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Abstract

We investigate the number of simple cycles, Hamiltonian cycles and perfect matchings in planar

graphs with n vertices.

By analyzing the way simple paths can be extended several steps at a time using a face-coloring

technique, we show that there can be at most O(2.870214n) simple cycles in planar graphs. We

look into a result claimed in a previous work that there are at most O(2.2134n) Hamiltonian cycles

in planar graphs, and argue that the proof given there is likely flawed. Using the transfer matrix

technique, we show that there is a family of planar graphs with Ω(1.535365n) perfect matchings.

On the Number of Cycles and Perfect Matchings in Planar Graphs iii





Preface

This thesis is the fruit of six months’ work at the Eindhoven University of Technology, under

the supervision of dr. Kevin Buchin. It is to the best of my knowledge original, except where

references to previous work are made.

I owe my gratitude towards my supervisor, dr. Kevin Buchin, for providing me with the

fascinating topic in the first place and more importantly, the continuous help throughout the

project. Every time I was stuck hypothesizing, proving or calculating, Kevin offered me fresh

ideas and pointed out new directions. Your insights and inspirations have been indispensable for

this thesis.

I would also like to thank the whole algorithms group for inspiring me to do a thesis in

algorithms, in particular prof. dr. Mark de Berg, dr. Herman Haverkort, dr. Kevin Buchin, and

dr. Bart M. P. Jansen. The algorithm courses they gave have been some of the most engaging

and unforgettable experiences in my life. I would like to thank prof. dr. Jan Friso Groote and

prof. dr. Hans Zantema as well, for introducing me to the world of theoretical research. You and

your teachings will always inspire me.

Finally, I would like to thank my family, fellow students and friends for their tolerance and

encourage towards me. I am lucky to have you in my life.

Quite some pain and joy have been experienced to produce this work. I hope you will find the

topic a worthy one and enjoy reading my thesis.

Qi Xiao

Eindhoven, July 2016

On the Number of Cycles and Perfect Matchings in Planar Graphs v





Contents

Contents vii

1 Introduction 1

2 Number of Simple Cycles 3

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Restricted-Child Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Shape of the P-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Deriving the Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Refutation of Biswas et al.’s Bound on Hamiltonian Cycles 19

3.1 Doubtful Inequality in Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Incorrect Generalization of Lemma 3 to Multigraphs . . . . . . . . . . . . . . . . . 19

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Number of Perfect Matchings 21

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 25

Appendix 27

A Program Listing 27

On the Number of Cycles and Perfect Matchings in Planar Graphs vii





Chapter 1

Introduction

This thesis is primarily concerned with the following question:

How many simple cycles can there be in a planar graph with n vertices?

Simple cycles in planar graphs arise naturally in real-world applications. As an illustrative

example, suppose that you want to come up with a good jogging route in your neighborhood [7].

You start from home, go along some roads, and arrive back home. To make the jogging experience

more interesting, you do not want to go to the same place or follow the same section of road

twice. The roads can be modeled by planar graphs1, and a jogging route is precisely a simple

cycle in the planar graph. Knowing the number of simple cycles in planar graphs tells you how

many possible jogging routes there are to choose from. More importantly from the perspective

of algorithm design, if you are to come up with an algorithm that finds the best jogging route

(according to some criteria) by enumerating all jogging routes, the total number of simple cycles

in planar graphs helps you derive a bound on the running time of the algorithm.

Besides the example of jogging routes, simple cycles also arise in problems such as image

classification [8][9], routing of electronic circuits and many others. For these problems, the number

of simple cycles in planar graphs is useful for similar reasons: solving such problems requires finding

cycles matching some specific criteria in a planar graph, the complexity of which is bounded above

by the total number of cycles in the graph.

In this thesis, we also consider the number of Hamilotonian cycles and perfect matchings in

planar graphs, both closely related to simple cycles and have their own interesting applications.

Formally, if Gn is the set of all planar graphs with n vertices, we define

Cs(n) = max
G∈Gn

(number of simple cycles in G)

Ch(n) = max
G∈Gn

(number of Hamiltonian cycles in G)

Cp(n) = max
G∈Gn

(number of perfect matchings in G)

Instead of trying to find precise formulas for Cs, Ch, Cp, which seems out of reach, we study

their asymptotic behaviors. More specifically, since all of these functions are known to grow

exponentially in n, we try to bound their exponential growth rates, namely to find c, d ∈ R such

that cn ≤ Cs(n) ≤ dn for large enough n, and analogously for Ch(n) and Cp(n).

These bounds and related problems have attracted considerable research interests in the past.

Table 1.1 shows the (lower and upper) bounds obtained for Cs(n), Ch(n) and Cp(n) over the years.

1Ignoring tunnels and bridges.
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CHAPTER 1. INTRODUCTION

Year Cs(n) Ch(n) Cp(n) Obtained in

1999 Ω(2.259n), O(3.364n) Alt et al. [1]

2007 Ω(2.4262n), O(2.8927n) Ω(2.0845n), O(2.3404n) O(1.5651n) Buchin et al. [4]

2012 O(2.2134n) (questionable) Biswas et al. [3]

2014 Ω(1.535n) Biro [2]

2016 O(2.870214n) Ω(1.535365n) This thesis

Table 1.1: Bounds on Cs(n), Ch(n) and Cp(n)

Results in this thesis are closely related to the latest developments in the bounds of Cs(n),

Ch(n) and Cp(n).

In 2007, Kevin Buchin et al. obtained the latest results on the number of simple cycles and

Hamiltonian cycles, bounding the number of simple cycles by 2.4262n < Cs(n) < 2.8927n and

the number of Hamiltonian cycles by 2.0845n < Ch(n) < 2.3404n [4]. In the discussion section of

their paper, they point out a possibility for improving the upper bound of Cs(n). In Chapter 2,

we follow the proposed approach and reach the improved result of Cs(n) = O(2.870214)n.

In 2012, Sudip Biswas et al. aimed to improve the upper bound of the number of Hamiltonian

cycles to Ch(n) < 2.2134n [3]. In Chapter 3, we argue that their reasoning is likely flawed.

In 2014, Michael Biro obtained the latest result on the lower bound of the number of perfect

matchings, 1.535n < Cp(n). In Chapter 4, we improve this bound by applying the transfer matrix

technique on a twisted cylinder, to 1.535365n < Cp(n). This is an adaption of the technique used

in [4] to obtain the lower bound of the number of simple cycles, and its possibility has also been

mentioned in the discussion section of the same paper.

The general domain our problem falls into – counting graph-related structures – has attracted

a great deal of research interest as well. For instance, given a set of n points, one can ask how

many possible simple polygons consist of these points [6]. Given a planar graph, one can ask

how many spanning trees it has [5]. These are just two examples of the broad area of “counting”

problems.
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Chapter 2

Number of Simple Cycles

In this chapter we improve the upper bound on the number of simple cycles in planar graphs. The

word “cycle” in this chapter always refers to simple cycles, unless stated otherwise.

In Section 2.1, we introduce the framework of the analysis, an adaption of that employed in

[4]. The framework associates the number of cycles to the size of a tree. In Section 2.2, we propose

a restriction (the restricted-child rule) on a specific class of nodes of the tree, “2-free” nodes. We

establish its validity by showing that for a tree rooted at a 2-free nodes, either the rule applies, or

the tree is dominated by another tree where the rule applies. Using this rule, we study the shape

of the tree in Section 2.3. Finally in Section 2.4, we derive an upper on the number of simple

cycles.

2.1 Preliminaries

We start with the following observation1:

Observation 2.1. A cycle in a planar graph always partitions the faces of the graph into two

connected regions: an “inside” region Ri and an “outside” region Ro.

See Figure 2.1a for an example.

A cycle-path is a subpath of a cycle, and by giving the cycle-path an orientation, we obtain an

oriented cycle-path. In Figure 2.1b, we show an oriented cycle-path of the cycle in Figure 2.1a. All

faces on its left side are in one region (in this case Ri), while those on its right side are in another

(in this case Ro). A face is on the left of the oriented cycle-path, if it is either incident to an

oriented edge in the path and lies on its left, or “between”2 two faces on the left. The definition

for “right” is symmetric. We give the faces on the left a certain color (the “L”-color) and faces

on the right another (the “R”-color). If in a coloring of faces, the L-colored faces and R-colored

faces do not intersect, we say that the coloring is legal. Then the observation can be formulated

as follows:

Observation 2.2. If an oriented path P is an oriented cycle-path, then P induces a legal coloring

of faces.

In the drawings in this thesis, we use horizontal lines to represent the L-color and dots to

represent the R-color. If an oriented path P induces a legal coloring of faces, we say that it is a

potential oriented cycle-path.

1This observation was exploited in [1] to derive the first upper bound on the number of cycles that we know of.
2The concept of “between” here should be thought as follows: If we cast a ray into a face from a vertex v on

the path and rotates the ray into another face without hitting the path itself, then the faces incident to v and hit
by the ray are between these two faces

On the Number of Cycles and Perfect Matchings in Planar Graphs 3
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(a) The shaded region is the “inside” and the un-

shaded is the “outside”.

(b) Faces on the left of an oriented cycle-path are

all inside, while those on the right are all outside.

Figure 2.1: A cycle partitions the graph into an two connected regions.

The number of simple cycles in a planar graph G does not decrease if we fully triangulate G.

Thus we restrict our attention to fully triangulated planar graphs.

Now let us arrange potential oriented cycle-paths in a tree. The root is a single directed edge.

The children of a potential oriented cycle-path are those oriented paths that can be obtained by

extending it by one edge and still induce a legal coloring. We identify a potential oriented cycle-

path by all its vertices: u1 → · · · → ul. By abuse of notation, if P is an oriented path p1 → · · · pm,

we abbreviate p0 → · · · pm → q1 → · · · qn to P → q1 → · · · qn. The term “node” in this chapter is

used exclusively for referring to nodes of this tree of potential oriented cycle-paths.

At a node u1 → · · · → ul, the final vertex ul has at least one incident L-colored face and one

incident R-colored face – the two faces incident to ul−1ul. There might be other colored faces

incident to ul. Now, to extend this path, we cannot go between two L-colored faces, since this will

put one of these two L-colored faces on the right of the path, making the coloring illegal. Likewise,

we cannot go between two R-colored faces. Hence, we color all faces between two L-colored faces L,

and all faces between two R-colored faces R. We say that such faces are “lost”. After this “coloring

completion” stage, the uncolored faces form a continuous range; such uncolored faces are “free”.

As an example, see Figure 2.2. We denote the number of free faces as k(u1 → · · · → ul). If this

number is equal to k, we say that the node is k-free. We see that at a k-free node, there are

exactly k + 1 vertices onto which the path may be extended. If we keep track of unused vertices

n and uncolored faces f , this observation gives us the following recursive formula for the number

of potential oriented cycle-paths:

P (n, f) ≤ max
k≥0

(k + 1) · P (n− 1, f − k)

P (·, 0) = P (0, ·) = 1

Since we want to maximize P (n, f), we can assume that the value of k for all nodes at the

same level in the tree is equal. Call the value of k on the l-th level kl, and assume that the tree

has L levels. Then we have L ≤ n, and
∑L
l=1 kl ≤ f ; we wish to maximize

∏L
l=1(kl + 1). The

product is maximized when L = n and all kl’s are equal, the maximum value being (f/n+ 1)n.

Since the number of faces in a planar graph is at most 2n−4, a bound on the number of simple

cycles is then given by P (n, 2n), up to a polynomial3. In the tree of P (n, 2n), all nodes have k = 2

3To be precise, it is (3n− 6) ·P (n− 2, 2n− 6), (3n− 6) being the maximum number of edges in planar graphs.
After choosing a starting edge, two vertices and two faces are consumed. But the difference is accounted for in “up
to a polynomial”
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CHAPTER 2. NUMBER OF SIMPLE CYCLES

Figure 2.2: Completing the coloring after arriving at a vertex. Two faces are colored L while

another two are colored R, adding up to a total loss of four faces. Another four faces remain

uncolored and are thus free.

– all nodes are 2-free. If we can show that there has to be some non-2-free nodes in the tree, we

will be able to tighten this bound.

We remark that P (n, 2n) = O(3n) alone is actually insufficient to derive the bound ofO(2.8927n)

obtained in [4], and tightening it will not immediately result in an improvement of the result. In-

stead, we need to consider cycles whose lengths are at most τn (0 < τ ≤ 1), whose number is

given by P (τn, 2n). Equivalently, we can compute P (n, tn) for t ≥ 2. After doing this, we will

be able to combine this bound with another bound for cycles with length at most τn, take the

minimum, and derive the ultimate bound.

We will get to the details in Section 2.3 and Section 2.4. For now, let us look into how to

reduce the number of 2-free nodes.

2.2 Restricted-Child Rule

The restricted-child rule (RC-rule) is stated as follows:

Restricted-Child Rule. A 2-free node cannot have three 2-free children. In other words, one of

the children must be non-2-free (“restricted”).

The following lemma states that we can always pretend that the RC-rule is valid, the proof of

which constitutes the rest of this section:

Lemma 2.1. For any potential oriented cycle-path P such that k(P ) = 2, either the RC-rule

applies, or the subtree rooted at P can be dominated by another tree that satisfies the RC-rule.

Proof. We find all possible violations of the RC-rule, analyze their corresponding trees of potential

oriented cycle-paths, and show that they can be dominated by trees that conform to the RC-rule.

We do this by a case distinction on the relationship between the grandchildren of the 2-free node.

Since all nodes we are going to analyze start with P , we write the last vertex u in place of P when

referring to nodes, omitting the preceding vertices. For instance, the node P → v1 is written as

u→ v1.

When drawing trees that result from analysis of actual vertices, we label the nodes with the

name of the last vertex. If we also wish to analyze its children, we also list its k value in parentheses.

This is to facilitate the computation of the numbers of remaining vertices and faces at leaves. To

compute the number of remaining vertices, simply subtract from n the number of levels from the

root to the leaf; to compute the number of remaining faces, subtract from f the sum of all k’s on

the path from the root to a leaf. For instance, in Figure 2.3, if the root has parameters (n, f), then

the nodes w1 and w2 have parameters (n − 2, f − 2), and nodes w3 through w6 have parameters

(n− 2, f − 4). When drawing trees that dominate the original trees, we only label the nodes with

On the Number of Cycles and Perfect Matchings in Planar Graphs 5
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their k values, since such trees only need to satisfy the constraints of P (n, f) and do not need to

have actual graph implementations, so there are no actual vertices to label them with.

u(1)

v1(1)

w1 w2

v2(3)

w3 w4 w5 w6

Figure 2.3: An illustrative drawing of a tree of potential oriented cycle-paths.

We now start our analysis. Since u → v1, u → v2 and u → v3 are valid children of u, the

faces 4uv1v2 and 4uv2v3 are uncolored. Since the graph is fully triangulated, there is a vertex

w1 adjacent to both v1 and v2, and a vertex w2 adjacent to both v2 and v3, such that w1, w2 6= u.

The vertices w1 and w2 may or may not be the same vertex; we distinguish the two cases.

Case 1. w1 6= w2. See Figure 2.4. Consider face a. If it is L-colored, k(u → v1) = 0. If it is

R-colored, k(u→ v2) = 0. In both cases, the RC-rule is not violated. The same applies to face b.

That leaves only the case where both faces are uncolored.

u

v1

v2

v3

w1

w2

a

b

Figure 2.4: w1 6= w2.

Now consider faces incident to v2 that fall in the range ∠w1v2w2. Assume that there is a

colored face in this range. If the face is L-colored, then at u → v2 all faces between 4uv1v2 and

this face are lost, including at least face a (see Figure 2.5). In this case, the f parameter goes

down at least by 3 at u → v2, but it still only has 3 children. We can then replace the node

u → v2 with a 3-free node, and this new tree dominates the original one (Figure 2.6). The same

goes when there is an R-colored face within ∠w1v2w2. That leaves only the case where there are

no colored faces in ∠w1v2w2. Since w1 6= w2, there is at least one face in this range. Along with

face a and b, there are at least three uncolored faces at u → v2; so k(u → v2) ≥ 3. This again

conforms to the RC-rule.

6 On the Number of Cycles and Perfect Matchings in Planar Graphs



CHAPTER 2. NUMBER OF SIMPLE CYCLES

u

v1

v2

v3

w1

w2

a

b

Figure 2.5: Face a is lost when there is an L-colored face in ∠w1v2w2.

u(2)

v1(2) v2(2), P (n− 2, f−3) v3(2)

3× P (n− 3, f−5)

(a) The original tree according to the analysis.

2

2 3 2

4× P (n− 3, f−5)

(b) The tree that dominates the original tree.

Figure 2.6: Replacing the 2-free u→ v2 node with a 3-free node when face a is lost.

Case 2. w1 = w2. Now that w1 and w2 are identical, we simply call it w. See the drawing in

Figure 2.7. In this case, face a and b must be uncolored; otherwise k(u → v2) < 2. Face α must

be uncolored: if it is L-colored, k(v1) = 1. If it is R-colored, face a is lost at u→ v1, and we can

replace the node u → v1 with a 3-free node, in exactly the same way that we replace u → v2 in

Figure 2.6. By the same argument, face β must be uncolored. To get k(u→ v1) = k(u→ v3) = 2,

there must be an L-colored face opposing face α, and an R-colored face opposing face β. Note

that x and y may be the same vertex.

u

v1

v2

v3

w
a

b

x

y

α

β

Figure 2.7: w1 = w2.

We can now draw the subtree below u (Figure 2.8a). By summing all the leaves of this tree,

we can obtain P (n, f) ≤ 5P (n − 2, f − 4) + 6P (n − 3, f − 5) + 4P (n − 4, f − 6) in this case.

This tree does not conform to the RC-rule, since all three children of the 2-free node u are 2-free.

On the Number of Cycles and Perfect Matchings in Planar Graphs 7
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However, it can be rearranged into the tree shown in Figure 2.8b, whose leaves also sum up to

5P (n−2, f −4) + 6P (n−3, f −5) + 4P (n−4, f −6). Now, if every time we encounter the original

tree we replace it with the rearranged one, the final result will not decrease. We will use this “tree

replacing” schema many times in the analysis.

The rearranged tree conforms to the RC-rule, if and only if there are at least one non-2-free

nodes contributing to P (n−2, f−4) and at least two non-2-free nodes contributing to P (n−3, f−5)

– by assigning such nodes to the leaves denoted by a hollow circle, we make the rearranged tree

conform to the RC-rule. To know whether such a condition can be met, we distinguish whether

x = y.

u(2)

v1(2)

x w v2(1)

w v3(1)

w y

v2(2)

v1(1)

x w

w v3(1)

w y

v3(2)

v2(1)

v1(1)

x w

w

w y

(a) The original tree according to the analysis.

2

2 2

1

1 1

1

2 2

(b) Rearranging the tree, attempting to eliminate violations of the RC-rule.

Figure 2.8: The tree from u when w1 = w2 and its rearrangement.

Case 2.1. w1 = w2 = w and x 6= y. We first consider the nodes u → v1 → w and u → v3 → w.

These two nodes contribute to P (n − 2, f − 4). We show that it is impossible that both nodes

are 2-free. Assume that k(u→ v1 → w) = 2. At u→ v1 → w, the faces 4v3wv2 and 4v3wy are

uncolored; to have k = 2 at this point, the face within ∠xwy that is adjacent to β must be L-

colored (Figure 2.9a).With this L-colored face, we can see that k(u→ v3 → w) = 0 (Figure 2.9b).

We conclude that there is at least one non-2-free node contributing to P (n− 3, f − 5).

We now consider the nodes that contribute to P (n − 3, f − 5). In particular, we consider all

the nodes that end with w, namely u → vi → vj → w (1 ≤ i, j ≤ 3, i 6= j). They are shown in

Figure 2.10.

Note that the free faces at u → v1 → v2 → w is identical to those at u → v2 → v1 → w,

so k(u → v1 → v2 → w) = k(u → v2 → v1 → w). Likewise, k(u → v3 → v2 → w) = k(u →
v2 → v3 → w). Hence, if any of these nodes is non-2-free, there is another node that is also

non-2-free. By assigning those two nodes to the nodes denoted by hollow circles at Figure 2.8b,

the violation of RC-rule is eliminated. That only leaves the case where all these nodes are 2-free,

i.e. k(u→ vi → vj → w) = 2 for all 1 ≤ i, j ≤ 3 ∧ i 6= j.

8 On the Number of Cycles and Perfect Matchings in Planar Graphs
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u

v1

v2

v3

w
a

b

x

y

α

β

(a) The configuration when k(u → v1 → w) = 2.

u

v1

v2

v3

w
a

b

x

y

α

β

(b) In this configuration, k(u → v3 → w) = 0.

Figure 2.9: If k(u→ v1 → w) = 2, k(u→ v3 → w) = 0.

u

v1

v2

v3

w
a

b

x

y

α

β

(a) u → v1 → v2 → w

u

v1

v2

v3

w
a

b

x

y

α

β

(b) u → v2 → v1 → w

u

v1

v2

v3

w
a

b

x

y

α

β

(c) u → v3 → v2 → w

u

v1

v2

v3

w
a

b

x

y

α

β

(d) u → v2 → v3 → w

Figure 2.10: u→ vi → vj → w (1 ≤ i, j ≤ 3, i 6= j)

Now consider the faces in ∠xwy. If there is an L-colored face in this range, face α is lost

in u → v3 → v2 → w and u → v2 → v3 → w. We can replace those two nodes with 3-

free nodes, restoring the RC-rule. With the same argument, there can be no R-colored faces in

∠xwy. So all faces in ∠xwy must be uncolored. If there are at least two faces in this range,

k(u → vi → vj → w) ≥ 3, again satisfying the RC-rule. That leaves only the case where there is

exactly one uncolored face within this region; see Figure 2.11.

On the Number of Cycles and Perfect Matchings in Planar Graphs 9
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Now that we have more information above this neighborhood, we can do a finer analysis of the

subtree below u, analyzing the children of all nodes that end with w; see Figure 2.12a. According

to the analysis, we have P (n, f) ≤ 2P (n− 2, f − 4) + 2P (n− 3, f − 5) + 6P (n− 3, f − 7) + 2P (n−
4, f − 6) + 12P (n − 4, f − 7) + 10P (n − 5, f − 7). This tree can be rearranged into the tree in

Figure 2.12b to conform to the RC-rule. This concludes the analysis of this case.

u

v1

v2

v3

w
a

b

x

y

α

β

Figure 2.11: w1 = w2 and there is exactly one uncolored face in ∠xwy.
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u(2)

v1(2)

x w(3)

v2(0)

v3(0)

y

v3(0)

y

x y

v2(1)

w(2)

v3(0)

y

x y

v3(1)

w(1)

x y

y

v2(2)

v1(1)

x w(2)

v3(0)

y

x y

w(3)

v1(0)

x

x y

v3(0)

y

v3(1)

w(2)

x y v1(0)

x

y

v3 (symmetric with v1)

(a) The original tree according to the analysis.

2

2

3

2

3

0

0

0

0

2

1 1 1

2

1 1 1

1

2

1

1

1

1 1

1

1 1

(b) Rearranging the tree, eliminating violations of the RC-rule.

Figure 2.12: The subtree from u when w1 = w2, x 6= y and there is exactly one uncolored face in

∠xwy, and its rearrangement.

Case 2.2. w1 = w2 = w and x = y. The setting is shown in Figure 2.13. The subtree is analyzed

in Figure 2.14a, giving us P (n, f) = 2P (n − 2, f − 4) + 3P (n − 3, f − 6) + 2P (n − 3, f − 5) +

10P (n − 4, f − 6) + 8P (n − 5, f − 6). A tree that dominates it is shown in Figure 2.14b. The

dominating tree has 11 leaves contributing to P (n− 5, f − 6) (instead of 8 in the original tree); it

strictly dominates the original tree.

u

v1

v2

v3

w
a

b

x

α

β

Figure 2.13: w1 = w2 and x = y.
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u(2)

v1(2)

x w(2)

v2(0)

v3(0)

x

x v3(0)

x

v2(1)

w(1)

x v3(0)

x

v3(1)

w(0)

x

x

v2(2)

v1(1)

x w(1)

x v3(0)

x

w(2)

v1(0)

x

x v3(0)

x

v3(1)

w(1)

v1(0)

x

x

x

v3(2) (symmetric with v1)

(a) The original tree according to the analysis.

2

2

1

2

2

0

2

0 0

1

1 1

1

2

1 1

0

1

0 0

1

1

1 1

1

1 1

(b) A tree that dominates the original tree and satisfied the RC-rule.

Figure 2.14: The subtree from u when w1 = w2 and x = y, and a tree that dominates it.

2.3 Shape of the P-tree

The tree generated by P (n, f) does not need to have an implementation of a tree of cycle-paths;

to distinguish from an actual tree of potential oriented cycle-paths, we call it the P-tree.

Without the RC-rule, the tree generated by P (n, f) have equal k’s at each level; to determine

P (n, f) is to determine how to distribute f onto n levels. Let t = n/f , then the k’s will consist

of btc and dte. These layers can be arranged arbitrarily; so which number comes first does not

matter. That is to say, both k = btc and k = dte can maximize P (n, tn).

We now analyze the shape of the P-tree with the RC-rule. Formally, P (n, f) is now given by:

P (n, f) = max{P ′(n, f), 2P (n− 1, f − 2) + P ′(n− 1, f − 2)}
P ′(n, f) = max

k 6=2,k≤f
(k + 1)P (n− 1, f − k)

Obviously, P ′(n, f) ≤ P (n, f).

When f ≤ 1.5 or f ≥ 2.5, the RC-rule does not play a role. When f ≤ 1 or f ≥ 3, there need

not be any k = 2 layers at all. When 1 < f ≤ 1.5, there are no more k = 2 layers than k = 1 layers,

so we can always the arrange the layers so that two k = 2 layers do not appear consecutively;
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the same argument applies when 2.5 ≤ f < 3. In particular, when f = 2.5, the P-tree consists of

alternate layers of 2-free nodes and 3-free nodes; P (n, 2.5n) = 2n/2 · 3n/2 =
√

6
n ≈ 2.4495n.

We now analyze the shape of the P-tree when 1.5 < f < 2.5. Let k(n, f) be the optimal choice

of k in P (n, f), and k′(n, f) be the optimal choice of k in P ′(n, f). We first show that when n is

large enough and 2n ≤ f < 2.5n, k(n, f) = 2 and k′(n, f) = 3.

Lemma 2.2. When 2 ≤ t < 2.5, P (n, tn) is maximized when k = 2.

Proof. We prove by induction.

n = 1 (basis). 2 ≤ f < 2.5⇒ f = 2. P (1, 2) is indeed maximized when k = 2.

n ≥ 2 (inductive step). We prove by contradiction. Assume that k(n, f) 6= 2, the RC-rule does

not apply; then P (n, f) = (k + 1)P (n− 1, f − k). Let t′ = (f − k)/(n− 1) = (tn− k)/(n− 1) =

t+ (t− k)/(n− 1).

If k = k1 ≤ 1, t′ > t ≥ 2.

If t′ < 2.5, by induction hypothesis, k2 = k(n − 1, f − k) = 2. This gives us P (n, f) =

(k+1)P (n−1, f−k) = (k+1)(2P (n−2, f−k−2)+P ′(n−2, f−k−2)) ≤ 3(k+1)P (n−2, f−k−2).

Now, if we choose k(n, f) = 2 and k(n − 1, f − 2) = k1 (since k1 ≤ 1, this does not violate the

RC-rule) we obtain P (n, f) = 3(k + 1)P (n − 2, f − k − 2). So choosing k(n, f) = 2 does not

decrease P (n, f).

If t′ ≥ 2.5, we know that k2 = k(n − 1, f − k) = [t′] ≥ 3, giving us P (n, f) = (k1 + 1)(k2 +

1)P (n−2, f−k1−k2). Unless k2 = 3, we can “redistribute” k1 and k2 by choosing k(n, f) = k1+1

and k(n−1, f−2) = (k2−1), which gives us P (n, f) = (k1+2)k2(k1+k2−2)P (n−2, f−k1−k2) >

(k1 + 1)(k2 + 1)P (n − 2, f − k1 − k2). This contradicts with the assumption that k(n, f) = k1.

When k2 = 3 and k1 = 0, we can redistribute to 2 and 1, getting P (n, f) = (2 + 1) · (1 + 1)P (n−
2, f − 3) > (3 + 1) · (0 + 1)P (n − 2, f − 3); that leaves only the case of k2 = 3 and k1 = 1. In

this case, f < 2.5n ⇒ f − 4 < 2.5(n − 2) + 1, f − 1 > 2.5(n − 1) ⇒ f − 4 > 2.5(n − 2) − 0.5;

2.5(n−2)−0.5 < f−4 < 2.5(n−2)+1. If n is even, f−4 = 2.5(n−2), and k3 = f(n−2, f−4) = 2.

We can swap k1 with k3 to obtain k(n, f) = 2. If n is odd, f −4 = 2.5(n−2) + 0.5, and the P-tree

of P (n − 2, f − 4) consists of alternating layers of 3-free and 2-free nodes. We simply swap any

k = 2 layer.

If k = k1 ≥ 3, t′ < t. A similar argument applies. If k2 = k(n − 1, f − k) = 2, we swap k1
with k2. If k2 ≤ 1, we first swap k1 and k2 and can then redistribute them in the way described

above.

Lemma 2.3. When 2 ≤ t < 2.5, P ′(n, tn) is maximized when k = 3.

Proof. We prove by induction.

n = 2 (basis). 4 ≤ f < 5⇒ f = 4. P ′(2, 4) is indeed maximized when k = 3.

n ≥ 3 (inductive step).

If k′(n, tn) = k1 ≤ 1, then t′ = (tn−k1)/(n−1) > 2. So k2 = k(n−1, tn−1) ≥ 2. If k2 ≥ 3, we

can redistribute the two layers to 3 and k2− 2. If k2 = 2, then from Lemma 2.2 and the induction

hypothesis we know that the tree of P (n − 1, tn − 1) consists entirely of k = 2 and k = 3 nodes,

and along every path to a leaf, there is at least one k = 3 node. Now we modify the tree such

that the highest k = 3 node along each path now has k = 1, and change k1 to 3. This maintains

the value of P (n, tn).

If k1 ≥ 4, then k2 ≤ 2. If k2 = 2, redistribute to k1 = 3 and k2 = 3. Otherwise k2 ≤ 1; we

swap k1 and k2 and this falls into the case of k1 ≤ 1.

Lemma 2.4. When 1.5 < t < 2, k(n, tn) = 2 and k′(n, tn) = 1.

Proof. The proof is symmetric to the proofs of Lemma 2.2 and Lemma 2.3.
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2.4 Deriving the Bound

With the shape of the P-tree now clear, we now derive P (n, tn) for 2 ≤ t < 2.5 (the reason we

restrict t to this range will be clear later). Instead of a precious formula, we are going to find the

function b(t) such that P (n, tn) = Θ(b(t)n) for 2 ≤ t ≤ 2.5.

Let P (n, 2n) = p(n), P (n, 2n − 1) = p′(n). From the previous section, we know that the

children of the root of the tree for P (n, 2n) are two 2-free nodes (P (n− 1, 2n− 2) = p(n− 1)) and

one 3-free nodes, which in turn has four nodes (P (n− 2, 2n− 5) = p′(n− 2)) as its children. The

children of the root of the tree for P (n, 2n− 1) are two 2-free nodes (P (n− 1, 2n− 3) = p′(n− 1))

and one 1-free node, which in turn has two nodes (P (n − 2, 2n − 4) = p(n − 2)) as its children.

Then we have

p(n) = 2p(n− 1) + 4p′(n− 2)

p′(n) = 2p′(n− 1) + 2p(n− 2)

p(1) = 3, p(2) = 8

p′(1) = 2, p′(2) = 6

The solution is p(n) = Θ(xn), where x = 1+
√

1 + 2
√

2 is the real positive root for (x2−2x)2 =

8. So b(2) = 1 +
√

1 + 2
√

2 =≈ 2.956637.

When t = 2.5, the P-tree consists of alternating layers of 2’s and 3’s; b(2.5) =
√

(2 + 1) · (3 + 1) =√
12 ≈ 3.464102.

To find P (n, tn) (2 < t < 2.5), note that as we go down the P-tree, sooner or later t will hit 2

or 2.5. We write tn = 2n+ α = 2.5n− β/2, to keep track of how close tn is to 2n or 2.5n. When

α = 0, t = 2; when β = 0, t = 2.5. n = 2α+ β, α = (t− 2)n, β = (5− 2t)n.

If k = 2, α remains unchanged, and β goes down by 1. If k = 3, α decreases by 1, and β

increase by 1. Write Q(α, β) = P (n, f). We have P (n, f) = 2P (n− 1, f − 2) + P ′(n− 1, f − 2) =

2P (n− 1, f − 2) + 4P (n− 2, f − 5), which leads to

Q(α, β) = 2Q(α, β − 1) + 4Q(α− 1, β)

To derive Q(α, β), we sum over all the leaves of the recursion tree – Q(0, β′) and Q(α′, 0). To

get to Q(0, β′), we must take α 4’s and (β − β′) 2’s. The number of Q(0, β′) leaves is exactly the

number of such sequences:
(
α+β−β′

α

)
. The value of each such leaf is bβ

′
(2). Likewise, the number

of Q(α′, 0) leaves is
(
α+β−α′

β

)
, and the value of each such leaf is b2α

′
(2.5). Hence:

P (n, tn) = Q(α, β)

=

β∑

β′=1

(
α+ β − β′

α

)
· 4α · 2β−β

′
· bβ

′
(2) +

α∑

α′=1

(
α+ β − α′

β

)
· 4α−α

′
· 2β · b2α

′
(2.5)

=

(5−2t)n∑

β′=1

(
(3− t)n− β′

(t− 2)n

)
· 4α · 2β−β

′
· bβ

′
(2) +

(t−2)n∑

α′=1

(
(3− t)n− α′

(5− 2t)n

)
· 4α−α

′
· 2β · b2α

′
(2.5)

≤(5− 2t)n
(5−2t)n
max
β′=0

(
(3− t)n− β′

(t− 2)n

)
· 2n · (b(2)

2
)β
′
+ (t− 2)n

(t−2)n
max
α′=0

(
(3− t)n− α′

(5− 2t)n

)
· 2n · (b(2.5)

2
)2α
′

To simplify the calculation, we also include the cases of β′ = 0 and α′ = 0 in the maximum.

To find which β′ and α′ give the maximum, we consider the ratio of consecutive terms. For β′,

this is:
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ρβ(β′) =

(
(3−t)n−β′−1

(t−2)n
)

(
(3−t)n−β′
(t−2)n

) · b(2)

2
=

(3− t)n− β′ − (t− 2)n

(3− t)n− β′
· b(2)

2
=

(5− 2t)n− β′

(3− t)n− β′
· b(2)

2

As β′ increases from 0 to (5 − 2t)n, ρβ(β′) decreases from 5−2t
3−t ·

b(2)
2 to 0. To know where

the maximum value is attained, we need to distinguish whether ρβ(0) ≤ 1. If that is the case,

t ≥ 5b(2)−6
2b(2)−2 ≈ 2.244459; the maximum is attained at β′ = 0, and is

(
(3− t)n
(t− 2)n

)
· 2n ∼ 2H( t−2

3−t )·(3−t)n · 2n = (21+(3−t)·H( t−2
3−t ))n

Otherwise, the maximum is attained when ρβ(β′) = 1 ⇔ β′ = (5b(2)−6−2b(2)t+2t)n
b(2)−2 = (λ − µt)n,

and is
(

(3− λ+ µt− t)n
(t− 2)n

)
· 2n · (b(2)

2
)(λ−µt)n ∼ (21+(3−λ+µt−t)·H( t−2

3−λ+µt−t ) · (b(2)

2
)λ−µt)n

Likewise for α′:

ρα(α′) =

(
(3−t)n−α′−1

(5−2t)n
)

(
(3−t)n−α′
(5−2t)n

) · b
2(2.5)

4
=

(3− t)n− α′ − (5− 2t)n

(3− t)n− α′
· b

2(2.5)

4
= 3 · (t− 2)n− α′

(3− t)n− α′

As α′ increases from 0 to (t − 2)n, ρα(α′) decreases from 3 · t−23−t to 0. Again, we distinguish

whether ρα(0) ≤ 1. If that is the case, t ≤ 2·3+3
3+1 = 2.25; the maximum is attained at α′ = 0, and

is (
(3− t)n
(5− 2t)n

)
· 2n ∼ (21+(3−t)·H( 5−2t

3−t ))n

Otherwise, the maximum is attained when ρα(α′) = 1⇔ α′ = (2t− 4.5)n, and is

(
(7.5− 3t)n

(5− 2t)n

)
· 2n · 3(2t−4.5)n ∼ (21+(7.5−3t)·H( 5−2t

7.5−3t ) · 32t−4.5)n

Putting all these together, when 2 < t < 2.5 we have b(t) = max{bβ(t), bα(t)}, where

bβ(t) =

{
21+(3−λ+µt−t)·H( t−2

3−λ+µt−t ) · ( b(2)2 )λ−µt if t ≤ 5b(2)−6
2b(2)−2 ≈ 2.244459

21+(3−t)·H( t−2
3−t ) otherwise

λ =
5b(2)− 6

b(2)− 2
, µ =

2b(2)− 2

b(2)− 2

bα(t) =

{
21+(3−t)·H( 5−2t

3−t ) if t ≤ 2.25

21+(7.5−3t)·H( 5−2t
7.5−3t ) · 32t−4.5 otherwise

bβ(t) and bα(t) are shown in Figure 2.15, along with the “old” base t + 1 in dashed lines.

Interestingly, b(t) is remarkably linear despite of its very complex nature.

Theorem 2.5. The number of simple cycles in a planar graph with n vertices is bound from above

by O(2.870214n).

Proof. We have calculated a function b(t) (2 ≤ t ≤ 2.5) such that P (n, tn) = Θ(b(t)np(n)), where

p(n) is a polynomial. We use this to derive a bound on the simple cycles whose length is τn:
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2 2.1 2.2 2.3 2.4 2.5
t

2

2.2

2.4

2.6

2.8

3

3.2

3.4 bβ
bα

Figure 2.15: bβ(t) and bα(t), for t ∈ [2, 2.5].

Cτs (n) = P (τn, 2n) = O((b(
2

τ
)τ )n)

Since we only calculated b(t) for 2 ≤ t ≤ 2.5, we only use it when 2 ≤ 2
τ ≤ 2.5⇔ 0.8 ≤ τ ≤ 1.

Elsewhere we use the old value b(t) = t+ 1.

We combine it with another bound – the Hamiltonian bound – for Cτs (n) given in [4]:

Cτs (n) = O((
4
√

30
τ

τ τ (1− τ)(1−τ)
)n)

We plot the bases of the two bounds in Figure 2.16 (note the discontinuity at τ = 0.8). The

bound we have just derived is shown in solid lines, while the Hamiltonian bound is shown in dotted

lines. Since both are valid upper bounds, the lower envelope of these two functions is a bound

on the exponential growth rate of Cτs (n). As we can see from the graph, the intersection point

is where the maximum value is attained. According to numerical computation, the two curves

intersect at τ ≈ 0.924109, where the value is approximately 2.870213. Since

Cs(n) ≤
n∑

l=1

Cl/ns (n) ≤ n · n
max
l=1

Cl/ns (n) ≤ n · max
0<τ≤1

Cτs (n)

We have Cs(n) = O(n · 2.870213n) = O(2.870214n).
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0 0.2 0.4 0.6 0.8 1
τ

1

1.5

2

2.5

3

n
√
Cτ
s (n)

Figure 2.16: Base of Cτs (n) according to two different bounds.

2.5 Discussion

We believe that the multi-level analysis employed here has more potential waiting to be ex-

ploited. In our analysis, only the case of k = 2 has been treated specially to derive a bound

for P (τn, 2n)(0.8 ≤ τ ≤ 1), since it is one of the two most relevant cases when τ is close to 1,

the other being k = 3. We believe that a similar analysis can work for the case of k = 3, and

combining the constraints on k = 2 and k = 3 cases can, in principle, yield an even tighter bound.

However, in our analysis we were able to converge to a relatively simple rule (the restricted-child

rule) which then allows us derive the bound. If we add more constraints it will be much more

challenging to do so.

We also recognize a significant limitation of our approach. In our analysis, we have taken

advantage of lost faces. However, since this effect is non-local in nature – faces can be lost due to

decisions made many steps ago – it is very hard to account for in our intrinsically local analysis.

Further advancements on the upper bound of Cs(n) might depend on an effective way to analyze

this effect.

We conclude with the remark that there exists a less powerful but much simpler way to tighten

b(t) and thus tighten Cs(n), without the use of the RC-rule. Knowing that all k’s must be integers,

when 2 < t < 3, we cannot make distribute tn evenly onto n elements by having all kl’s equal to

t and get b(t) = t + 1. Instead, we need to combine (3 − t)n 2’s and (t − 2)n 3’s to achieve the

maximum. This gives us b(t) = (2+1)3−t · (3+1)t−2. Using this expression for b(t) and combining

it with the Hamiltonian bound, Cs(n) can be improved to O(2.880050n), which is in the midway

of the bound in [4] (O(2.8927n)) and the bound obtained by using the RC-rule (O(2.870214n)).
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Chapter 3

Refutation of Biswas et al.’s

Bound on Hamiltonian Cycles

In this chapter, we point out some arguments in [3] that are insufficient to justify their conclusions.

This does not mean that the conclusion is necessarily wrong, but a proper proof will require more

rigorous justifications and most likely very different arguments.

3.1 Doubtful Inequality in Proof of Lemma 3

The concept of restricted Hamiltonian cycles is defined in [3] by partitioning the edges at each

vertex v into two sets – sv and s′v, and require that for each vertex v, the two edges it is incident to

in the Hamiltonian cycle be one in sv and another in s′v. It then considers the same Hamiltonian

cycle with two different orientations, and introduces the following inequality:

∑

l≤L

(kl + k′l) ≤ 2n− 6

The justification supposedly being that kl and k′L+1−l is the value of k at the same vertex

v in P and P ′ respectively, v being the l-th vertex in P and (L + 1 − l)-th vertex in P ′. Since

this is a restricted setting, summing them will supposedly render the number of free faces in the

unrestricted setting.

This is not correct for two reasons. First, since the predecessors of v is different in P and

P ′, the free faces are usually different, so summing them does not necessarily give the number of

free faces in the unrestricted setting. Second and more importantly, this argument uses kl in a

wrong way. It assumes that the number of free faces at the l-th vertex of an oriented cycle-path is

simply kl. In [4], kl is defined as the k that maximizes P (n− (l− 1), f −
∑l−1
i=1 ki). As such, kl is

meaningful only when analyzing the recursion itself. Indeed, there are many possible choices for

oriented cycle-paths of length L starting from a specific edge, and it is not hard to imagine that

the number of free faces at the l-th vertex differs from one oriented cycle-path to another. Thus

kl is not well-defined when analyzing individual cycles, and the use of kl in this inequality is not

justified.

3.2 Incorrect Generalization of Lemma 3 to Multigraphs

Lemma 3 claims that the number of restricted Hamiltonian cycles in a planar graph is O(n · 2n).

In the proof of Theorem 4, a perfect matching M is found and then all edges (u, v) are contracted

into a single vertex, the edges originally incident to u put in sv and the edges originally incident
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to v put in s′v. However, after this contraction, the graph becomes a multigraph, since u and v

may have a common adjacent vertex. Lemma 3 doesn’t deal with multigraphs; so this application

of Lemma 3 is erroneous. In particular, in this new multigraph, the number of faces is no longer

at most twice the number of vertices, but at most four times the number of vertices, since the

number of faces did not change while the number of vertices has halved.

We can generalize Lemma 3 to multi-graphs though, by modifying the conclusion from O(n·2n)

to O(n · ( f2n + 1)n). However, in this case, in the multigraph this gives O(n · 3n), a bound too big

to improve the bound on the number of Hamiltonian cycles.

Hence, even if Lemma 3 is correct, the proof of Theorem 4 is flawed.

3.3 Conclusion

Originally we hoped to fix the arguments for the upper bound on Hamiltonian cycles in [3] and in

this way provide evidence for the bounds claimed therein. Unfortunately, we currently do not see

a way forward.
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Chapter 4

Number of Perfect Matchings

4.1 Preliminaries

A twisted cylinder of width w and size n, Tw(n), can be defined recursively as follows:

• Tw(0) is an empty graph.

• Tw(n) (n > 0) is constructed on top of Tw(n − 1) by adding a vertex n, and connect it to

vertex n− 1 if n > 1, and to vertex n− w if n > w, and to vertex n− w − 1 if n > w + 1.

As an example, T6(20) is shown in Figure 4.1.
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Figure 4.1: A twisted cylinder of width 6 and size 20.

.

The concept of twisted cylinders is used in [4] to prove lower bounds, which constructed twisted

cylinders in another (equivalent) way.

If, instead of connecting vertex n to n−w−1 when n ≥ w+1, we connect vertex n to n−w+1
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when n ≥ w − 1, we can obtain a variation of twisted cylinders, named a prism in [2]1. A prism

of width 6 and size 20, T ′6(20), is shown in Figure 4.2.
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Figure 4.2: A prism of width 6 and size 20.

.

4.2 Transfer Matrix

In [2], the prism graph was used to derive a lower bound on the maximum number of perfect

matchings. If we use the twisted cylinder instead, a better bound can be derived. However, in this

case, the method in [2] is no longer sufficient. We adopt the transfer matrix method used in [4],

where it was used to derive a lower bound on the number of simple cycles using twisted cylinders.

For Tw, the signature is a binary number with w + 1 bits. These numbers represent whether

the last w+ 1 vertices have been matched. The highest significant bit represents whether the last

vertex has been matched, while the lowest significant bit represents whether the last but w vertex

has been matched. Vertices before that must be matched.

Given a signature b = b1 · · · bw+1 in Tw(n), we consider which signatures it can transfer to in

Tw(n + 1). If bw+1 = 1, i.e. the last but w vertex has been matched, we simply drop it, and the

next state is 0b1 · · · bw, or b� 1. If bw+1 = 0, we need to match it with either bw, b1, or the new

vertex that we are going to introduce:

1. If bw = 0, then 0b1 · · · bw−11 = (b|1� 1)� 1 is a valid next state;

2. If b1 = 0, then 01b2 · · · bw = (b|1� w)� 1 is a valid next state;

3. 1b1 · · · bw = (b� 1)|(1� w) is always a valid next state.

We define the transfer matrix M ∈ {0, 1}2w+1×2w+1

as follows:

Mi,j =

{
1 if j is a valid next state of i

0 otherwise

1The paper went on to claim that “prism” and “twisted cylinder” are synonyms, but that is not the case.
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Since all the states the signatures represent are reachable, M is primitive, and the eigenvalue

with the largest absolute value is real and unique. Let pw(n) be the number of perfect matchings

in Tw(n); then pw(n) = O(cn), where c is the largest real eigenvalue of M .

4.3 Result

A computer program, listed in the Appendix, was used to compute c for different values of w.

The result is shown in Table 4.1, along with the comparison for the value of c obtained in [2],

c′ =
6
√

7 +
√

37. The largest value is seemingly obtained when w = 3.

w cw (cw − c′)/c′
3 1.535365 0.022%

4 1.535084 0.004%

5 1.535097 0.004%

6 1.535099 0.005%

7 1.535098 0.005%

8 1.535098 0.005%

9 1.535098 0.005%

Table 4.1: cw for 3 ≤ w ≤ 9.

Theorem 4.1. The maximal number of perfect matchings in planar graphs with n vertices is

bound from below by Ω(1.535365n).

4.4 Conclusion

The twisted cylinder is a very useful tool for two reasons. First, it is relatively dense – except for

the first few and last few vertices, all vertices have a degree of 6. Second, it is easy to extend to

arbitrary number of vertices, and makes a nice fit for the technique of transfer matrix. We expect

the it to be useful in other counting problems as well.
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Appendix A

Program Listing

The following Python program is used in Chapter 4 to compute lower bounds on the number of

perfect matchings. Its requires Python 3 and numpy, and is also available at https://github.

com/xiaq/masters-thesis.

import numpy as np

from numpy.linalg import eigvals, norm

def make_transfer(w):

nstates = 2 ** (w+1)

transfer = np.zeros([nstates, nstates], np.int)

for i in range(nstates):

if (i & 0b1) == 1:

# Vertex 0 has been matched. Simply drop it.

js = {i >> 1}

else:

# Match with either vertex 1, w, or w+1.

js = {((i | (1<<m)) >> 1) for m in [1,w] if not i & (1<<m)}

js.add((i >> 1) | (1 << w))

for j in js:

transfer[i][j] = 1

return transfer

def main():

old_c = (7 + 37**(1/2)) ** (1/6)

for w in range(3, 10):

transfer = make_transfer(w)

evs = eigvals(transfer)

c = np.max(np.abs(evs))

print(r’{} & {:.6f} & {:.3f}\% \\ \hline’.format(

w, c, (c - old_c) / old_c * 100))

if __name__ == ’__main__’:

main()
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