u3

v4 u4

(b) Graph with false twins

Figure 4.1: Examples of constructed graph with boundary {v1, v2, v3, v4} and vS with S = {v2, v3}
(among other vertices)

The final part of the construction of our graph G adds false twins for the vertices in the big
clique. For every vertex vS we ensure there are f (S) − t false twins (including vS). Figure 4.1b
shows the previous example after false twins have been introduced.

We want to prove that for this graph G holds that fG(S) = f (S) for all S ⊆ B. We will do this
by showing that both ≤ and ≥ hold:

(≥) If we have a maximal independent set X for which holds that X∩ B = S and for every vi /∈ S
we have ui ∈ X, then by construction of G, vS ∈ X and by Lemma 8 all its false twins as well. Note
that vS and its twins are the only vertices that can be in an independent set together with this
combination of vi and ui. There are f (S)− t false twins and we have either vi ∈ X or ui ∈ X for
1 ≤ i ≤ t, thus we know that |X| = f (S). Since fG(S) is the maximum over all independent sets
that are consistent with S or a subset, we can conclude that fG(S) ≥ |X| = f (S)

(≤) To prove fG(S) ≤ f (S) for all S ⊆ B, we will use Definition 4 and show that for arbitrary
S ⊆ B and every independent set X where X ∩ B ⊆ S holds that |X| ≤ f (S). We split this in a case
distinction for X ∩ B = S and X ∩ B ⊂ S:

For arbitrary S ⊆ B, we look at an independent set X, with X ∩ B = S. As we have seen
before, if for every vi /∈ S we have ui ∈ X, then a maximal independent set has size at most f (S).
However, for this S′ ⊃ S we might have that ui /∈ X for every vi /∈ S′. In this case we can use vS′

and its false twins, for some S′ ⊃ S. Using point 3 in Definition 5 and applying transitivity we get
that f (S) + |S′ \ S| ≥ f (S′). This means there are at most f (S) + |S′ \ S| − t false twins for vS′ .
Observe that we do not have either vi ∈ X or ui ∈ X for 1 ≤ i ≤ t, since ui /∈ X for every vi /∈ S′,
resulting in t− |S′ \ S| vertices. This means that |X| ≤ f (S) + |S′ \ S| − t + t− |S′ \ S| = f (S).

14 Lower bounds for protrusion replacement

Now look at an independent set X with X ∩ B = S′ ⊂ S. Again, if for every vi /∈ S′ we have
ui ∈ X, then a maximal independent set |X| has size at most f (S′). Using point 2 in Definition 5,
we know that f (S′) ≤ f (S). If it is not the case that for every vi /∈ S′ we have ui ∈ X, we can repeat
the proof for the previous case to find out that |X| ≤ f (S′). In both cases we have that |X| ≤ f (S).

We can now conclude that for arbitrary t-representative function f , there exists a t-boundaried
graph G such that fG(S) = f (S) for all S ⊆ B. �

Lemma 9 shows us that we can define a graph for an arbitrary t-representative function f , such
that fG(S) = f (S) for all S ⊆ B. We call t-representative functions f1, f2 distinct if for some S ⊆ B
we have that f1(S) 6= f2(S). Therefore, if we look at the setF of distinct t-representative functions,
we have a function of each equivalence class, all of which we can construct a graph for. Hence we
can conclude that |F | is a tight lower bound on the number of equivalence classes for independent
set on general t-boundaried graphs.

The final part of this section focuses on determining the size of F . We are unable to find a
precise number for |F |, but we find a lower bound, and an upper bound, to show that the lower
bound has the same order of magnitude.

Remember that a Dedekind number counts the number of distinct monotone Boolean func-
tions, and thus M(t) is the number of distinct monotone Boolean functions on t Boolean inputs.

Lemma 10. For the set Ft of distinct t-representative functions holds that |Ft| ≥ M(t)− 1.

Proof. A function f ∈ Ft can be seen as a monotone function with t Boolean variables v1, v2, . . . , vt
as input. An input S for f corresponds to setting every vi ∈ S to 1 as explained in Chapter 2. A
subset of Ft is the set of functions whose output is also Boolean. We can see this if we map output
t to 0 and output t + 1 to 1. Note that for t = 0 and t = 1, this subset of Boolean functions is
actually the whole set F .

Consider the setM of all distinct monotone Boolean functions on t variables. For each function
g ∈ M that is not always 1, consider the function h(S) := g(S) + t. Then h(S) satisfies all prop-
erties of a t-representative function in Definition 5, so h ∈ Ft. Since there are M(t)− 1 monotone
Boolean functions that are not always 1, it follows that F ≥ M(t)− 1. �

This lower bound is also a lower bound on the number of equivalence classes for INDEPEN-
DENT SET on general t-boundaried graphs. The bound will be the basis for remaining work: We
now have a lower bound for general graphs, but in meta-kernelization we will only use equiv-
alence to find equivalent graph gadgets for boundaried graphs of bounded treewidth, that can
be embedded in a surface of bounded genus. Chapter 5 will elaborate on graphs with bounded
treewidth, while Chapter 6 extends this to planar bounded treewidth graphs.

We conclude this section with an upper bound for |Ft|, which directly is an upper bound on the
number of equivalence classes. The upper bounds is there to put the lower bound in perspective.

Lemma 11. For the set Ft of distinct t-representative functions holds that |Ft| ≤ 22t−1.

Proof. Consider the set Mt of monotone functions that start from f (∅) = t and every function
also has property p:

For all sets S ⊆ B holds that max
S∗⊂S
{ fG(S∗)}+ 1 ≥ fG(S)

This means that at every S ⊆ B, except S = ∅ the output can increase by one, or stay equal to a
smaller input. There are 2t − 1 distinct sets ∅ ⊂ S ⊆ B, where the output increases or stays equal.
This results in 22t−1 distinct functions.

Lower bounds for protrusion replacement 15

CHAPTER 4. EQUIVALENCE CLASSES FOR GENERAL GRAPHS

Since p is a weaker version of point 3 in Definition 5, we know that for every f ∈ Ft also holds
that f ∈ Mt. Since every f ∈ Ft maps to itself inMt, and Ft consists of distinct functions, we
can conclude that there are never more than 22t−1 distinct functions f ∈ Ft. Hence we know that
|Ft| ≤ 22t−1. �

16 Lower bounds for protrusion replacement

Chapter 5

Equivalence classes for graphs of
bounded treewidth

We defined a set of general t-boundaried graphs, of which no pair was equivalent, to find a lower
bound on the number of equivalence classes. This lower bound is not yet applicable for meta
kernelization, since meta kernelization is applied to graphs that can be embedded in a surface of
bounded genus, and the boundaried graphs we want to replace are protrusions, which means they
have bounded treewidth. In this section we will work towards a lower bound for t-boundaried
graphs of bounded treewidth.

The provable lower bound for the number of equivalence classes for general graphs was
M(t)− 1, as proved in Lemma 10. We will work towards this lower bound of M(t)− 1 for graphs
of bounded treewidth.

The graphs of bounded treewidth we use in this section are strongly based on a reduction
from BOOLEAN SATISFIABILITY (SAT) in Conjunctive Normal Form (CNF) to INDEPENDENT SET

developed by Lokshtanov et al. [20].
We construct a t-boundaried graph Gφ from a CNF formula φ. First we will explain how

parts of graph Gφ are constructed, and what useful properties they have. Then we look into the
construction and properties of Gφ itself.

Lemma 12. For any positive integer n there is a graph Gn containing terminal vertices v1, . . . , vn with the
following properties:

1. any independent set in Gn has size at most n + 2,

2. any independent set of size n + 2 in Gn contains at least one of the vertices {v1, . . . , vn},

3. for any i ∈ n, there is an independent set X of size n + 2 in Gn such that X ∩ {v1, . . . , vn} = {vi}.

Proof. Given such a positive integer n, we can construct Gn by starting from n disjoint triangles
{u1, v1, w1}, . . . , {un, vn, wn}. We connect the triangles with edges {wi, ui+1} for every 1 ≤ i < n,
and add vertices vstart, vend with edges {vstart, u1}, {wn, vend}. Figure 5.1a gives an overview of a
constructed graph Gn (with n = 3).

We can prove all of the above properties for such a graph Gn:

Lower bounds for protrusion replacement 17

CHAPTER 5. EQUIVALENCE CLASSES FOR GRAPHS OF BOUNDED TREEWIDTH

1. By construction Gn has n disjoint cliques, namely {ui, vi, wi} for every 1 ≤ i < n. From each
clique, only one vertex can be in an independent set. Besides these cliques, Gn has two other
vertices vstart, vend, which are not connected to each other and can therefore both be in an
independent set. From the previous observations follows that any independent set X in Gn
has size at most n + 2.

2. Assume we have an independent set X of size n + 2 for Gn, where vi /∈ X for 1 ≤ i ≤ i.
Observe that vstart, u1, w1, . . . , un, wn, vend forms a path of 2n + 2 vertices, and X only con-
tains vertices from this path. Any independent set on a path never contains two subsequent
vertices in the path, hence |X| ≤ n + 1, which leads to a contradiction. We can conclude that
an independent set of size n + 2 contains at least one of the vertices v1, . . . , vn.

3. For 1 ≤ i ≤ n, we can construct an independent set X of size n + 2 in Gn such that X ∩
{v1, . . . , vn} = {vi} as follows. Start from the independent set consisting of only {vi}, and
observe that both ui and wi cannot occur in the same independent set. We can look at vertices
vstart, u1, w1, . . . , ui−1, wi−1 and ui+1, wi+1, . . . , un, wn, vend as two disjoint paths. We can find
maximum independent sets Xl = {vstart, w1, . . . , wi−1} and Xr = {ui+1, . . . , un, vend} of size
i and n− i + 1 respectively for these two paths. Now X = Xl ∪ {vi} ∪ Xr is an independent
set for Gn and |X| = i + 1 + n− i + 1 = n + 2. �

The graph Gn in Lemma 12 can be used as a clause gadget, by connecting its terminal vertices to
parts of a bigger graph. The next lemma will show how we do this, in order to build t-boundaried
graph Gφ for monotone CNF formula φ. We call a CNF formula φ with t variables x1, . . . , xt mono-
tone when it only contains positive literals. Changing a variable xi from 0 to 1 can only change
φ(x1, . . . , xn) from 0 to 1, not the other way around.

vend

vstart

v3

v2

v1
u1

w1

u2

w2

u3

w3

(a) Graph G3 with
terminal vertices
v1, v2, v3.

vend

w3

w2

u2

u1

vstart

P1

Pt

w1

u3

v3

v2

v1

pt,1 pt,2 pt,3 pt,4 pt,2i−1 pt,2i pt,2m−1 pt,2m

(b) Graph Gφ with only clause gadget GCi drawn.

Figure 5.1: Graph G3 and construction of t-boundaried graph Gφ from a CNF formula φ, which
shows G3 used as clause gadget for clause Ci = (`1, `2, `3), where the literals corre-
spond to variables x1, x2, xt respectively.

18 Lower bounds for protrusion replacement

Lemma 13. For any monotone CNF formula φ with t variables x1, . . . , xt and m clauses C1, . . . , Cm, there
is a t-boundaried graph Gφ with boundary B = {p1,1, . . . , pt,1} with the following properties:

1. any independent set in Gφ has size at most mt + (∑1≤i≤m |Ci|+ 2),

2. fGφ
(B) = mt + (∑1≤i≤m |Ci|+ 2)

3. Assignment of values x1, . . . , xt ∈ {0, 1} ensures that φ(x1, . . . , xt) = 1 if and only if fGφ
({pi,1 |

xi = 1}) = fGφ
(B).

4. pw(Gφ) ≤ t + 2

Proof. Given a monotone CNF formula φ with t variables x1, . . . , xt and m clauses C1, . . . , Cm, we
are going to construct t-boundaried graph Gφ as follows. We start by creating t paths P1, . . . , Pt,
where every path Pa consists of 2m vertices pa,1, . . . , pa,2m. Note that we already have all the ver-
tices of the boundary now: B = {p1,1, . . . , pt,1}.

We denote a clause Ci with positive literals as (`1, . . . , `j), where each `a contains the index of
the corresponding variable x`a . Clause gadget GCi is created by using Lemma 12 with n = |Ci|. In
clause gadget GCi for every literal `a of Ci there is a terminal vertex va. We connect GCi to the paths
by adding an edge {va, p`a ,2i} for every terminal vertex va. Doing this for all m clauses results in
graph Gφ. Figure 5.1b shows an example of such a constructed graph.

Note that it is important that during this construction that Ci is sorted in such a way that
l|Ci | < . . . < l1, so that the edges that connect terminal vertices to the paths do not introduce edge
crossings among each other. We will use this property in Section 6.

For Gφ we can prove the properties mentioned above:

1. Observe that Gφ consists of t paths of 2m vertices and m clause gadgets. As we have men-
tioned before, any independent set on a path never contains two subsequent vertices in the
path, hence an independent set can contain at most m vertices in any of the t paths. By
Lemma 12 we know that clause gadget GCi has an independent set of at most |Ci| + 2. In
total this means we have an independent set of at most mt + (∑1≤i≤m |Ci|+ 2).

2. There is an independent set X of size mt + (∑1≤i≤m |Ci|+ 2), where |X ∩ GCj | = |Cj|+ 2 for
1 ≤ j ≤ m and |X ∩ Pi| = m for 1 ≤ i ≤ t: Assume X contains vertices pi,2k−1 for 1 ≤ k ≤ m
in every path Pi. Since all terminal vertices of clause gadget GCj are either connected to a
path Pi at vertex pi,2j or not connected to path Pi, we know that for every terminal vertex v
of GCj , X ∪ {v} is an independent set. Using property 3 of Lemma 12, we know that there
exists an independent set X, which has |X ∩GCj | = |Cj|+ 2 for 1 ≤ j ≤ m when |X ∩ Pi| = m
for 1 ≤ i ≤ t. Since this X contains vertices pi,2k−1 for 1 ≤ k ≤ m in every path Pi, hence we
can conclude that fGφ

(B) = mt + (∑1≤i≤m |Ci|+ 2).

3. We prove both sides of the bi-implication separately:

(⇒) Assume we have an assignment of variables x1, . . . , xt ∈ {0, 1} that ensures
φ(x1, . . . , xt) = 1. This means that every clause Cj has at least one positive literal `a for
which variable x`a becomes 1 by this assignment of variables. By property 3 of Lemma 12
we know that for every clause gadget GCj , we can find an independent set XCj of size |Cj|+ 2,
which contains exactly one terminal vertices. We are interested in the case where va ∈ XCj ,
corresponding to `a with x`a = 1.

Lower bounds for protrusion replacement 19

CHAPTER 5. EQUIVALENCE CLASSES FOR GRAPHS OF BOUNDED TREEWIDTH

Assume we have an independent set XPi of size m for every path Pi in Gφ, which contains
for 1 ≤ k ≤ m

• all vertices pi,2k−1 if xi = 1

• all vertices pi,2k if xi = 0

We know for every terminal vertices of clause gadget GCj that it is either connected to pi,2j
or not connected to a path Pi at all. Thus if va ∈ XCj because x`a = 1 then it is connected
to path P`a . This means that terminal vertex va is adjacent to p`a ,2j /∈ XPi , since p`a ,2j−1 ∈
XPi because x`a = 1. Hence X :=

⋃
1≤j≤m XCj ∪

⋃
1≤i≤t XPi is an independent set of size

mt + (∑1≤i≤m |Ci| + 2). Furthermore XPi only contains all vertices pi,2j−1 if xi = 1, so in
particular pi,1 ∈ XPi . Hence we can conclude that X ∩ B = {pi,1 | xi = 1}.
We now know that mt + (∑1≤i≤m |Ci|+ 2) = |X| ≤ fGφ

({pi,1 | xi = 1}). By Lemma 6 we
know that fGφ

({pi,1 | xi = 1}) ≤ fGφ
(B). However, property 2 of Lemma 13 tells us that

fGφ
(B) = mt + (∑1≤i≤m |Ci|+ 2). Hence fGφ

({pi,1 | xi = 1}) = fGφ
(B).

(⇐) Assume that for a particular set S ⊆ B holds that fGφ
(S) = fGφ

(B). By property 2
of Lemma 13 we can conclude that fGφ

(S) = mt + (∑1≤i≤m |Ci| + 2). Using Definition 4,
we know that there is an independent set X of size mt + (∑1≤i≤m |Ci|+ 2) for Gφ such that
X ∩ B ⊆ S.

The only way X can have size mt+(∑1≤i≤m |Ci|+ 2) is when |X∩GCj | = |Cj|+ 2 for 1 ≤ j ≤
m, as every path Pi of 2m vertices has |X ∩ Pi| ≤ m (and for X must hold that |X ∩ Pi| = m).
By property 2 of Lemma 12 we know that X contains at least one terminal vertex v of every
clause gadget GCi . Assume v ∈ X is a terminal vertex of GCj and has an edge to pi,2j. As
v ∈ X, it must be that pi,2j /∈ X. Since |X ∩ Pi| = m, we know that either pi,2k−1 ∈ X or
pi,2k ∈ X for 1 ≤ k ≤ m. We know that pi,2j /∈ X, therefore pi,2j−1 ∈ X, but then pi,2(j−1) /∈ X.
This pattern repeats itself for lower indices, so eventually we get pi,1 ∈ X.

In X there is at least one terminal vertex v ∈ X, which is connected to pi,2j, for every GCj , and
we have just seen that as a consequence pi,1 ∈ X. Since |X ∩ B| ⊆ S we can assign xi = 1 if
pi,1 ∈ S, and xi = 0 if pi,1 /∈ S and have at least one variable x`a = 1 in literal `a for every
Cj ∈ φ. As φ is a monotone CNF, we can conclude that φ(x1, . . . , xt) = 1.

4. We can prove a bound on the pathwidth of graph Gφ by using a mixed search game, as
explained in Chapter 2. We will first describe the mixed search strategy S, which we use to
clean Gφ. When the strategy is clear, we can argue why all edges are cleaned at the end of
the game and how many cleaners are sufficient to clean Gφ.

Observe that two cleaners are sufficient to clean an isolated clause gadget, by moving the first
cleaner from vstart to vend and putting the second cleaner on vertex vi when ui, wi are being
cleaned by the first cleaner. A single path Pi in Gφ can be cleaned by a single cleaner. The
strategy has to make sure that the edges from terminal vertices to the paths are also cleaned.
We do this in phases, where each phase deals with a single clause gadget and part of the
paths. We start phase i with the cleaner for path Pj at vertex pj,2i−1, for 1 ≤ j ≤ t. Every path
cleaner now moves to pj,2i. Now we clean clause gadget GCi as we just described. When the
clause gadget has been cleaned and the cleaners for the clause gadget have been removed,
we move every path cleaner to vertex pj,2(i+1)−1, which is the starting position for phase

20 Lower bounds for protrusion replacement

i + 1. Figure 5.2 shows the mixed search strategy for phase i. Mixed search strategy S starts
at phase 1 and ends after phase m.

vend

w3

w2

u2

u1

vstart

P1

Pt

w1

u3

v3

v2

v1

pt,1 pt,2i−1 pt,2i pt,2m

Figure 5.2: Mixed search strategy S for graph Gφ, where the paths are being cleaned by t cleaners,
and clause gadget GCi is cleaned by 2 cleaners.

Claim 1. Mixed search strategy S is a winning strategy for Gφ.

Proof. Observe that in phase i, isolated clause gadget GCi is cleaned by S. Throughout the m
phases of S, all t paths are cleaned. In phase i, the path cleaner for path Pj is located at vertex
pj,2i, when clause gadget GCi is cleaned. Since a terminal vertex of GCi is either connected
to path Pj at vertex pj,2i, or not at all, we know that all edges from terminal vertices of GCi
to the paths have been cleaned. Hence no recontamination of edges that are cleaned in
phases 1, . . . , i can take place in phase i. After m phases, Gφ is completely cleaned and no
recontamination has taken place. �

Claim 2. To execute mixed search strategy S it suffices to have t + 2 cleaners.

Proof. To clean the t paths in Gφ we use t cleaners, throughout all m phases. In every phase
i, we use two extra cleaners to clean clause gadget GCi and the edges connecting terminal
vertices to the paths. Hence it suffices to have t + 2 cleaners to execute S. �

By Claims 1 and 2 we can conclude that ms(Gφ) ≤ t + 2 and therefore pw(Gφ) ≤ t + 2 �

Lower bounds for protrusion replacement 21

CHAPTER 5. EQUIVALENCE CLASSES FOR GRAPHS OF BOUNDED TREEWIDTH

Lemma 13 proved that for a monotone CNF formula φ, there exists a t-boundaried graph
Gφ whose pathwidth is bounded by t + 2. Important is property 3: an assignment of values
x1, . . . , xt ∈ {0, 1} that ensures φ(x1, . . . , xt) = 1, Gφ corresponds to a maximum indepen-
dent set X of size mt + (∑1≤i≤m |Ci| + 2), with X ∩ B = {pi,1 | xi = 1}. We will later use
this fact to create graphs that are not equivalent to each other. Furthermore, we know that
tw(Gφ) ≤ pw(Gφ) ≤ t + 2.

The next Lemma we are going to prove will provide a way to connect our lower bound us-
ing monotone Boolean functions (Chapter 4), to the construction of t-boundaried graphs with
treewidth bounded by t + 2.

Lemma 14. Every monotone Boolean function f from {x1, x2, . . . , xn} to {0, 1} with f (1, . . . , 1) =
1 can be represented by a monotone CNF formula φ on the same variables, for which holds that
f (x1, x2, . . . , xn) = φ(x1, x2, . . . , xn) for all x1, . . . , xn ∈ {0, 1}.

Proof. Let f be a Boolean function on n variables x1, . . . , xn for which we are going to construct
a CNF formula. We start by looking at the truth table of f and find the set A of assignments
x1, . . . , xn ∈ {0, 1} such that f (x1, . . . , xn) = 0 and there is a maximal set of variables xi = 1.
Note that for such an assignment a ∈ A, setting a single variable xi from 0 to 1 will ensure that
f (x1, . . . , xn) = 1.

For every a ∈ A we get a formula by creating a conjunction of ¬xi for xi = 0 in a. This formula
now express that for a ∈ A, and any assignment with a superset of variables xi = 0 with respect to
a, holds that f (x1, . . . , xn) = 0. If we negate the whole conjunction, we can apply De Morgan (and
remove double negations) to get a clause Ca, which is a disjunction of positive literals. Clause Ca
expresses that for any assignment with a superset of variables xi = 1 with respect to a holds that
f (x1, . . . , xn) = 1. Finally we create a monotone CNF formula φ by taking the conjunction of all
created clauses Ca.

First consider the trivial assignment where every variable is 1. Since there are only positive
literals in φ, we know that φ(1, . . . , 1) = 1, and by assumption we have that f (1, . . . , 1) = 1. We
will now show for non-trivial assignments that f (x1, . . . , xn) = 1⇔ φ(x1, . . . , xn) = 1:

(⇒) Assume that we have a non-trivial assignment a∗ such that f (x1, . . . , xn) = 1. This means
that a∗ /∈ A, since for every a ∈ A holds that f (x1, . . . , xn) = 0. Therefore a∗ has a superset of
variables xi = 1 with respect to every assignment a ∈ A. By construction of the clauses of φ, we
can now conclude that for every clause Ca there is at least one variable that is set to 1, since Ca
expresses that for any assignment with a superset of variables xi = 1 with respect to a holds that
f (x1, . . . , xn) = 1. When every clause of φ has at least one variable that is 1, then φ(x1, . . . , xn) = 1.

(⇐) Assume we have a non-trivial assignment a∗ such that φ(x1, . . . , xn) = 1. Every clause
has at least one variable that is set to 1. This means that a∗ has a superset of variables xi = 1
with respect to every a ∈ A. Since we selected every a ∈ A as an assignment with a maximal
set of variables xi = 0 such that f (x1, . . . , xn) = 0, we can conclude that for a∗ holds that
f (x1, . . . , xn) = 1.

We have shown that given a monotone Boolean function f on t variables, we can construct a
monotone CNF formula φ, for which holds that f (x1, . . . , xn) = φ(x1, . . . , xn). �

Lemma 14 tells us that for a given monotone Boolean function f , we can find a monotone
CNF formula φ, which is satisfied if and only if f (x1, x2, . . . , xn) = 1. First we will prove how we

22 Lower bounds for protrusion replacement

construct t-boundaried graph G f with treewidth bounded by t + 2 for monotone Boolean function
f . When this relation between monotone functions and t-boundaried graphs is established, we
can use it to prove a lower bound on the number of equivalence classes for t-boundaried graphs
of bounded treewidth for independent set.

Lemma 15. For any monotone Boolean function f from {x1, . . . , xt} to {0, 1} with f (1, . . . , 1) = 1, there
exists a t-boundaried graph G f with boundary B = {p1,1, . . . , pn,1} with the following properties:

1. any independent set in G f has size at most mt + (∑1≤i≤m |Ci|+ 2),

2. fG f (B) = mt + (∑1≤i≤m |Ci|+ 2)

3. Assignment of values x1, . . . , xt ∈ {0, 1} ensures that f (x1, . . . , xt) = 1 if and only if fG f ({pi,1 |
xi = 1}) = fG f (B).

4. pw(G f) ≤ t + 2

Proof. Given such a monotone Boolean function f we use Lemma 14 to represent f as a monotone
CNF formula φ, where for all x1, . . . , xt ∈ {0, 1} holds that f (x1, . . . , xt) = φ(x1, . . . , xt). We can
now construct graph G f for monotone Boolean function f , by constructing Gφ using Lemma 13
with the monotone CNF formula φ that represents f . Since the properties in Lemma 15 are the
same properties as in Lemma 13, G f has all the desired properties. �

Lemma 15 shows us that for a specific monotone Boolean function f , constructed t-boundaried
graph G f has the property that an assignment of values x1, . . . , xt ∈ {0, 1} ensures that
φ(x1, . . . , xt) = 1 if and only if fG f ({pi,1 | xi = 1}) = fG f (B). We will use this properties to
prove that graphs G1, G2, which are constructed from distinct monotone Boolean functions f1, f2,
are not equivalent. We call monotone Boolean functions distinct if there is some assignment of
values to the variables such that f1(x1, x2, . . . , xt) 6= f2(x1, x2, . . . , xt).

Lemma 16. There are M(t)− 1 distinct monotone Boolean functions f with f (1, . . . , 1) = 1 for which
there are non-equivalent t-boundaried graphs G f with boundary B, with the property that an assignment of
values x1, . . . , xt ∈ {0, 1} ensures that f (x1, . . . , xt) = 1 if and only if fG f ({pi,1 | xi = 1}) = fG f (B).

Proof. Assume we have two distinct monotone Boolean functions f1, f2, for which holds that
f1(1, . . . , 1) = 1 and f2(1, . . . , 1) = 1. We construct t-boundaried graphs G1 and G2, for f1 and
f2 respectively, by using Lemma 15. We call the boundary of both graphs B.

Assume that G1 ≡IS G2, and observe that for every S ⊆ B holds that there is a constant c
such that fG1(S) = fG2(S) + c. We constructed G1 using Lemma 15, so it has the property that
f1(x1, . . . , xt) = 1 for an assignment of values x1, . . . , xt ∈ {0, 1} if and only if fG1({pi,1 | xi =
1}) = fG1(B). The same holds for G2.

Since fG1(S) = fG2(S) + c for every S ⊆ B, we can derive that for every assignment of values
where fG2({pi,1 | xi = 1}) = fG2(B), also fG1({pi,1 | xi = 1}) = fG1(B). This means that whenever
f1(x1, . . . , xt) = 1, also f2(x1, . . . , xt) = 1, which contradicts the fact that they are distinct functions.
Hence the assumption that G1 ≡IS G2 is incorrect.

Since there are M(t)− 1 distinct monotone Boolean functions f that have f (1, . . . , 1) = 1, we
can construct M(t)− 1 graphs of which none are equivalent. �

Lemma 16 allows us to prove a lower bound on the number of equivalence classes for INDE-
PENDENT SET on t-boundaried graphs of treewidth at most t + 2.

Lower bounds for protrusion replacement 23

CHAPTER 5. EQUIVALENCE CLASSES FOR GRAPHS OF BOUNDED TREEWIDTH

Lemma 17. There are at least M(t) − 1 equivalence classes for INDEPENDENT SET on t-boundaried
graphs of treewidth at most t + 2.

Proof. We use Lemma 16 to find M(t) − 1 distinct Boolean functions for which Lemma 15 can
construct a t-boundaried graph of treewidth t+ 2. Since none of the M(t)− 1 graphs are equivalent
according to Lemma 16, we have proved that there are at least M(t) − 1 equivalence classes for
INDEPENDENT SET on t-boundaried graphs of treewidth at most t + 2. �

24 Lower bounds for protrusion replacement

Chapter 6

Equivalence classes for planar graphs
of bounded treewidth

In the previous chapter we established a lower bound for t-boundaried graphs of bounded
treewidth, and in this chapter we are going to extend it to t-boundaried graphs of bounded
treewidth that can be embedded in a surface of bounded genus. In particular, we work towards
planar graphs, since planar graphs are embeddable in surfaces of genus zero.

We start from the graphs we have constructed in the previous section. We know there are
M(t)− 1 graphs of treewidth at most t + 2 of which none are equivalent. The only thing we have
to do is make them planar and ensure that property 3 of Lemma 15 still holds for the new graphs.
To transform the graphs of the previous section into planar graphs we will use a Crossover gadget
for VERTEX COVER (VC) from Garey et al. [15].

The optimization for vertex cover we are interested in is minimum vertex cover, since it is
inverse of maximum independent set: If we have a graph G = (V, E) for which we have found
minimum vertex cover C ⊆ V, then the set V \ C is a maximum independent set.

Crossover gadget G× is illustrated in Figure 6.1a. When two edges {a, b}, {c, d} cross, we can
create a graph where they no longer cross by removing these edges, and connecting the endpoint
to a copy of G× as follows: {a, v}, {v′, b}, {c, u}, {u′, d}. Garey et al. [15] show that the size of
minimum vertex cover C for G× is dependent on whether C contains the vertices v, v′, u and u′.
Since maximum independent set is the inverse problem, we can also find such a relation for maxi-
mum independent set. In Table 6.1b we show the size of the maximum independent set X for G×,
having defined i and j as

|{v, v′} ∩ X| = i |{u, u′} ∩ X| = j.

Lemma 18. For any monotone Boolean function f from {x1, . . . , xt} to {0, 1} with f (1, . . . , 1) = 1, there
exists a planar t-boundaried graph Gp

f with boundary B = {p1,1, . . . , pn,1} and N× crossover gadgets, with
the following properties:

1. any independent set in Gp
f has size at most mt + 9N× + (∑1≤i≤m |Ci|+ 2)

2. fGp
f
(B) = mt + 9N× + (∑1≤i≤m |Ci|+ 2)

3. pw(Gp
f) ≤ t + 6

Lower bounds for protrusion replacement 25

CHAPTER 6. EQUIVALENCE CLASSES FOR PLANAR GRAPHS OF BOUNDED TREEWIDTH

v v′

u

u′

(a) Crossover gadget G×

H
HHH

HHj
i

0 1 2

0 7 8 8
1 8 9 9
2 7 8 9

(b) Size of maximum IS

Figure 6.1: Crossover gadget for vertex cover from Garey et al. [15]

4. Assignment of values x1, . . . , xt ∈ {0, 1} ensures that f (x1, . . . , xt) = 1 if and only if fGp
f
({pi,1 |

xi = 1}) = fGp
f
(B).

We will show how to construct such a planar t-boundaried graph Gp
f for a monotone Boolean

function f . When the construction is clear, we will prove the properties in Lemma 18 separately.
Assume we have an arbitrary monotone Boolean function f from {0, 1}t to {0, 1} with

f (1, . . . , 1) = 1. We can use Lemma 15 to construct t-boundaried graph G f for monotone Boolean
function f . We can use G× to planarize t-boundaried graph G f : We have to resolve edge cross-
ings that occur when connecting clause gadgets to the t paths. We present a way to resolve all
crossings, for which we can later prove that the graph still has a (low) bounded treewidth and the
optimum solutions have nice properties.

Assume edge set ECj connects clause gadget GCj to the vertices pi,2j in paths Pi of G f . We can
limit the number of edge crossings by drawing G f in such a way that every edge e ∈ ECi can only
cross the edges between the vertices pi,2j−1 and pi,2j of path Pi and does not cross any other edge
e′ ∈ ECi . We already hinted at this property in Chapter 5, but to ensure that edges e, e′ ∈ ECi do
not cross, clause Ci is ordered in such a way that variables xi are sorted in the same way as paths
Pi in G f .

We construct Gp
f by replacing every edge crossing in G f caused by the edges in ECi by a

crossover gadget, which is oriented in such a way that v and v′ are connect along the paths of
Gp

f , while u and u′ are connected along the edges ECi . Figure 6.2 shows the result of this pla-

narization process, resulting in planar t-boundaried graph Gp
f . The crossover gadgets are drawn

as grey diamonds which only show vertices v, v′, u, u′. In the enlarged view the orientation of the
crossover gadget becomes visible.

First we will prove some properties about the size of Gp
f .

26 Lower bounds for protrusion replacement

P1

Pt

pt,2mpt,1 pt,2 pt,3 pt,4 pt,2i−1 pt,2i

GCi

u′

v

u

v′

pt,2m−1

Figure 6.2: Planar t-boundaried graph Gp
f , constructed for a monotone Boolean function f . Only

clause gadget GCi is drawn to show how the edge crossing caused by a single clause
gadget been resolved.

Claim 3. Any independent set in Gp
f has size at most mt + 9N× + (∑1≤i≤m |Ci|+ 2), where N× is the

number of crossover gadgets in Gp
f

Proof. By property 1 of Lemma 12 every clause gadget GCi has a maximum independent set of at
most |Ci|+ 2.

As we have seen in Table 6.1b, an independent set for a crossover gadget has size at most nine,
where at least one of the vertices {v, v′} and one of the vertices {u, u′}must be in the independent
set. Using this fact we know that only one of the vertices pi,2j−1 and pi,2j on path Pi can be in
an independent set for some 1 ≤ j ≤ m: Since we need at least one of the vertices {v, v′} in each
crossover gadget to get an independent set of size nine, they will either ensure that both pi,2j−1 and
pi,2j cannot be in an independent set if there is a crossover gadget in between them where both v
and v′ are in the independent. Conversely, one of pi,2j−1 and pi,2j is in a maximal independent set
if every crossover gadget in between them contain either v or v′. Since there are t paths where we

Lower bounds for protrusion replacement 27

CHAPTER 6. EQUIVALENCE CLASSES FOR PLANAR GRAPHS OF BOUNDED TREEWIDTH

have m pairs of such vertices pi,2j−1 and pi,2j, we know that any maximum independent set can
contain at most mt of these path vertices.

Any independent set can therefore contain at most mt + 9N× + (∑1≤i≤m |Ci|+ 2) vertices. �

Claim 4. For Gp
f holds that fGp

f
(B) = mt + 9N× + (∑1≤i≤m |Ci|+ 2).

Proof. By property 3 of Lemma 12, we can find an independent set XCi of size |Ci|+ 2 for every
clause gadget GCi . For every path Pj, we find an independent set Xj = {pj,2k−1 | 1 ≤ k ≤ m}.
For every crossover gadget we can find a maximum independent set X× for which holds that
u′, v′ ∈ X× and u, v /∈ X×.

Observe that, because u, v /∈ X×, X =
⋃

1≤i≤m XCi ∪
⋃

1≤j≤t XPj ∪
⋃

X× is an independent

set for Gp
f of size mt + 9N× + (∑1≤i≤m |Ci|+ 2), hence mt + 9N× + (∑1≤i≤m |Ci|+ 2) ≤ fGp

f
(B).

By Claim 3 we know that fGp
f
(B) ≤ mt + 9N× + (∑1≤i≤m |Ci| + 2), thus fGp

f
(B) = mt + 9N× +

(∑1≤i≤m |Ci|+ 2). �

Since planar t-boundaried graph Gp
f is significantly more complex than G f , we have to check

whether its treewidth is still bounded. Again we can use a mixed search game to bound the
pathwidth of Gp

f and using tw(Gp
f) ≤ pw(Gp

f) we find a bound on the treewidth. First we establish
a mixed game strategy to clean crossover gadgets.

Lemma 19. Crossover gadget G× with vertices v, v′, u, u′ and edge {u, w}, and a cleaner on vertex v and
on vertex w, can be cleaned by six cleaners. When G× has been cleaned, there is a cleaner on v′ and on u′.
Removing the two initial cleaners will not contaminate G×.

Proof. We will define a mixed search strategy S under the conditions in the lemma. For this strat-
egy S, we will show that the strategy cleans all edges in G× and that six cleaners suffice to carry
out the strategy.

Figure 6.3 shows strategy S for crossover gadget G×. The red tracks that are drawn show
how the cleaners slide through the gadget to clean it, but the order in which this happens will
be elaborated on: We start with a cleaner on vertex v, we introduce cleaners c1, c2, c3 and c4, after
which we can safely remove the cleaner at v. First cleaners c2, c3 move to their second positions.
Then cleaners c1, c4 can move to their second positions. At this point, we can remove the cleaner
from vertex w, since the edge {u, w} had cleaners on both endpoints. We introduce cleaners c5 and
c6, which can move to their third and second positions, respectively. Now cleaners c2, c3 move to
their third positions. Cleaner c5 can move to its forth and final position, and thereafter we can
remove cleaners c5 and c6. Cleaner c1 move to its final position, while a new cleaner is put on
the final position for c4, to prevent G× from being recontaminated by the edge that connects u′

to some vertex outside G×. Finally cleaners c2, c3 also move to their final position. To finish the
cleaning of G× we put a new cleaner on vertex v′ and remove cleaners c1, c2, c3, c4.

Claim 5. Mixed search strategy S cleans all edges of G× without allowing any recontamination and leaves
cleaners on u′ and v′

Proof. Observe that every edge e in G× at some point during S either has two cleaners at each of
its endpoints, or a cleaner slides over e. Only after cleaning {u, w}, we remove the cleaner on w to
prevent recontamination on other edges incident to w. To prevent recontamination within G× all
cleaners move in such a way that there is never a path in G× from v′ to v that does not go through
a vertex with a cleaner on it. Furthermore a cleaner is left behind at u′, since the edge incident to

28 Lower bounds for protrusion replacement

u

v′v

u′

c1

c2

c3

c4

c5

c6

Figure 6.3: Cleaners in a mixed search game for G×. The positions for each cleaner ci are numbered
from left to right.

u′ to a vertex outside G× might not be clean. When S is finished, there is a cleaner on u′ and v′, all
edges in G× are cleaned, and no recontamination has taken place. �

Claim 6. To execute mixed search strategy S it suffices to have 6 cleaners.

Proof. We start with 2 cleaners on v and w. Then we introduce four new cleaners, adding up to six
cleaners. We then remove the cleaner on v, and when c1 is on its second position, we also remove
the cleaner on w, reducing the number of cleaners to four. Cleaners c5 and c6 are introduced, but
are also the first to be removed again, which means we still have at most six cleaners. At this
point, a cleaner is left behind at u′ and a new cleaner is put on the last position of c4, which means
there are five cleaners. Finally a cleaner is put on v′, which means we again have six cleaners, after
which c1, c2, c3, c4 are removed and S is finished. As we have seen, six cleaners suffice to carry out
S. �

By Claims 5 and 6 we can conclude that mixed search strategy S fulfills all requirements of
Lemma 19. �

We will use the strategy in Lemma 19 to prove a bound on the pathwidth of a planar t-
boundaried graph Gp

f .

Claim 7. For planar t-boundaried graph Gp
f holds that pw(G) ≤ t + 6.

Proof. The mixed search strategy we are going to use to bound the pathwidth of planar t-
boundaried graph Gp

f follows the same structure as the strategy we used for property 4 of

Lower bounds for protrusion replacement 29

CHAPTER 6. EQUIVALENCE CLASSES FOR PLANAR GRAPHS OF BOUNDED TREEWIDTH

Lemma 13. However, this time we have to put in more work to get the cleaners through the
crossover gadgets.

To clean Gp
f we use a similar strategy S as for the non-planarized graphs: We start by putting a

cleaner at vertex pi,1 for every path Pi. We can clean the whole graph in m phases of the following
process. At the start of phase j, the cleaner on path Pi is at vertex pi,2j−1. Between vertices pi,2j−1
and pi,2j of each path, there can be crossover gadgets to connect clause gadget GCj to the paths. In
order for the path cleaner on path Pi to get to vertex pi,2j, we need to clean GCj simultaneously.

We will first look at how mixed search strategy S plays out for the whole graph Gp
f . Figure 6.4

will be used to illustrate different situations in phase j of the mixed search strategy. When we have
established strategy S, we will show that it actually cleans Gp

f without any recontamination, and
that t + 6 cleaners suffice to carry out S.

The start of phase j can be seen in Figure 6.4a: There is a cleaner on vertex pi,2j−1 for every
path Pi, and we put one cleaner on vertex vstart in the clause gadget GCi . The cleaner at vertex vstart
slides it to u1 and we introduce a cleaner at the first terminal vertex of GCi . Then the cleaner at u1
slides to w1. The cleaners in the t paths can now move along one edge of their path, so that the
cleaner on path Pi arrives at either vertex pi,2j, or vertex v of the first crossover gadget in path Pi.
Observe that for path P1 we can now clean the first crossover gadget using Lemma 19, since all the
conditions in the lemma have been met.

Looking at Figure 6.4b, we see situation during the cleaning of the crossover gadget, that occurs
right before the cleaner at the termial vertex of GCi will be removed. When the crossover gadget
has been cleaned using Lemma 19, the terminal vertex will no longer have a cleaner on it, and there
are cleaners on vertices u′ and v′. The cleaner that is placed on vertex v′ of the crossover gadget
will proceed along the path until it either reaches p1,2j or gets to vertex v of another crossover
gadget.

At this point, the first crossover gadget on path P2 can be cleaned by Lemma 19. Figure 6.4c
shows a situation that happens during this process, right before the cleaner that was left behind
on the previous crossover gadget is removed. We again end up with cleaners on vertex u′ and v′.
We can slide the cleaner on v′ to p2,2j or to vertex v of another crossover gadget.

Now the first crossover gadget on path P3 can be cleaned by Lemma 19. This pattern of cleaning
a crossover gadget in path Pi to enable a crossover gadget in path Pi+1 to be cleaned, repeats itself
until we reach a crossover gadget in a path Pi where u′ is connected to pi+1,2j. We now remove the
cleaner on u′ and arrive at the situation in Figure 6.4d.

We can now slide the cleaner on vertex w1 in GCi towards vertex v′ in GCi . At this point we can
distinguish two cases:

• If we do not reach v′, but vertex u2, we can introduce a new cleaner at the next terminal
vertex and slide the cleaner on u2 to w2. The process we described before, where crossover
gadgets can be cleaned by Lemma 19 until there is a cleaner on a vertex connected to pi,2j,
for some 1 ≤ i ≤ t, now repeats itself.

• If we reach vend, we can remove the cleaner from vend, and we are sure that the cleaner in
every path Pi has reached pi,2j. The cleaner in every path Pi can slide to vertex pi,2(j+1)−1,
and we arrive at the start of phase j + 1.

Mixed search strategy S consists of the phases 1 to m as described above. We can prove that S
cleans Gp

f without recontamination and it suffices to use t + 6 cleaners.

Claim 8. Mixed search strategy S cleans all edges of Gp
f without allowing any recontamination.

30 Lower bounds for protrusion replacement

Proof. Observe that phase j starts with a cleaner on every vertex pi,2j−1 for every path Pi, and the
edge between pi,2j−1 and pi,2(j−1) is clean. This means that if we clean all the vertices between
pi,2j−1 and pi,2j in phase j, without recontaminating the edge between pi,2j−1 and pi,2(j−1), then
after m phases, Gp

f is cleaned without allowing any recontamination.
During phase j of S, isolated clause gadget GCi is cleaned by sliding cleaner c1 from vstart to

vend, and putting cleaner c2 on the terminal vertex that is connected to ux and wx, when c1 arrives
at ux. By Lemma 19 we know that when c2 is removed, then GCi cannot be recontaminated via the
terminal vertex. In fact, we can only use Lemma 19 when c1 is on wx, since we can then ensure
that removing c2 will not contaminate the crossover gadget.

Path Pi is cleaned between vertices pi,2j−1 and pi,2j during phase j. We either slide the cleaner
on path Pi along a single edge of the path, or we use Lemma 19 to clean a crossover gadget along
the path. In both cases we clean part of the path and do not allow recontamination.

What is left are the edges going from some terminal vertex towards a vertex pi,2j. Since we
ordered the variables in clause Cj in the same way as the paths, the first crossover gadgets we
encounter going from were introduced to resolve crossings for the edge that goes to the vertex
px,2j with the highest index x for all the edges of that particular clause. The second crossover
gadget between pi,2j−1 and pi,2j, resolves crossings for the edge to py,2j with y being the second
highest index, and so on. This means that after we cannot apply Lemma 19 any more, we end up
with a cleaner on some vertex u′, and there is no uncleaned crossover on the next path left. At
the start of the phase, and after every application of Lemma 19 we move the cleaner on path Pi to
either vertex v of the next crossover gadget, or to pi,2j. Therefore there must be a cleaner on pi,2j,
which is the vertex u′ is connected to, which means we have also cleaned the whole path from
terminal vertex to pi,2j.

As we have seen, in phase j we can clean all the edges between pi,2j−1 and pi,2j, without allow-
ing any recontamination. This means that after m phases, Gp

f is fully cleaned and no recontamina-
tion has taken place. �

Claim 9. To execute mixed search strategy S it suffices to have t + 6 cleaners.

Proof. We start with t cleaners, having one cleaner on each path. We then place a single cleaner on
vstart, that will slide towards vend. If we reach vend, we have the cleaner in path Pi on vertex pi,2j,
which means this cleaner in the clause gadget will be used throughout a whole phase.

Finally there is a cleaner that we put on a terminal vertex. This cleaner will be removed by
Lemma 19, and at the end of that process be left behind on vertex u′ of the crossover gadget that
was being cleaned. Lemma 19 stated that it suffices to use six cleaners for cleaning a crossover
gadget, counting the cleaner on vertex v and the cleaner on the other end of the edge connected to
vertex u, and the cleaners we leave at vertices u′ and v′ of the crossover gadget.

This means that we use t cleaners on the paths and one cleaner in the clause gadget. During the
process of cleaning a crossover gadget we use at most six cleaner, and take one of the path cleaners
(the one on vertex v of the crossover gadget) and the cleaner that starts at a terminal vertex and is
left behind at u′ after every application of Lemma 19. In total there are t + 1+ 1+ 6− 2 cleaners in
play at the same time during mixed search strategy S. Hence it suffices to have t + 6 cleaners. �

By Claims 8 and 9 we can conclude that ms(Gp
f) ≤ t + 6 and therefore pw(Gp

f) ≤ t + 6 �

We know by Claim 7 that planar t-boundaried graph Gp
f still has a bounded treewidth, and this

bound is not much higher than for the non-planarized graph G f . Next we will prove that even for

Lower bounds for protrusion replacement 31

CHAPTER 6. EQUIVALENCE CLASSES FOR PLANAR GRAPHS OF BOUNDED TREEWIDTH

planar t-boundaried graph Gp
f the property 3 of Lemma 15 still holds.

Claim 10. For planar t-boundaried graph Gp
f with boundary B = {p1,1, . . . , pn,1} holds that an assign-

ment of values x1, . . . , xt ∈ {0, 1} ensures that f (x1, . . . , xt) = 1 if and only if fG f ({pi,1 | xi = 1}) =

fG f (B).

Proof. We prove both sides of the bi-implication separately:

(⇒) Assume we have an assignment of variables x1, . . . , xt ∈ {0, 1} that ensures f (x1, . . . , xt) =
1. We used Lemma 13 and 14 in the construction of Gp

f , so to construct Gp
f we used a monotone

CNF formula φ for which φ(x1, . . . , xt) = 1 if and only if f (x1, . . . , xt) = 1. This means that
every clause Cj ∈ φ has at least one positive literal `a for which variable x`a becomes 1 by this
assignment of variables. By property 3 of Lemma 12 we know that for every clause gadget GCj ,
we can find an independent set XCj of size |Cj|+ 2, which contains exactly one terminal vertices.
We are interested in the case where va ∈ XCj , corresponding to `a with x`a = 1.

Assume we have an independent set XPi of size m for every path Pi in Gp
f , which contains for

1 ≤ k ≤ m

• all vertices pi,2k−1 if xi = 1

• all vertices pi,2k if xi = 0

For the crossover gadgets we find independent sets as follows. We call the set of crossover gadgets
between pi,2k−1 and pi,2k a row. The set of crossover gadgets between a terminal vertex va and path
vertex p`a ,2k will be called a column. By Table 6.1b we know that there is an independent set of size
nine for every crossover gadget X× in the column of terminal vertex va ∈ GCj and row between
pi,2k−1 and pi,2k such that:

• u′ ∈ X× and u /∈ X× if va ∈ XCj , and u ∈ X× and u′ /∈ X× otherwise;

• v′ ∈ X× and v /∈ X× if pi,2k−1 ∈ XPi , and v ∈ X× and v′ /∈ X× if pi,2k ∈ XPi

We know all terminal vertices of clause gadget GCj are either connected to path vertex pi,2j by
a column of crossover gadgets or not connected to a path Pi at all. If for la the variable x`a = 1,
then va ∈ XCi is connected to vertex p`a ,2j of path P`a by a column of crossover gadgets. Since
x`a = 1, we know that p`a ,2j /∈ XP`a

, and because terminal vertex va ∈ XCi we have u′ ∈ X× and
u /∈ X× for all crossover gadgets in that column. Hence X :=

⋃
1≤j≤m XCj ∪

⋃
1≤i≤t XPi ∪

⋃
X× is an

independent set of size mt + 9N× + (∑1≤i≤m |Ci|+ 2). Furthermore XPi only contains all vertices
pi,2j−1 if xi = 1, so in particular pi,1 ∈ XPi . Hence we can conclude that X ∩ B = {pi,1 | xi = 1}.

We now know that mt + 9N× + (∑1≤i≤m |Ci|+ 2) = |X| ≤ fGp
f
({pi,1 | xi = 1}). By Lemma 6

we know that fGp
f
({pi,1 | xi = 1}) ≤ fGp

f
(B). However, Claim 3 tells us that any independent set

for Gp
f has size at most mt+ 9N×+(∑1≤i≤m |Ci|+ 2) thus fGp

f
(B) ≤ mt+ 9N×+(∑1≤i≤m |Ci|+ 2).

Hence fGp
f
({pi,1 | xi = 1}) = fGp

f
(B).

32 Lower bounds for protrusion replacement

(⇐) Assume that for a particular set S ⊆ B holds that fGp
f
(S) = fGp

f
(B). By Claim 4 we can

conclude that fGp
f
(S) = mt + 9N× + (∑1≤i≤m |Ci|+ 2). Using Definition 4, we know that there is

an independent set X of size mt + 9N× + (∑1≤i≤m |Ci|+ 2) for Gp
f such that X ∩ B ⊆ S.

The only way X can have size mt + 9N× + (∑1≤i≤m |Ci|+ 2) is when |X ∩ GCj | = |Cj|+ 2 for
1 ≤ j ≤ m, since |X ∩ G×| ≤ 9 for all crossover gadgets G× and |X ∩ Pi| ≤ m for 1 ≤ i ≤ t. By
property 2 of Lemma 12 we know that X contains at least one terminal vertex v of every clause
gadget GCi . We can now prove the following claim.

Claim 11. If clause gadget GCi has a terminal vertex v ∈ X connected to pi,2j by a column of crossover
gadgets, then pi,1 ∈ X.

Proof. Since X has size mt + 9N× + (∑1≤i≤m |Ci|+ 2) and for every clause gadget |Ci| holds that
|X ∩ GCj | = |Cj|+ 2, we know that mt + 9N× vertices of X are located in the paths and crossover
gadgets. There are two ways in which this can happen:

• For every crossover gadget G× we have |X ∩ G×| = 9. In this case, for every path Pi, we
know that |X ∩ Pi| = m. This means that for every crossover gadget in the column that
connects terminal vertex v to pi,2j, it must be that X contains u′, and thus pi,2j /∈ X. For every
crossover gadget G× on Pi holds |X ∩ G×| = 9, hence X ∩ G× contains either v or v′ but not
both, as |X ∩ Pi| = m. Since pi,2j /∈ X, the crossover gadgets between pi,2j−1 and pi,2j all have
v′ ∈ X, thus pi,2j−1 ∈ X otherwise |X ∩ Pi| < m. We also know that pi,2j−1 has an edge to
pi,2(j−1), so pi,2(j−1) /∈ X. This continues in this way, and so every pi,2k−1 ∈ X for 1 ≤ k ≤ j,
so in particular pi,1 ∈ X.

• There is a crossover gadget G× for which |X ∩ G×| < 9, which means there is a path Pa for
which |X ∩ Pa| > m. The only way that Pa can have |X ∩ Pa| > m is when pa,2k−1 ∈ X and
pa,2k ∈ X for some 1 ≤ k ≤ m, since there is an edge between every pa,2k and pa,2(k+1)−1.
As a consequence, crossover gadget G× must be between pa,2k−1 ∈ X and pa,2k ∈ X and
has v, v′ /∈ X, resulting in |X ∩ G×| < 9. Observe that we need that pa,2(k−1) /∈ X and
pa,2(k+1)−1 /∈ X, otherwise X is not an independent set. To ensure that |X ∩ Pa| > m, this
situation where pa,2k−1, pa,2k ∈ X and pa,2(k−1), pa,2(k+1)−1 /∈ X can only occur once in path
Pi. Since in our case pi,2j /∈ X, such a construction can only happen for a j′ > j. Therefore we
know that pi,2j−1 ∈ X. Again every pi,2k−1 ∈ X for 1 ≤ k ≤ j, so in particular pi,1 ∈ X. �

We used Lemma 13 and 14 to construct Gp
f , so there is a monotone CNF φ for which

φ(x1, . . . , xt) = 1 ⇔ f (x1, . . . , xt) = 1, that we used during this construction. In X there is at
least one terminal vertex va ∈ X, connected to p`a ,2j by a column of crossover gadgets, for every
GCj , and by Claim 11 we know p`a ,1 ∈ X is a consequence of this. Since |X ∩ B| ⊆ S, we can assign
xi = 1 if pi,1 ∈ S, and xi = 0 if pi,1 /∈ S and have at least one variable x`a = 1 for every Cj ∈ φ

that was used to construct Gp
f . As φ is a monotone CNF formula, this assignment ensures that that

φ(x1, . . . , xt) = 1 and therefore also f (x1, . . . , xt) = 1. �

Claims 3, 4, 7 and 10 combined prove Lemma 18. Using Lemma 18 we can now prove a lower
bound on the number of equivalence classes for INDEPENDENT SET on planar t-boundaried graphs
of treewidth at most t + 6. The lower bound is the same bound as we had for t-boundaried graphs
of treewidth at most t + 2.

Lower bounds for protrusion replacement 33

CHAPTER 6. EQUIVALENCE CLASSES FOR PLANAR GRAPHS OF BOUNDED TREEWIDTH

Lemma 20. There are at least M(t) − 1 equivalence classes for independent set on planar t-boundaried
graphs of treewidth at most t + 6.

Proof. We use Lemma 16 to find M(t) − 1 distinct Boolean functions for which Lemma 18 can
construct a planar t-boundaried graph of treewidth at most t + 6. Since none of the M(t) − 1
graphs are equivalent by Lemma 16, we have proved that there are at least M(t)− 1 equivalence
classes for INDEPENDENT SET on planar t-boundaried graphs of treewidth at most t + 6. �

34 Lower bounds for protrusion replacement

P1

Pt

pt,2j−1 pt,2j

GCj

vstart

w1
u1

(a) Placement of cleaners at start of
phase j

P1

Pt

pt,2j−1 pt,2j

GCj

vstart

w1
u′

v

u

v′

(b) Cleaning first crossover gadget of first column

P1

Pt

pt,2j−1 pt,2j

u′

v

u

v′

GCj

vstart

w1

(c) Cleaning second crossover gadget of first column

P1

Pt

pt,2j−1 pt,2j

GCj

vstart

u2

vend

w1

(d) Cleaners after cleaning first col-
umn

Figure 6.4: Phase j of a mixed search strategy for Gp
f

Lower bounds for protrusion replacement 35

Chapter 7

Size of a representative

In the previous chapter we investigated the equivalence classes for INDEPENDENT SET on t-
boundaried graphs. For different types of graphs we proposed lower bounds on the number
of equivalence classes. We will now use these results to derive a lower bound on the size of a
representative for planar t-boundaried graphs of bounded treewidth.

Let Rt be a set of planar t-boundaried graphs of treewidth at most t+ 6, such that for any planar
t-boundaried graph H of treewidth at most t + 6, there is some graph in Rt that is equivalent to H.
This set Rt contains a representative for every equivalence class.

Lemma 21. Every set of representatives Rt for INDEPENDENT SET, such that for any planar t-boundaried
graph H of treewidth at most t + 6 there is a planar t-boundaried graph HR ∈ R with H ≡IS HR, contains
a graph with Ω(log M(t)) vertices.

Proof. Observe that for every equivalence class there is a distinct graph in Rt. To prove a lower
bound on the size of one of these representatives, we can count how many distinct small planar
t-boundaried graphs of treewidth at most t + 6 there are: Remember that the bound we derived
on the number of equivalence classes for planar t-boundaried graphs of bounded treewidth in
Lemma 20 is M(t) − 1. If there are less than M(t) − 1 graphs of size at most x, then there is a
representative of size at least x + 1. This means that, to prove the statement in the lemma, we have
to show that there are constants c, t0, such that for every t ≥ t0 holds that

c log M(t)

∑
n=t

N(n) < M(t)− 1.

We count N(n), which is the number of distinct planar t-boundaried graphs of treewidth at
most t+ 6 with n vertices. We show that the number of graphs of size between n = t and c log M(t)
does not add up to at least one graph for each of the M(t)− 1 equivalence classes.

To find an upper bound on ∑
c log M(t)
n=t N(n), we split it into two separate sums:

t2−1

∑
n=t

N(t) +
c log M(t)

∑
n=t2

N(t)

There are at most 31n unlabeled planar graphs of size n, according to Bonichon et al. [7].
However we want to count graphs that have a labeled boundary of t vertices, and there are less

36 Lower bounds for protrusion replacement

than 31nnt different planar graphs with a labeled boundary of t vertices. We use N(t) ≤ 31nnt,
since this overestimates the number of distinct planar t-boundaried graphs. However, for the
smaller graphs we substitute N(t) for the upper bound on the number of labeled graphs 2n(n−1)/2.
This bound is easier to work with, although it is an even bigger overestimation.

c log M(t)

∑
n=t

N(n) <
t2−1

∑
n=t

2n(n−1)/2 +
c log M(t)

∑
n=t2

31nnt (7.1)

We chose to split at n = t2, since we can prove that nt ≤ 2n, which in return allows us to simplify
the sum for the bigger graphs.

Claim 12. For every t ≥ 4 and t2 ≤ n ≤ 2t, the inequality nt ≤ 2n holds.

Proof. By substituting n = t2 in nt ≤ 2n, we get t2t ≤ 2t2
, for which we can show the following

(t2)t ≤ 2t2

2log t2∗t ≤ 2t2
a = 2log a

log t2 ∗ t ≤ t2 log of both sides

log t2 ≤ t division by t

2 log t ≤ t

2t/2 ≤ t log t ≤ t/2 for t ≥ 4

Similarly by substituting n = 2t, we get (2t)t = 2t2
�

Using Claim 12 we simplify the second sum in Inequality 7.1 as follows.

c log M(t)

∑
n=t2

31nnt <
c log M(t)

∑
n=t2

31n2n =
c log M(t)

∑
n=t2

62n. (7.2)

Finally we can use the sum of a geometric series shown in Chapter 2 to find an upper bound on

Inequality 7.1 and with that a bound on ∑
c log M(t)
n=t N(n).

c log M(t)

∑
n=t

N(n) <
t2−1

∑
n=t

2n(n−1)/2 +
c log M(t)

∑
n=t2

31nnt Inequality 7.1

<
t2−1

∑
n=t

2n(n−1)/2 +
c log M(t)

∑
n=t2

62n Inequality 7.2

= 2 · 2(t2−1)(t2−2)/2 − 2t(t−1)/2 +
c log M(t)

∑
n=t2

62n Equation 2.1

= 2 · 2(t2−1)(t2−2)/2 − 2t(t−1)/2 +
62 · 62c log M(t) − 62t2

61
Equation 2.1

= 2 · 2(t2−1)(t2−2)/2 − 2t(t−1)/2 +
62
61
· (62c)log M(t) − 62t2

61

= 2 · 2(t2−1)(t2−2)/2 − 2t(t−1)/2 +
62
61
· (3/2)log M(t) − 62t2

61
Choose c =

log (3/2)
log 62

Lower bounds for protrusion replacement 37

CHAPTER 7. SIZE OF A REPRESENTATIVE

One can check that for t ≥ t0 = 19 holds that

2 · 2(t4−3∗t2+2)/2 − 2t(t−1)/2 +
62
61
· (3/2)log M(t) − 62t2

61
< 2log M(t) − 1 = M(t)− 1.

We have now found constants c =
log (3/2)

log 62 and t0 = 19, hence Ω(log M(t)) is a lower bound on
the size of a representative in the set Rt of representatives for INDEPENDENT SET, such that for
any planar t-boundaried graph H of treewidth at most t + 6 there is a planar t-boundaried graph
HR ∈ R with H ≡IS HR. �

Using Stirling’s approximation that we showed in Chapter 2 we can simplify the bound on the
number of vertices of a representative to Ω(log M(t)) ≥ Ω(2t/

√
4t).

38 Lower bounds for protrusion replacement

Chapter 8

Conclusions

We have presented a new way to find lower bounds on a representative in the set of represen-
tatives Rt, by counting equivalence classes: We successfully find lower bounds on the number
of equivalence classes for INDEPENDENT SET on many types of graphs. Then we apply a count-
ing argument to find a lower bound on the size of a representative. This counting argument can
be applied to any problem for which we can find a lower bound on the number of equivalence
classes and an upper bound on the number of distinct t-protrusions in a certain graph class. It
would be very interesting to see if we can find similar results for DOMINATING SET as we did for
INDEPENDENT SET. For VERTEX COVER, the complement of INDEPENDENT SET, there are already
good results for the running time of a kernelization algorithm and the kernel size [8], so results
via meta kernelization will not improve on them. On the other hand, finding new bounds for
DOMINATING SET by using protrusion replacement or meta kernelization, can lead to new results
for specific graph classes.

We expect the same lower bounds for DOMINATING SET as we presented for INDEPENDENT

SET. When solving DOMINATING SET, we look for a set of vertices such that every vertex in a
graph is either in the set or has an edge to a vertex in the set. There is a reduction from VERTEX

COVER to DOMINATING SET, that for every edge {u, v} introduces two new vertices and connects
them both to u and v by an edge. The new vertices can be dominated by taking either u or v in
the dominating set, which corresponds to a vertex cover on the initial graph, where we want at
least one endpoint of each edge in the vertex cover. We can apply this reduction on our planar
t-boundaried graphs of bounded pathwidth, while keeping the graph planar and increasing the
pathwidth by at most one. This indicates that we can probably find just as many equivalence
classes for DOMINATING SET on these graphs. We should however check if these new boundaried
graphs are all still in different equivalence classes.

Going through the same steps for DOMINATING SET, as we did in this thesis for INDEPENDENT

SET, will probably result in better lower bounds. An indication for this is the lower bound by
Lokshtanov et al. [20] for DOMINATING SET based on SETH. This exponential lower bound has
a base of 3, while the exponential lower bound for INDEPENDENT SET has a base of 2. The paper
by Lokshtanov et al. [20] is also a good starting point in the search for bounded treewidth graph
gadgets for DOMINATING SET: It shows a reduction from CNF Satisfiability to DOMINATING SET,
which results in bounded pathwidth graphs. However, choosing the boundary naively in these
graphs will result in a bound on the pathwidth that is exponential in the boundary size.

In this thesis we also propose an upper and lower bound on the number of equivalence classes

Lower bounds for protrusion replacement 39

CHAPTER 8. CONCLUSIONS

for INDEPENDENT SET on general t-boundaried graphs. The bounds are 22t−1 and M(t) − 1 re-
spectively. We can find a pair of matching bounds if t-representative functions can be counted
precisely, in the same way as Dedekind numbers count the number of monotone Boolean func-
tions. Note that the upper bound of 22t−1 is already an improvement on the bound of (t + 1)2t

which can be found by following the approach by Garnero et al. [16].
Since we have found an upper bound of 22t−1 equivalence classes for general t-boundaried

graphs, we know that our lower bound of M(t)− 1 for t-boundaried graphs of treewidth at most
t + 2 and planar t-boundaried graphs of treewidth at most t + 6, is already very close to the upper
bound: 22t/

√
4t ≤ M(t)− 1 ≤ 22t−1. These results for t-protrusions of bounded treewidth actually

also hold for t-protrusions of bounded pathwidth, since we proved the treewidth bounds using
mixed search games.

The bound of Ω(log M(t)) ≥ Ω(2t/
√

4t) on the number of vertices in a representative for
INDEPENDENT SET on planar t-boundaried graphs of treewidth at most t + 6 is less tight. The

existing upper bound that can be inferred by following Garnero et al. [16] is 2(t+1)2t
. This bound

is found by dynamic programming on a (binary/nice) tree decomposition: If one can find a tree
decomposition, one can also find a tree decomposition that is a binary tree. The main idea behind
the dynamic programming bound is that in every path from the root of the tree decomposition to
a leaf, a representative of a particular equivalence class can only occur once. Since they proved

an upper bound of (t + 1)2t
on the number of equivalence classes, there can be 2(t+1)2t

paths from
root to leaf in a binary tree decomposition, in which no representative occurs twice. Even though

we improved this upper bound to 222t−1
, by improving the bound on the number of equivalence

classes, it is still far off our lower bound of Ω(2t/
√

4t).
Deriving a similar upper bound for planar boundaried graphs of bounded pathwidth using

path decompositions leads to an upper bound of 22t−1, since a representative for a particular
equivalence class can only occur once on the path of the path decomposition. This upper bound is
already a lot closer to our lower bound, which is also an indication that there might still be room
for improvement when it comes to the upper bounds.

The upper bounds via dynamic programming can be applied to any problem, and we im-
proved the upper bound on the number of equivalence classes by investigating protrusion replace-
ment for INDEPENDENT SET specifically. Investigating the upper bounds for small representatives
on specific problems can probably lead to better bounds as well. On the other hand, the lower
bound on the number of equivalence classes for INDEPENDENT SET is already close to the corre-
sponding upper bound, and we proposed a way to find matching bounds. Therefore, the best way
to improve our process of finding a lower bound on the number of vertices of a representative for
INDEPENDENT SET would be by being smarter about the way we apply the counting argument.

40 Lower bounds for protrusion replacement

Bibliography

[1] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for
dominating set. Journal of the ACM (JACM), 51(3):363–384, 2004. 2

[2] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–434,
2009. 1

[3] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. In Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on, pages 629–638. IEEE, 2009. 2, 5, 6

[4] Hans L. Bodlaender and Eelko Penninkx. A linear kernel for planar feedback vertex set. In
Parameterized and Exact Computation, pages 160–171. Springer, 2008. 2

[5] Hans L. Bodlaender, Eelko Penninkx, and Richard B. Tan. A linear kernel for the k-disjoint
cycle problem on planar graphs. In Algorithms and Computation, pages 306–317. Springer,
2008. 2

[6] Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for graphs
of small treewidth. Information and Computation, 167(2):86–119, 2001. 6

[7] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, Dominique Poulalhon, and Gilles Schaef-
fer. Planar graphs, via well-orderly maps and trees. Graphs and Combinatorics, 22(2):185–202,
2006. 36

[8] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40):3736–3756, 2010. 39

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms, volume 6. MIT press Cambridge, 2001. 7

[10] Babette de Fluiter. Algorithms for graphs of small treewidth. PhD thesis, Utrecht University,
1997. 5, 6

[11] Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer Science &
Business Media, 2012. 1, 2

[12] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket
Saurabh. Hitting forbidden minors: Approximation and kernelization. SIAM Journal on Dis-
crete Mathematics, 30(1):383–410, 2016. 4

Lower bounds for protrusion replacement 41

BIBLIOGRAPHY

[13] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:
Approximation, kernelization and optimal fpt algorithms. In Foundations of Computer Science
(FOCS), 2012 IEEE 53rd Annual Symposium on, pages 470–479. IEEE, 2012. 4

[14] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimension-
ality and kernels. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 503–510. Society for Industrial and Applied Mathematics, 2010. 3

[15] Michael R. Garey, David S. Johnson, and Larry Stockmeyer. Some simplified NP-complete
graph problems. Theoretical computer science, 1(3):237–267, 1976. 25, 26

[16] Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864–1894,
2015. iii, 3, 4, 40

[17] Jiong Guo and Rolf Niedermeier. Linear problem kernels for np-hard problems on planar
graphs. In Automata, languages and programming, pages 375–386. Springer, 2007. 2

[18] Iyad Kanj, Michael J. Pelsmajer, Marcus Schaefer, and Ge Xia. On the induced matching
problem. Journal of Computer and System Sciences, 77(6):1058–1070, 2011. 2

[19] Eun J. Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi Sau,
and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion de-
compositions. ACM Transactions on Algorithms (TALG), 12(2):21, 2015. 3

[20] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. In Proceedings of the twenty-second annual ACM-
SIAM symposium on Discrete Algorithms, pages 777–789. SIAM, 2011. 17, 39

[21] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization–preprocessing with
a guarantee. In The Multivariate Algorithmic Revolution and Beyond, pages 129–161. Springer,
2012. 2

[22] Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Linear kernel for planar connected
dominating set. In Theory and Applications of Models of Computation, pages 281–290. Springer,
2009. 2

[23] Dorian Pyle. Data preparation for data mining, volume 1. Morgan Kaufmann, 1999. 1

[24] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Mixed searching and proper-path-width.
Theoretical Computer Science, 137(2):253–268, 1995. 6

42 Lower bounds for protrusion replacement

	Contents
	Introduction
	Preliminaries
	Equivalence for Independent Set
	Equivalence classes for general graphs
	Equivalence classes for graphs of bounded treewidth
	Equivalence classes for planar graphs of bounded treewidth
	Size of a representative
	Conclusions
	Bibliography

