Trend detection and seasonal variation of tropospheric NO2 over China

Peters, D.H.M.U.

Award date:
2005

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
Trend detection and seasonal variation of tropospheric NO\textsubscript{2} over China.

中国 上空二氧化氮 浓度变化趋势 监测

D.H.M.U. Peters
June 2005

Supervisors: dr. R.J. van der A (KNMI, De Bilt)
prof. dr. H. Kelder (Eindhoven University of Technology; KNMI, De Bilt)

Eindhoven University of Technology
Department of Applied Physics
Abstract

China has one of today's fastest growing economies of the world. This increase in economical activity is connected with a strong increase of emissions of tropospheric pollutants. Here, the results are presented of a trend study on the tropospheric NO$_2$ column over China, measured by the satellite instruments GOME and SCIAMACHY. From these observations monthly averaged NO$_2$ concentrations are determined for the period 1996 to 2004 on a 1\degree by 1\degree grid. A linear model with a seasonal component is used to fit these time series. The results show a large growth of tropospheric NO$_2$ over eastern China, especially above the industrial areas with a fast economical growth. For instance, Shanghai had a yearly increase of 25% in the period 1996-2004. The variance and the autocorrelation of the noise are used to calculate the significance of the trend.

The seasonal pattern of the NO$_2$ concentration shows a difference between East and West China. In the East a NO$_2$ maximum is found during wintertime, which is theoretical expected due to chemistry and anthropogenic activity. Contrary to this, in the western part of China the NO$_2$ concentration reached a maximum in summertime. This spatial difference corresponds with the population distribution of China. Since there is no anthropogenic activity in West China this seasonal difference is attributed to natural emissions in West China.
De 21ste eeuw moet de eeuw van China worden. Maar achter de dynamiek gaan grote sociale spanningen schuil. Breekt China door, of zal het weer wegzakken, net als Japan en de 'Aziatische tijgers'? Een sterkte-zwakteanalyse.

Witbreiding met wegens gevaar

normen luchtkwaliteit gaan voor

Nature blamed for Beijing's bad air quality

Residents complain after three days of the worst weather this year

Chine wordt wereldmacht nummer één'
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>1 Introduction to NOx</td>
<td>3</td>
</tr>
<tr>
<td>1.1 NOx as pollutant</td>
<td>3</td>
</tr>
<tr>
<td>1.2 NOx sources and sinks</td>
<td>4</td>
</tr>
<tr>
<td>1.3 NOx chemistry</td>
<td>5</td>
</tr>
<tr>
<td>2 NO\textsubscript{2} measurements</td>
<td>10</td>
</tr>
<tr>
<td>2.1 The instruments</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Tropospheric NO\textsubscript{2} retrieval</td>
<td>11</td>
</tr>
<tr>
<td>3 Recent economical developments in China</td>
<td>14</td>
</tr>
<tr>
<td>4 Trend detection and seasonal variation in tropospheric NO\textsubscript{2} over China</td>
<td>18</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>18</td>
</tr>
<tr>
<td>4.2 Tropospheric NO\textsubscript{2} retrieval</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Data analysis</td>
<td>22</td>
</tr>
<tr>
<td>4.4 Trend analysis</td>
<td>24</td>
</tr>
<tr>
<td>4.5 The NO\textsubscript{2} seasonal cycle</td>
<td>28</td>
</tr>
<tr>
<td>4.6 Conclusions</td>
<td>30</td>
</tr>
<tr>
<td>5 Conclusions and Outlook</td>
<td>31</td>
</tr>
<tr>
<td>6 References</td>
<td>32</td>
</tr>
<tr>
<td>7 Acknowledgements</td>
<td>34</td>
</tr>
<tr>
<td>Appendix A. Data analysis</td>
<td>35</td>
</tr>
<tr>
<td>Appendix B. Precision on the trend</td>
<td>38</td>
</tr>
<tr>
<td>Appendix C. Background on natural emissions</td>
<td>41</td>
</tr>
</tbody>
</table>
Preface

The growing economy of China and air pollution are both important global issues. Recently the new air quality rules from the European Union make air pollution an important economical and political topic in the Netherlands. China on the other hand is frequently in the media due to the rapid development of the country and its accompanying opportunities.

This report brings air pollution and the economical development in China together. It focus on one of the consequences of the rapid growth of the economy in China; increasing emissions of pollutants. A closer look will be given on NO₂, which is one of the constituents of air pollution. The satellite instruments GOME and SCIAMACHY provide a dataset of almost ten years of atmospheric information. This dataset is used to perform a trend study on the tropospheric NO₂ columns over China.

The study is part of the "Air quality Monitoring and Forecasting In China" (AMFIC) project in the framework of the DRAGON programme. The DRAGON programme is the umbrella project for joint Sino and European studies and is initiated by the European Space Agency (ESA) and the Ministry of Science and Technology of China (MOST). The AMFIC project is a cooperation between the Royal Dutch Meteorological Institute (KNMI), TNO-FEL, Belgian Institute for Space Aeronomy (BIRA-IASB), Flemish Institute for Technological Research (VITO), University of Bremen and the National Satellite Meteorological Centre of China (NSMC).

In this report the results are presented of a one-year study carried out at the KNMI, of which one month was spend at the NSMC in Beijing. The work presented in this report tries to answer the next questions for China:

1. What is the trend in tropospheric NO₂ and what is the significance of this trend in the available nine years long dataset?
2. What is the seasonal variation of tropospheric NO₂?
3. How can we interpret the trend and the seasonal variation in tropospheric NO₂?

The first part of this report contains chapters with background information of the satellite instruments and NO₂ chemistry. Questions like; "What is the role of NO₂ in the troposphere?" and "How is NO₂ measured?" are answered. The last chapter of the first part focuses on present-day China to give the reader an impression of the recent economical developments in China.

The second part of report is based on a paper, which will be submitted to the Journal of Geophysical Research. It shows the input, methods and answers on the main questions of this report. In the appendices extra derivations and figures are shown. They were not shown in the article, but they complete the overview of the study.
1 Introduction to NO\textsubscript{x}

Nitrogen oxides play an important role in chemistry of the atmosphere. They are one of the primary air pollution constituents. The two most important nitrogen oxides for the troposphere are nitric oxide (NO) and nitrogen dioxide (NO\textsubscript{2}), often called “active nitrogen” and grouped together as NO\textsubscript{x}. The focus of this research is the nitrogen dioxide concentration measured by the satellite instruments GOME and SCIAMACHY. However, the chemistry of nitric oxide and nitrogen dioxide cannot be separated.

NO\textsubscript{x} is important for the ozone (O\textsubscript{3}) and hydroxyl (OH) distribution in the atmosphere. The role of NO\textsubscript{x} in the troposphere differs from the role of NO\textsubscript{x} in the stratosphere. In the troposphere NO\textsubscript{x} contributes to ozone production, while in the stratosphere NO\textsubscript{x} play a role in ozone destruction. Because of the differences between tropospheric and stratospheric chemistry and the focus of this research is tropospheric NO\textsubscript{2}, only the chemistry of tropospheric nitrogen oxides will be discussed. The NO\textsubscript{x} concentration also influences the hydroxyl radical (OH) concentration. The hydroxyl radical is the primary oxidant in the troposphere. It is responsible for converting primary emissions to secondary products that can be removed from the atmosphere by wet and dry deposition. Because of this mechanism the OH radical is called the “atmospheric detergent”.

In this chapter an overview of the chemistry of tropospheric nitrogen oxides is presented. First the health and environmental impact of NO\textsubscript{x} will be shortly considered. Then in paragraph 1.2 the major sources and sinks of NO\textsubscript{x} emission are presented. In the last part of this chapter the NO\textsubscript{x} chemistry in the troposphere is treated. An overview of the most important NO\textsubscript{x} reactions is given.

1.1 NO\textsubscript{x} as pollutant

Short and long exposure to NO\textsubscript{x} can induce health effects, especially in combination with other pollutants. Exposure to NO\textsubscript{x} can lead to pulmonary damage and long-term exposure has been associated with respiratory symptoms. The combination of NO\textsubscript{2} and O\textsubscript{3} can exacerbate allergic reactions.

The emission of NO\textsubscript{x} in combination with hydrocarbons can lead to smog production in summer months. High smog concentrations pose threats to animal, plant and human life. One of the hazardous components of smog is ozone (O\textsubscript{3}). NO\textsubscript{x} in combination with hydrocarbons largely determine the ozone concentration in the boundary layer. Health effects caused by the exposure to smog are irritation of nose and throat, coughing, painful breathing and reduced lung function. Long-term exposure to smog can affect lung elasticity and the immune system. Recent studies also show a possible influence of smog on cardiovascular diseases. In the position paper on nitrogen dioxide from the European Commission [1997] a threshold of 200\text{Tg/m}^3 is suggested, according to a Swedish study [Bylin, 1993] this value is the lowest effect level for asthmatics.

Environmental impacts of NO\textsubscript{x} are mainly due to NO\textsubscript{x} deposition and its role in ozone formation. Ozone can be transported and influences human life and damages vegetation far from the source. The major removal reaction of NO\textsubscript{x} out of the atmosphere leads to HNO\textsubscript{3}, which is together with H\textsubscript{2}SO\textsubscript{4} the main component of acid precipitation. The deposition of
NO$_x$ related particles lead to increase nitrogen loading in water bodies. This leads to an over stimulated growth of algae. This deterioration of the water quality is also known as eutrophication.

1.2 NO$_x$ sources and sinks
Because NO$_x$ is a key ingredient in the chemistry of the atmosphere it is important to know the major sources of NO$_x$. The sources can be distinguished in anthropogenic sources and natural sources. Olivier et al. [1998] investigated the global emissions for NO$_x$ in 1990 [Table 1.1]. Table 1.1 shows that 75% of the total global emissions are from anthropogenic sources. Most of the anthropogenic NO$_x$ emission occurs during combustion processes. Especially on the Northern Hemisphere the fossil fuel combustion supplies the majority of the NO$_x$ emissions. Olivier et al. [1998] found that 70% of the global anthropogenic NO$_x$ emissions are from fossil fuel combustion. The major fuel combustion sources are road transport, power plants, and industrial processes, contributing 31%, 20% and 5%, respectively to the total anthropogenic NO$_x$ emission. Biomass burning is the other import anthropogenic source, with a contribution of 25% to the total anthropogenic NO$_x$ emissions.

Major natural sources of NO$_x$ are soil emissions and lightning, the estimated contribution is 50% and 35% respectively of the total global natural emissions. The NO$_x$ emission is associated with the biological nitrogen cycle and follows from denitrification, nitrification processes.

<table>
<thead>
<tr>
<th>Source</th>
<th>Emission</th>
<th>Uncertainty range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total anthropogenic sources</td>
<td>31.1</td>
<td>16-46</td>
</tr>
<tr>
<td>- Fossil fuel combustion (surface)</td>
<td>21.3</td>
<td>13-31</td>
</tr>
<tr>
<td>- Biomass burning</td>
<td>7.7</td>
<td>3-15</td>
</tr>
<tr>
<td>- Aircraft **</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>- Industrial processes **</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>Total natural sources</td>
<td>11.1</td>
<td>6-35</td>
</tr>
<tr>
<td>- Soil microbial production</td>
<td>5.5</td>
<td>4-12</td>
</tr>
<tr>
<td>- Lightning*</td>
<td>4.0</td>
<td>2-20</td>
</tr>
<tr>
<td>- Atmospheric NH$_3$ oxidation to NO$_x$</td>
<td>0.9</td>
<td>0-1.6</td>
</tr>
<tr>
<td>- Stratospheric destruction of N$_2$O</td>
<td>0.7</td>
<td>0.4-1</td>
</tr>
<tr>
<td>Total antr. + Natural</td>
<td>42.2</td>
<td>22-81</td>
</tr>
</tbody>
</table>

Table 1.1. Global sources of atmospheric NO$_x$ in 1990 and their uncertainty ranges in TG [N] year$^{-1}$, adopted from Olivier et al. [1998]. *The lightning source is adopted from Boersma et al. [2005]. ** Uncertainty range is included in the surface fossil fuel combusüons.
Physical processes such as wet and dry deposition and incorporation in particles remove NO\textsubscript{x} from the atmosphere. The most important removal reaction of NO\textsubscript{x} is the formation of HNO\textsubscript{3},

\[NO_2 + OH \rightarrow HNO_3, \]

followed by the wet deposition of HNO\textsubscript{3}, which leads to acidification. This removal mechanism only occurs during daytime, especially in summer, because OH is produced by light and the lifetime is very short. An other important removal reaction cycle is the formation of N\textsubscript{2}O\textsubscript{5},

\[NO_2 + O_3 \rightarrow NO_3 + O_2 \]
\[NO_2 + NO_3 \rightarrow N_2O_5 \]

\[N_2O_5 + H_2O/\text{aerosol} \rightarrow 2HNO_3 \]

This removal cycle is dominating during night time and wintertime.

The major sources and sinks of NO\textsubscript{x} are shown, also the effects of NO\textsubscript{x} on human life are considered. The next paragraph will deal with the NO\textsubscript{x} chemistry in the troposphere.

1.3 NO\textsubscript{x} chemistry

Introduction

A fundamental concept of the NO\textsubscript{x} chemistry in the atmosphere is the photo stationary state. After introduction of the photo stationary state the different regimes of NO\textsubscript{x} concentration will be considered. Because NO\textsubscript{x} species have a large influence in atmospheric chemistry, the reported lifetime of NO\textsubscript{x} in different studies will be mentioned. At the end of this chapter a small overview of the NO\textsubscript{x} chemistry is given.

As mentioned before nitrogen oxides have a large influence on the ozone concentration. To form ozone it is necessary to have a production of the O atom. In the stratosphere the O atom is produced by the photolysis of O\textsubscript{2}. In the troposphere this reaction is negligible, because wavelengths responsible for this reaction are almost completely absorbed in the stratosphere. The major source of O atoms in the troposphere is the photolysis of NO\textsubscript{2},

\[NO_2 + hv \rightarrow NO + O. \]

This formation of the O atoms is immediately followed by the next reaction,

\[O + O_2 + M \rightarrow O_3 + M. \]

The molecule M represents any other molecule, especially N\textsubscript{2} or O\textsubscript{2}, which absorbs the energy of the reaction. Reaction 1.4 is very fast due to the high concentration of O\textsubscript{2} and N\textsubscript{2} in the atmosphere. In reaction 1.5, the nitric oxide molecule is oxidized by ozone. This reaction completes the cycle with respect to nitrogen oxides and ozone,

\[NO + O_3 \rightarrow NO_2 + O_2. \]
In equilibrium these reactions are said to be in the photo stationary state and the concentrations of NO, NO\textsubscript{2} and O\textsubscript{3} are then given by

\[\frac{[\text{NO}_2]}{[\text{NO}]} = \frac{k_5[O_3]}{j_3}, \] \hspace{1cm} (1.6)

where \(k_5 \) is the rate of reaction for reaction 1.5 in (concentration\(^{-1}\)) (time\(^{-1}\)) and \(j_3 \) is the photo dissociation frequency for reaction 1.3 in (time\(^{-1}\)). The photo stationary state does not lead to a net production of ozone.

For ozone production an alternative pathway is needed for NO\textsubscript{2} production, instead of reaction 1.5 that does consume ozone. This is provided by the reaction between NO and peroxy radicals (RO\textsubscript{2} and HO\textsubscript{2}, with R a hydrocarbon with an H-atom subtracted). These peroxy radicals are formed by reaction of OH with CH\textsubscript{4}, CO and non-methane hydrocarbons also known as volatile organic components (VOC’s). The source of VOC’s in the atmosphere is a range of human activities, including combustion and chemical manufacturing. This net ozone production is solar driven and initialized by OH. The reactions are catalytic with respect to NO\textsubscript{x} and OH. Reaction cycle 1.8 is an example of a net ozone formation by consuming VOC’s (RH). In Brasseur [1999] examples of other reaction cycles can be found.

\[
\begin{align*}
 \text{OH} + \text{RH} & \rightarrow \text{R} + \text{H}_2\text{O} \\
 \text{R} + \text{O}_2 + \text{M} & \rightarrow \text{RO}_2 + \text{M} \\
 \text{RO}_2 + \text{NO} & \rightarrow \text{RO} + \text{NO}_2 \\
 \text{RO} + \text{O}_2 & \rightarrow \text{HO}_2 + \text{R’CHO} \\
 \text{HO}_2 + \text{NO} & \rightarrow \text{OH} + \text{NO}_2 \\
 2(\text{NO}_2 + h\nu & \rightarrow \text{NO} + \text{O}) \\
 2(\text{O} + \text{O}_2 + \text{M} & \rightarrow \text{O}_3 + \text{M}) \\
 \text{RH} + 4\text{O}_2 + 2h\nu & \rightarrow \text{R’CHO} + \text{H}_2\text{O} + 2\text{O}_3
\end{align*}
\] \hspace{1cm} (1.8 a t/m f)

The efficiency of ozone production depends on the NO\textsubscript{x} concentration and the peroxy radical concentration. The ozone production is efficient in the low NO\textsubscript{x} case and inefficient in the high NO\textsubscript{x} concentration case. In very high NO\textsubscript{x} cases the ozone concentration will even decrease again and in the upper NO\textsubscript{x} limit no ozone is left, as is shown Figure 1.1.
Trend detection and seasonal variation of tropospheric NO$_2$ over China.

The definition of the low and high NO$_x$ case is based on the influence of NO$_x$ and peroxy radicals on the production of ozone [Kleinman, 1994]. In the low NO$_x$ case, the NO$_x$ concentration limits the ozone production, because there are enough peroxy radicals to react with NO. In the high NO$_x$ case the peroxy radicals together with the NO$_x$ concentration limit the ozone production. The critical concentration where the transition between the regimes takes place depends on the temperature and the concentration of other species.

The production of ozone occurs during daytime due to sunlight, see reaction 1.1. Therefore the daytime NO$_x$ chemistry differs from the nighttime NO$_x$ chemistry. During nighttime NO is converted in NO$_2$ by reaction 1.5, followed by the reaction cycle 1.2, therefore ozone is consumed during night time.

The low NO$_x$ case

When the NO$_x$ concentration is low the peroxy radicals are primarily formed by the oxidization of carbon monoxide (CO) and methane (CH$_4$), because other VOC'S emissions are mainly in combination with high NO$_x$ emissions. The formed peroxy radicals (HO$_2$ and CH$_3$O$_2$) can oxidize NO to NO$_2$ without consuming O$_3$. After the formation of NO$_2$, ozone is produced by reaction 1.3 and 1.4. In the low NO$_x$ case the ozone production is linear dependent on the NO$_x$ concentration, because there are sufficient peroxy radicals to react with NO and form O$_3$, therefore the ozone production is limited by the amount of NO$_x$.

Figure 1.1. Schematic relation between the NO$_x$ concentration and the net ozone production, for a fixed peroxy radical concentration, see Jacob [1999].
The high NO\textsubscript{x} case

In the high NO\textsubscript{x} case the production of ozone is inefficient and depends on both the NO\textsubscript{x} concentration and the amount of VOC's. High NO\textsubscript{x} cases occur in regions with high anthropogenic and natural emissions. In these regions a large amount and variety of VOC's are available for oxidation processes to form peroxy radicals, following reaction 1.8a and 1.8b.

The higher amount of VOC's leads to more peroxy radicals, which in combination with more NO\textsubscript{x} lead to a higher ozone production rate. Due to the high NO\textsubscript{x} concentration the peroxy radicals will predominantly react with NO to form NO\textsubscript{2} followed by ozone production. If the NO\textsubscript{2} concentration is high enough, NO\textsubscript{2} will react with OH and reduce the efficiency of ozone production, because there is less OH available to initiate the consumption of VOC's to form ozone. In this case, the ozone production depends inversely with the NO\textsubscript{x} concentration.

In urban areas, the NO\textsubscript{x} concentrations can be much higher than the concentration of peroxy radicals. Then, the ozone production is limited by the peroxy radical concentration and in this situation O\textsubscript{3} can even be removed by reaction 1.5, which is the VOC's limited region of the ozone production. In Table 1.2 an overview of the different NO\textsubscript{x} regimes and their influence on the ozone concentration is given.

Table 1.2. Overview of NO\textsubscript{x} regimes and the corresponding leading reactions for ozone formation in the troposphere.

<table>
<thead>
<tr>
<th>Low NO\textsubscript{x}</th>
<th>Main reaction: (HQ + NO \rightarrow OH + NQ)</th>
<th>Limited: NO\textsubscript{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo stationary state</td>
<td>(NQ + h\nu \rightarrow NO + O)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(O + Q_1 + M \rightarrow Q_1 + M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NO + Q_1 \rightarrow NQ + Q_2)</td>
<td></td>
</tr>
<tr>
<td>High NO\textsubscript{x}</td>
<td>Main reaction: (HQ + NO \rightarrow OH + NQ)</td>
<td>Limited: VOC'S</td>
</tr>
<tr>
<td></td>
<td>(RQ + NO \rightarrow RO + NQ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited: VOC'S</td>
</tr>
</tbody>
</table>

Lifetime of NO\textsubscript{2}

The lifetime of NO\textsubscript{2} in the troposphere is of the order of one day and is altitude and seasonal dependent. It varies from hours in the continental boundary layer to 10 days in the upper troposphere. Because of this relative short lifetime the influence of transportation processes of NO\textsubscript{2} are rather small. The average lifetime is influenced by many factors like meteorological conditions, photolysis length and OH concentrations. The average NO\textsubscript{2} lifetime can be calculated in different ways. For instance, S. Beierle et al. [2003] used the weekly cycle of
NO$_2$ column above Germany, measured by GOME. They report a tropospheric NO$_2$ lifetime of 6 hours during summer and 18-24 hours during winters Leue et al. [2001] used the decay curve of the annual mean NO$_2$ column on the off-wind side of the East coast of the United States. They assumed an average wind and a first order decay. They found a NO$_2$ lifetime of 27 ± 3 hours.

The combination of the variability of the chemistry and emissions leads to a seasonal depended NO$_2$ concentration. The chemistry leads to a longer lifetime in the winter due to lower OH concentration in wintertime. This in combination with the winter maximum of anthropogenic emissions gives an expected maximum of NO$_2$ in wintertime. In wintertime, the anthropogenic emissions are usually higher due to heating of the buildings.
Trend detection and seasonal variation of tropospheric NO$_2$ over China.

2 NO$_2$ measurements

The objective of the study is to perform a trend analysis on the tropospheric NO$_2$ column over China. In this chapter the input data of this study will be discussed. First, the instruments that measure the NO$_2$ column are introduced. Secondly, the retrieval of the tropospheric NO$_2$ column from the measurement will be explained.

2.1 The instruments

The input data for this research is measured by the satellite instruments GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY). Main advantage of satellites is their capability of providing a full global mapping of the atmospheric composition. The ERS 2 platform with GOME aboard and the ENVISAT platform with SCIAMACHY aboard are both in a sun synchronise polar orbit. They fly 800 km above the earth surface and need 100 minutes for one orbit. Characteristic for GOME and SCIAMACHY is that they measure the light spectrum scattered back from the earth surface through the atmosphere. Molecules in the atmosphere have a wavelength dependent absorption. The amount of absorption, which is determined by comparing the reflection spectrum with a reference spectrum, is used to calculate the species concentration. The spectral information of NO$_2$ is found in the wavelength range of 425 nm to 450 nm.

The ERS 2 platform with GOME is launched in April 1995 and has provided useful NO$_2$ data from March 1996. The platform is crossing the Equator at 10:30 local time. Since June 2003 large parts of the world are not monitored due to a technical malfunction. The ground pixels measured by GOME are 320 km by 40 km, where the short side of the pixel is along the track, see Figure 2.1 for an example of a GOME track. In one scan from east to west GOME measures three pixels. A global coverage is achieved every three days. Except NO$_2$, GOME is able to detect the gases O$_3$, SO$_2$, BrO, H$_2$CO, H$_2$O and Aerosols.

SCIAMACHY on board of the ENVISAT platform is launched in 2002 with a local Equator overpass time of 10:00. NO$_2$ data is available from January 2003. The ground pixel measured by SCIAMACHY is 60 km by 30 km, where the short side of the pixel is along the track. In one scan from east to west 16 pixels are measured. GOME had only the possibility to "look down", also known as nadir view, SCIAMACHY has except the nadir view also the possibility to "look forward" trough the atmosphere, also known as limb view. In Figure 2.2 the concepts of nadir and limb view are illustrated. Because SCIAMACHY alternates between nadir view and limb view a global surface coverage is achieved every six days. In Figure 2.3 an example is given of the SCIAMACHY orbits and pixels for one day. At the open spaces

Figure 2.1. Example of a GOME track.
along a track the limb mode measurements take place, which are not shown. Only the SCIAMACHY nadir measurements are used in this study. SCIAMACHY measures, except NO$_2$, also O$_3$, SO$_2$, BrO, H$_2$CO, H$_2$O, CO, CO$_2$, CH$_4$, N$_2$O and Aerosols.

Figure 2.2. Illustration of the nadir viewing mode (left) and the limb viewing mode (right).

Figure 2.3. An example of the Nadir measurements of SCIAMACHY on 7th of July 2004. The open spaces along a track are due to Limb measurements.

2.2 Tropospheric NO$_2$ retrieval

The troposphere is the lowest domain of the atmosphere. It extends from the earth surface up to 8 – 18 km, depending on latitude and season. The stratosphere is the domain above the troposphere, it extends from the tropopause, the top of the troposphere and characterized by temperature inversion, to the stratopause, which is around 50 km high. Although the
atmosphere contains more domains, the troposphere and the stratosphere contain 99.9% of the total atmospheric mass.

In this study we are interested in the vertical tropospheric NO$_2$ concentration. A distinction is made between the troposphere and the stratosphere, because there are significant physical and chemical differences. The chemical differences with respect to NO$_2$ are already mentioned in chapter 1. The physical processes in the troposphere are characterized by vertical mixing, this in contrast with the transport in the stratosphere, which is dominated by horizontal mixing. The exchange between the stratosphere and the troposphere is relative small.

The vertical tropospheric NO$_2$ column (X_{tr}) can be obtained from the NO$_2$ total slant column (N_s), which is measured by the satellite instruments. In the next equation the relation between the vertical tropospheric column and the total slant column is given,

$$X_{tr} = \frac{N_s - N_{s, st}}{M_{tr}},$$

where $N_{s, st}$ is the stratospheric slant column and M_{tr} is the tropospheric air mass factor. The terms in the equation will shortly be discussed, because each term affects the vertical tropospheric column.

GOME and SCIAMACHY measure an absorption spectrum. The total slant column density is retrieved from this spectrum by using the Differential Optical Absorption Spectroscopy technique (DOAS) [Platt, 1994]. The technique is based on the Beer–Lambert law, which describes the extinction of the solar radiation in an absorbing atmosphere. The total slant columns, used for this study, are processed at BIRA-IASB in Belgium. For more information on this process the reader is referred to Fayet and Van Roozendael [2001].

The next step in the retrieval method is to determine the stratospheric slant column. Four methods can be distinguished from literature to calculate the stratospheric slant column.

1. Reference sector method [e.g. Martin et al., 2002]. NO$_2$ columns over remote areas are used to calculate a longitudinal constant stratospheric column.
2. A Chemical Transport Model (CTM) is used to calculate a stratospheric column [Richter et al., 2002].
3. The stratospheric column is determined from the SCIAMACHY limb view [Sierk et al., 2004].
4. Data assimilation [Eskes et al., 2003]. The column densities from a chemical transport model are made consistent with the satellite measurements. From this data assimilated product the stratospheric slant column density is derived.

The last technique is used for the calculation of the tropospheric NO$_2$ data in this study.

The last step is the calculation of the tropospheric air mass factor, which is the proportion between the vertical column density and the slant column density. The light path in the stratosphere is almost not affected by scattering. For this reason, the stratospheric air mass factor is approximately the same as the geometric air mass factor, which is determined by the position of the sun and the viewing angle of the satellite. In the troposphere the light path is strongly influenced by aerosols, albedo effects and scattering due to clouds. Therefore the tropospheric air mass factor is calculated with a radiative transfer model. The input
parameters to calculate the tropospheric air mass factor are cloud fraction, cloud height, surface albedo and solar geometry.

In Boersma et al. [2004] a quantitative error analysis for the tropospheric vertical NO$_2$ column is presented. For heavy polluted areas, the tropospheric NO$_2$ column is retrieved with a precision of 35% – 60%. The errors on the vertical tropospheric NO$_2$ are caused by the terms on the right hand side of equation 2.1 and show a dependence on the absolute value of the NO$_2$ column and has a minimum of approximately $1 \cdot 10^{15}$ molec/cm2, this is shown in Figure 2.4. The minimum is caused by uncertainties in the total slant column and stratospheric slant column. For large tropospheric columns the error is dominated by uncertainties in the tropospheric air mass factor.

For more information on the tropospheric NO$_2$ product, the reader is referred to Eskes et al. [2003] and Boersma et al. [2004].

![Figure 2.4](image-url)

Figure 2.4. The relation between the measurement error and the absolute NO$_2$ column. The error is calculated as explained in Boersma et al. [2004]. The solid line shows the bin averages with bin width $2 \cdot 10^{15}$ molec/cm2. The value of the minimum error is also shown.
3 Recent economical developments in China

This chapter gives some more information on NO\textsubscript{x} emissions in China, especially the expected changes. There is a large correlation between human activity and NO\textsubscript{x} emissions. In table 1.1 it can be seen that 75\% of the global NO\textsubscript{x} sources are anthropogenic sources. In this chapter the growth and regional distribution of the human activity in China will be shown and can be used as an indication for the changes in NO\textsubscript{x} emissions. Therefore, the figures in this chapter can be seen as background information of the human activities affecting the results presented in this report.

Economical development
Probable the best measure for the growth of anthropogenic activity is the growth of the Gross Domestic Product (GDP). Nowadays, China has one of the fastest growing economies of the world. In Figure 3.1 the growth of GDP is given for China during the last 15 years.

![Figure 3.1. The growth of the Chinese Gross Domestic Product from 1990 to 2004. (Source: National Bureau of Statistics of China)](image)

The figure shows that the Chinese economy is growing with a yearly average increase of about 9\%. This economic growth goes together with an increase in industrial and human activity and leads to expected increasing emissions.

Streets et al. [2003] did an inventory of emissions in Asia for 2000. For China, they found that 39\% of the anthropogenic NO\textsubscript{x} emissions are caused by power generation followed by
industry and transportation both contributing about 25%. In the future Streets et al. [2003] expect increasing emissions due to a rapid growth in vehicle ownership. To get an indication of this rapid growth, the total number of vehicles in China is shown in Figure 3.2. for the years 1995 to 2002. The figure shows a doubling in the number of vehicles in six years and still the major part of the Chinese population does not have a car.

![Figure 3.2. The number of vehicles (trucks and personal cars) in China from 1995 to 2002 (Source: National Bureau of Statistics of China)](image)

Regional distribution in China

China is one of the largest countries of the world (230 times larger than the Netherlands) and therefore there are significant regional differences. The last part of the chapter shows the regional distribution of the population and energy consumption in China. The regional distribution of population and energy consumption implicates a comparable regional distribution of air pollution. Figure 3.3 clearly presents that the major part of the Chinese population is living in the eastern part of China. Therefore, it is expected that anthropogenic NOx emissions will dominate in the East, especially in the major cities like Beijing, Shanghai, Hong Kong and Xian.

To get a better impression of regional NOx emissions, we use the regional distribution of power consumption. Because more than 90% of the Chinese power is generated by fossil fuel burning [NBS, 2004] and power generation is the most important contributor to NOx emissions in China [Streets et al., 2003; Wang et al., 2004], it is expected that high energy consumption regions are the major contributors to anthropogenic emissions. Therefore
regional power consumption is used as an indication to make a distinction in NOx emissions between the eastern provinces. In Figure 3.4 the regional power consumption is shown for the Chinese provinces during the period 1995-2002. To compare the values of different provinces the absolute consumption is scaled to the area of the provinces. In Figure 3.4 it can be seen that the absolute power consumption is the largest in Shanghai.

Figure 3.3. The population density in China. The red areas in East China are the major industrial and urbanized regions of China. (Source: map collection of University of Texas Libraries)

To get a feeling for these numbers we will compare them with the Dutch indications of human activity. The Dutch economy had an average growth of 2.7% during the years 1996-2004 [CBS]. During this period in the Netherlands, the number of vehicles increased with 30%. Although the yearly average NO2 columns over the Netherlands and China are comparable nowadays, the increase of human activity in China is much larger. Based on this information a large increase of NOx emissions is expected over China.
Trend detection and seasonal variation of tropospheric NO$_2$ over China.

Figure 3.4. The regional distribution of the power consumption for each province during the period 1995-2002. The energy consumption is scaled to the area of the province. (Source: National Bureau of Statistics of China) The inset shows the map of China with the provinces.
4 Trend detection and seasonal variation in tropospheric NO$_2$ over China.

D.H.M.U. Peters1,2, R.J. van der A1, H. Eskes1, K.F. Boersma1, H.M. Kelder1,2
1Royal Netherlands Meteorological Institute, The Netherlands
2Eindhoven University of Technology, The Netherlands

Abstract
China has one of today's fastest growing economies of the world. This increase in economical activity is connected with a strong increase of emissions of tropospheric pollutants. Here, the results are presented of a trend study on the tropospheric NO$_2$ column over China, measured by the satellite instruments GOME and SCIAMACHY. From these observations monthly averaged NO$_2$ concentrations are determined for the period 1996 to 2004 on a 1° by 1° grid. A linear model with a seasonal component is used to fit these time series. The results show a large growth of tropospheric NO$_2$ over eastern China, especially above the industrial areas with a fast economical growth. For instance, Shanghai had a yearly increase of 25% in the period 1996-2004. The variance and the autocorrelation of the noise are used to calculate the significance of the trend.

The seasonal pattern of the NO$_2$ concentration shows a difference between East and West China. In the East a NO$_2$ maximum is found during wintertime, which is theoretical expected due to chemistry and anthropogenic activity. Contrary to this, in the western part of China the NO$_2$ concentration reached a maximum in summertime. This spatial difference corresponds with the population distribution of China. Since there is no anthropogenic activity in West China this seasonal difference is attributed to natural emissions in West China.

4.1 Introduction
Nitrogen oxides (NO$_x$=NO + NO$_2$) play an important role in atmospheric chemistry. NO$_x$ has significant natural sources (e.g. lighting and soil emissions) and anthropogenic (e.g. biomass burning, fossil fuel combustion) sources. Global tropospheric NO$_2$ distributions are measured by the satellite instruments GOME (from 1995-2003) aboard ERS-2, SCIAMACHY (from 2002) aboard Envisat platform and OMI aboard EOS-AURA (from 2004). Recent studies on the tropospheric NO$_2$ columns show that the satellite measurements are suitable for improving emission inventories and air quality studies. Jaeglé et al. [2004] used GOME measurements over the Sahel to map the spatial and seasonal variations of NO$_x$, mainly caused by biomass burning and soil emissions. Martin et al. [2003] used GOME measurements to derive a top-down emission inventory. The top-down inventory in combination with bottom-up emission inventory is used to achieve an optimised posterior estimation of the global NO$_x$ emissions. Boersma et al. [2005] used GOME measurements to estimate the global NO$_x$ production by lightning. In Blond et al. [2005] SCIAMACHY measurements are validated with an air quality model and ground measurements. They showed that SCIAMACHY measurements are able to monitor the air pollution over Europe and its day-to-day changes.

In this study we focus on China for the period 1996 to 2004. We will combine GOME and SCIAMACHY measurements to obtain a 9-year dataset that is suitable for a trend study. Recent developments in China indicate a strong increase in NO$_x$ emissions due to a growing
Trend detection and seasonal variation of tropospheric NO₂ over China.

increase in industry and traffic, see Wang et al. [2004]. These emissions are concentrated on the East side of China, since this is the densely populated and industrialized part of China, as can be seen in Figure 4.1.

![China: Population Density](image)

Figure 4.1. The population density in China. The red areas in East China are the major industrial and urbanized regions of China. (Source: the map collection of University of Texas Libraries)

The variability of tropospheric NO₂ concentration is caused by variability in the NOₓ chemistry and NOₓ emissions. The NO₂ lifetime is in the order of one day depending on many factors like meteorological conditions, photolysis time scale and OH concentrations. A higher actinic flux results in a higher OH concentration (if the water vapor concentration is high enough), which reacts with NO₂ to form HNO₃, the principal sink for NOₓ. A sinus is expected to describe the seasonal pattern of the NO₂ concentration, due to the sinus characteristic of the actinic flux in China over a year.

The emissions also show a variability. In wintertime, the anthropogenic emissions are usually higher due to heating of buildings. Beirle et al. [2003] found a variability with a weekly pattern in the NO₂ concentration above Europe, related to reduced anthropogenic emissions during the weekend. Above China no weekly cycle was observed.

The combination of the variability in both chemistry and emissions leads to a seasonally dependent NO₂ concentration with an expected maximum of NO₂ in wintertime.

The objective of this study is to quantify a trend in tropospheric NO₂ using satellite data over China. Our second objective is to use the dataset to investigate the seasonality of the NO₂ columns over China. In section 4.2 a short introduction is given on tropospheric NO₂ retrieval.
The data analysis is described in section 4.3; it gives an overview of the applied model and statistics. The results of this study; the trend and the seasonal cycle of tropospheric NO$_2$ over China are shown in sections 4.4 and 4.5. Finally in section 4.6 the conclusion and outlook of this study are presented.

4.2 Tropospheric NO$_2$ retrieval

GOME and SCIAMACHY spectrometers measure backscattered light from the Earth in the UV and visible wavelength range. From the observed spectral features around 425-450 nm slant column densities (SCD) of NO$_2$ are derived with the Differential Optical Absorption Spectroscopy (DOAS) method [Platt, 1994]. The slant columns are generated from the satellite data by BIRA-IASB [Fayt and Van Roozendael, 2001]. The tropospheric NO$_2$ columns are derived from these slant columns at the KNMI [Boersma et al., 2004]. Height-dependent air mass factor (AMF) lookup tables are based on calculations with the Doubling-Adding KNMI (DAK) radiative transfer model. The NO$_2$ stratospheric column is deduced from a chemistry-transport model assimilation run of the NO$_2$ slant column data. Subsequently, the assimilated stratospheric slant column is subtracted from the retrieved DOAS total slant column provided by BIRA-IASB, resulting in a tropospheric slant column. The tropospheric vertical column is retrieved using TM4 [Dentener et al., 2003] tropospheric model profiles (co-located for each GOME and SCIAMACHY pixel individually) and combined with albedo and cloud information. The latter consists of cloud fraction and cloud top height derived by the FRESCO algorithm [Koelemeijer et al., 2003]. Only observations with a cloud fraction of less than 0.2 are used in this study. The retrieval includes surface albedo values constructed from a combination of the TOMS-Herman-Celarier-1997 and Koelemeijer-2003 surface reflectivity maps (on a monthly basis). No aerosol correction is applied. This choice is based on the realization that the cloud retrieval will be influenced by aerosol as well, and is further motivated by the error analysis presented in the work of Boersma et al. [2004]. The final NO$_2$ column data product is publicly available on the TEMIS project website [www.temis.nl] with detailed error estimates and kernel information [Eskes and Boersma, 2003]. Comparison of the NO$_2$ data with the CHIMERE air quality forecast model and a network of ground measurements has been described in Blond et al. [2005].

In Figure 4.2 the year average tropospheric NO$_2$ column of 2004 is given. The Figure shows high concentration above the highly populated regions like Beijing, Shanghai, Hong Kong and South Korea. It can also be seen that the satellite is detecting the emissions around the Yellow river (Huang He). The West of China has got a low NO$_2$ columns except for the large city Urumqi in the Northwest.
Figure 4.2. The yearly average tropospheric NO$_2$ column measured by SCIAMACHY for 2004. High values are measured above the highly populated regions like Beijing, Shanghai, Hong Kong and South Korea. The industrial area around the Yellow river (Huang He) is also noticeable and highlights the river stream.
4.3 Data analysis

The GOME data from March 1996 till March 2003 and the SCIAMACHY data from April 2003 till December 2004 have been used to analyze the trends and variability in NO$_2$ over China. The retrieved tropospheric NO$_2$ columns are gridded on a 1° by 1° grid, using weighting factors for the overlap between satellite pixel and grid cell, more information is given in appendix A. For each cell two time series are determined; a time series based on a two weeks average and one based on a monthly average. Both time series are tested for the best fit. Because of the larger sample the monthly average lead to a better and consistent time series. The absence of a weekly cycle of the NO$_2$ concentration above China makes it not necessary to compensate for lower weekend measurements. The temporal variability in the NO$_2$ columns is usually larger than the precision of the measurements. To account for both effects, the uncertainty of the monthly mean is determined by taking the sample standard deviation of the mean (see appendix A). The measurement error on the tropospheric NO$_2$ as calculated by [Boersma et al.,2004] shows a dependence on the absolute value of tropospheric NO$_2$, having a minimum error of about 1·1015 molec/cm2. This minimum error is used as lower limit for the error on the monthly average NO$_2$ concentration to avoid a non-realistic accuracy caused by a limited number of samples. In Figure 4.3 an example of a time series is given. The monthly average tropospheric NO$_2$ vertical column density is plotted against the number of months after January 1996. The small crosses are the monthly averaged values measured by GOME and SCIAMACHY. The solid line is the model fit and the remainder between model and measurement is denoted by the squares.

Two models have been used to fit the time series, a model with a linear trend and a seasonal component for the annual cycle of NO$_2$, and a model with an exponential trend. The model with the linear trend is described by the following function based on Wheaterhead et al. [1998],

$$Y_t = A + BX_t + C \sin(DX_t + E) + \delta U_t + N_t,$$ \hspace{1cm} (4.1)

where Y_t represents the monthly NO$_2$ column of month t and X_t is the number of months after January 1996, N_t is the remainder (residual unexplained by the fit function) and A, B, C, D, E, δ are the fit parameters. Parameter A represents the NO$_2$ column in January 1996, and B is the monthly trend in NO$_2$. The seasonal component contains amplitude C, a frequency D and a phase shift E. The fit of the frequency D leads to an expected period of one year, therefore this fit parameter was fixed for the final analyses. The data has also been fitted with a linear model, without a seasonal component. The analyses of this fit showed that the seasonal component was an essential part of the model. By fitting a linear growth to the logarithm of the monthly averaged NO$_2$ concentration the exponential model can be evaluated. The larger chi-squared of this fit as compared to the linear model and a large autocorrelation in the remainder showed that this model was not satisfying.

The term δU in equation 4.1 is used to fit the bias between the measurements of GOME and SCIAMACHY, where δ is the value of the bias and U_t is,
Trend detection and seasonal variation of tropospheric NO$_2$ over China.

In this equation the time T_0 ($0 < T_0 < T$) is the moment when the time series switches from using GOME to using SCIAMACHY data, which in this case is April 2003. The total number of months is denoted by T. The bias δ is fitted and checked for latitude dependence over China, and because the bias is negligible (less than 0.01×10^{15} molec/cm2), this term is not included in the final fit equation.

The remainder, N_i in equation 4.1 is the difference between the model and the measured value. Weatherhead et al. [1998] suggest modeling the remainder by

$$N_i = \phi N_{i-1} + \epsilon_i,$$

where ϵ_i is the white noise and ϕ is the autocorrelation in the remainder. The autocorrelation in the remainder is a result from time varying effects not accounted for in the model, see Tiao et al. [1990]. In this research a typical autocorrelation of 0.1 is found. The autocorrelation in the remainder affects the precision of the trend. In Weatherhead et al. [1998] a derivation is given for the precision of the trend as function of the autocorrelation, the length T of the dataset in months and the variance in the remainder, σ_N (see appendix B).

The length of the dataset in years, n, is introduced to express the precision of the trend per year. For small autocorrelations the standard deviation σ_ϕ of the trend per year is approximately given by

$$\sigma_\phi \approx \frac{\sigma_N}{n^{3/2}} \sqrt{\frac{1 + \phi}{1 - \phi}}.$$
Trend detection and seasonal variation of tropospheric NO$_2$ over China.

Figure 4.3. An example of a time series for one grid cell near Ji'an (115.5, 27.5). The Y-axis shows the NO$_2$ concentration and the X-axis shows the numbers of months from January 1996. The crosses mark the measurements by GOME and SCIAMACHY. The solid line is the fitting result, consisting of a linear growth and a seasonal component. The difference between fit and measurement is marked by the transparent squares.

4.4 Trend analysis
For each grid cell in China the model is applied, leading to a spatial distribution of each of the fitting parameters of the model. In Figure 4.4 the trend in NO$_2$ concentration is, shown as the yearly increase in tropospheric NO$_2$. In Figure 4.4 it can be seen that the trend is the highest in the eastern part of China. These regions with the highest trend correspond with the regions with a fast industrial and economical development. The fastest growing economy is in the Shanghai region, which also shows the largest growth of tropospheric NO$_2$ as can be seen in Figure 4.4. It is interesting to note that the growth above Hong Kong is less than for other regions with a high economical activity. This is probably due to the already established high economy in 1996 when our trend study started and a packet of measures against air pollution in Hong Kong during the last years.
Figure 4.4. The trend of the NO$_2$ concentration over China for the period 1996-2004.

The precision σ_B of the trend on NO$_2$ is calculated using equation 4.4. In Figure 4.5 the trend divided by the precision is shown. It is a common decision rule for trend detection that a trend B is real with a 5% significance level if $|B/\sigma_B| > 2$. In Figure 4.5, it can be seen that a real trend (white grid cells) is detected in the regions of East China with a high population and industrialized areas.

In Table 4.1 the trend estimates and start values for some major places are shown. A yearly growth is determined in terms of percentage with respect to the start value in 1996. Shanghai is one of the fastest growing industrial areas, which is reflected in a large growth in NO$_2$. In Table 4.1 it can be seen that the trend over Taipei is not significant in this period. This is probably due to measures by the government to improve the air quality in Taiwan (see Taiwanese Environmental Protection Administration: www.epa.gov.tw).
Trend detection and seasonal variation of tropospheric NO$_2$ over China. 26

Figure 4.5. The NO$_2$ trend per year divided by the standard deviation. If this value is higher than 2 (white areas) a real trend is indicated with a 95% confidence level.

The increase of industrial and economical activity results in an increase of various types of emissions. For instance, an increase of aerosols may lead to higher sensitivity of the satellite measurements for NO$_2$ present within and above the aerosol layers. Therefore, it is possible that a measured trend in NO$_2$ concentration is enhanced by a trend in aerosols. However, Boersma et al. [2004] showed that satellite-derived cloud fractions are sensitive to aerosols with a high single scattering albedo. An increase in cloud fractions over China could therefore be caused by an increase in scattering aerosols. However, a trend study of FRESCO monthly mean cloud fractions for situations with cloud fractions < 0.2 showed no significant increase in cloud fraction, and we conclude that the effect of aerosol changes in time on the derived trends in NO$_2$ is negligible.

The tropospheric slant column is calculated by subtracting the stratospheric slant column from the total slant column. To derive the vertical tropospheric column the tropospheric slant column is divided by the tropospheric air mass factor. An additional trend study is performed on the stratospheric column and the tropospheric air mass factor to make sure that the observed trend is originated in the tropospheric column. In Figure 4.6 the time series are shown for the vertical stratospheric column, the tropospheric air mass factor and the tropospheric column. The time series are based on the monthly averages for East China (110°-120°E, 20°-40°N). The tropospheric air mass factor is divided by the geometrical air mass factor. In the Figure it can be seen that there is no significant trend in the stratospheric column. However, there is a negative trend in the tropospheric air mass factor. This trend can be caused by changing temperature or albedo in time. It will not necessarily affect the derived tropospheric column. To investigate the relation of the air mass factor trend and the trend in the tropospheric column, the correlation is calculated between the relative yearly change in
the air mass factor and the relative yearly change in the tropospheric column for all grid cells in East China. A small negative correlation of -0.14 is found for the geographical pattern of both trends. From this it can be concluded that the observed trend in NO$_2$ is caused by actual higher values in the troposphere.

![Figure 4.6](image)

Figure 4.6. The time series of monthly averages of the tropospheric vertical column (down), the stratospheric vertical column (top left) and the tropospheric air mass factor divided by the geometrical air mass factor (top right). The monthly averages are calculated for East China (110°-120°E, 20°-40°N).

Table 4.1. The fitted values for some cities in East Asia. The percentage is calculated with respect to the year 1996.

<table>
<thead>
<tr>
<th>City</th>
<th>NO$_2$ concentration in January 1996 [1015 mole/cm2]</th>
<th>Linear trend in NO$_2$ [1015 mole/cm2/year]</th>
<th>Error on trend [1015 mole/cm2/year]</th>
<th>Growth (reference year 1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong</td>
<td>7.63</td>
<td>0.72</td>
<td>0.48</td>
<td>8%</td>
</tr>
<tr>
<td>Beijing</td>
<td>10.92</td>
<td>1.20</td>
<td>0.48</td>
<td>11%</td>
</tr>
<tr>
<td>Shanghai</td>
<td>5.48</td>
<td>1.44</td>
<td>0.35</td>
<td>25%</td>
</tr>
<tr>
<td>Taipei</td>
<td>4.89</td>
<td>-0.02</td>
<td>0.06</td>
<td>0%</td>
</tr>
<tr>
<td>Taipei</td>
<td>3.10</td>
<td>0.40</td>
<td>0.10</td>
<td>13%</td>
</tr>
<tr>
<td>Seoul</td>
<td>9.95</td>
<td>0.36</td>
<td>0.21</td>
<td>4%</td>
</tr>
<tr>
<td>Background</td>
<td>0.5</td>
<td>0</td>
<td>0.01</td>
<td>0%</td>
</tr>
<tr>
<td>86° x 40°</td>
<td>0.5</td>
<td>0</td>
<td>0.01</td>
<td>0%</td>
</tr>
</tbody>
</table>
4.5 The NO$_2$ seasonal cycle

The sinus in equation 4.1 is used to fit the seasonal cycle of the NO$_2$ concentration. Since the lifetime of NO$_x$ is longer in the winter due to lower OH concentrations, less sunlight and higher emissions a NO$_2$ maximum is expected in the winter [Beirle et al., 2003]. Figure 4.7 illustrates when the NO$_2$ concentration reaches its yearly maximum in China. The Figure shows that the month of the maximum in the East and South of China is according to the expected winter maximum, but in the West a NO$_2$ maximum during summertime is found. The black pixels correspond to regions where a linear fit without a seasonal component suits the time series better than a fit with a seasonal component.

The time series in Figure 4.6 illustrates the winter maximum in East China. For West China the time series of the tropospheric vertical column, the stratospheric vertical column and the tropospheric air mass factor are shown in Figure 4.8. In the Figure it can be seen that the tropospheric summer maximum in the West is not a result of the seasonal cycle of the stratospheric column. It can also be seen that the signal in the tropospheric air mass factor is too weak to explain the tropospheric NO$_2$ seasonal cycle. Therefore we conclude that the measured seasonal cycle is a result of the seasonal cycle of emissions.

![Figure 4.7](image)

Figure 4.7. This Figure shows the month where the yearly seasonal component has its maximum in NO$_2$ concentration. In East China a maximum is found during the winter and in the West of China a maximum is found during the summer. The black pixels are regions where a linear fit without a seasonal component is more accurate.
Trend detection and seasonal variation of tropospheric NO\textsubscript{2} over China.

Figure 4.8. The time series of monthly averages of the tropospheric vertical column (down), the stratospheric vertical column (top left) and the tropospheric air mass factor divided by the geometrical air mass factor (top right). The monthly averages are calculated for West China (80°-100°E, 30°-42°N).

The western part of China has a low population density (see Figure 4.1). Due to the low population density in this part of China natural emissions are expected to dominate the tropospheric column. In Figure 4.6 it can be seen that in the North West, above the large city Urumqi, a winter maximum is found, which strengthens the idea that the summer maximum in NO\textsubscript{2} over the rest of West China is caused by natural emissions.

The contribution of lightning to the tropospheric NO\textsubscript{2} column is strongest in the tropics, with an estimated maximum of 0.4 \(10^{15}\) molec/cm2 [Edwards et al., 2003, Boersma et al., 2005]. Because the difference between summer and winter tropospheric columns is typical of the order 1.0 \(10^{15}\) molec/cm2, lightning alone cannot account for all the natural emissions in West China. Bryan et al. [2003] show that there is no biomass burning above the western part of China. In Yienger et al. [1995] it is suggested that in remote agriculture regions soil emissions contribute 50\% to the total NO\textsubscript{x} budget and that in July these percentages can rise to more than 75\%. Yienger et al. [1995] also suggested that soil NO\textsubscript{x} emissions are temperature dependent, soil dependent and precipitation dependent. A higher surface temperature leads to more NO\textsubscript{x} emissions, which would explain higher NO\textsubscript{x} concentrations in summer time. They also found higher NO\textsubscript{x} emissions for grassland that together with desert and scrub land form the main soil composition in West China. Another effect that increases soil NO\textsubscript{x} emissions in
summertime is "pulsing", which is described in [Yienger et al., 1995] and [Jaeglé et al., 2004] as an increase in NO\textsubscript{x} measured after a shower of rain. From the IRI/LDEO Climate Data library it can be seen that in the west part of China it is only raining in the summer season. This also contributes to enhanced NO\textsubscript{2} concentrations during summertime. In appendix C more information is given on lightning and soil emissions over China.

4.6 Conclusions

The tropospheric NO\textsubscript{2} columns measured by GOME and SCIAMACHY are used for trend analysis in China. The columns are regridded to 1° by 1° grid cells. For each grid cell a monthly averaged NO\textsubscript{2} concentration is determined. A linear model with a seasonal component is used to fit the time series of NO\textsubscript{2} concentrations. By applying this model to each grid cell a spatial distribution of the fit parameters is calculated. The remainder of the model and the measured values is used to calculate the precision of the fitted trend.

It can be concluded that the 9 years long NO\textsubscript{2} dataset from GOME and SCIAMACHY can be used for trend analysis in the eastern part of China. In this high populated and industrial area the trend is large enough to be significant. For instance Shanghai had a yearly increase of 25% in 1996. For other regions longer time series are needed to detect a significant signal.

The seasonal cycle of tropospheric NO\textsubscript{2} is determined for China. In the eastern part of China a theoretical expected winter maximum is found. In the western part of China this cycle shows a NO\textsubscript{2} maximum in summer time. As there is no anthropogenic activity in Western China, this cycle is caused by natural emissions, especially soil emissions and lightning.

The bias between the GOME and SCIAMACHY measurement series is negligible and does not show any latitude dependence. This shows the consistency in the retrieval method of tropospheric NO\textsubscript{2} and shows the possibility to use long time series of different instruments, which will be needed to detect a significant trend for regions without a large trend.

We know that emissions are increasing over China [Streets et al., 2003; Wang et al., 2004]; this study shows that the satellite measurements are able to measure this increase. New emissions inventories in combination with model studies are needed to validate whether the increase in the NO\textsubscript{2} column is fully caused by the increase of NO\textsubscript{x} emissions.
5 Conclusions and Outlook

This study is an example of using satellite data for monitoring the changes in the atmospheric composition. The satellite instruments GOME and SCIAMACHY provide a global dataset of tropospheric NO$_2$ of the last 10 years. This data is used to find answers on three questions on the tropospheric NO$_2$ column over China; 1) is there a trend and what is the value, 2) what is the seasonal cycle, and 3) how to interpret the answers to these questions.

We can conclude that the unique dataset is suitable for trend detection in tropospheric NO$_2$. In East China, above the economical developing regions, a significant trend is measured. The largest trend is found above Shanghai, with a yearly increase of 25% in the tropospheric NO$_2$. Other regions where a significant trend is detected include Beijing, Jinan, Chengdu and Chongqing.

The seasonal cycle of tropospheric NO$_2$ over China shows a difference between East and West China, this corresponds with the geographical distribution of the population density. A winter maximum is found for eastern China, where anthropogenic emissions dominate. In West China a summer maximum is found in the tropospheric NO$_2$ columns. This region is characterized by the dominance of soil emissions and lightning.

We concluded that the Chinese regions with an increase in NO$_2$ columns correspond with highly economical developing areas. However, there are worldwide more regions with comparable human activity. Therefore, it is interesting to do a global trend study to focus on regions like Western Europe and the United States, which are characterized by comparable emissions.

This study illustrates that from a 9 years dataset only a significant trend can be measured above the industrial hot spots. For other regions a longer dataset is required, to which can be contributed by the ozone monitoring instrument (OMI) aboard the recently launched platform EOS-AURA. The advantage of OMI is that it is able to produce daily global maps on a higher resolution.

The measured seasonal cycle gives an indication of the regional dominating NO$_x$ source. By doing a global study on the NO$_2$ seasonal cycle it is possible to distinguish NO$_x$ sources. For instance it is expected that satellites instruments can measure the seasonal variation of biomass burning over Africa.

The increased NO$_x$ columns are caused by increasing emissions. However, it is difficult to translate a trend in the columns to a trend in emissions, because chemical regimes can be changed. For this translation chemical transport model runs are necessary: by comparing the measured columns with the model columns the emission database can be updated. Chemical transport model runs are also necessary to distinguish the NO$_x$ sources in West China, to quantify NO$_2$ from each of the sources, e.g. lightning or soil emissions.
6 References

Trend detection and seasonal variation of tropospheric NO₂ over China.

7 Acknowledgements

I would like to give special thanks to Ronald van der A, my supervisor at the KNMI. I am Ronald very thankful for the comments, input and discussion on my research study, he let me enjoy science. I also need to thank Ronald and Hennie Kelder for arranging funding for my trip to Beijing and two conferences, which I enjoyed very much. A grateful word I have to address to Hennie Kelder, for awaking my interest on atmospheric physics and giving me this opportunity to do this study.

There are many other people from the Atmospheric Composition division of the KNMI who helped me during this year. I will not name them all, except Folkert Boersma, I would thank him for having always time for discussion. Because I had RSI symptoms, after my visit of Beijing, I also want to thank my brother and mother for helping me with writing this report.
Appendix A. Data analysis

GOME has a pixel size of 320 km by 40 km and SCIAMACHY has a pixel size of 60 km by 30 km. To do trend study the satellite measurements are redistributed to a fixed grid. In this research a grid with a 1° by 1° resolution is chosen. This choice is based on the finest possible grid without losing the representativity of the satellite measurement and having enough number of measurements for each grid cell.

The satellite measured pixels are gridded by using weighting factors for the overlap between the satellite pixel and the grid cell, see Figure A1 for an example. The weight factor \(w_i \) is the fraction of the satellite pixels that is covers a grid cell.

![Figure A1. Example of a GOME satellite pixel (large) and a SCIAMACHY pixel (small) over a 1° by 1° grid.](image)

The monthly average columns for one grid cell are calculated by taking the weighted average of all measurements in one month covering the grid cell,

\[
y = \frac{\sum_{i=1}^{L} w_i y_i}{\sum_{i=1}^{L} w_i},
\]

(A1)
where y_i is the measured tropospheric NO$_2$ column and \bar{y} is the best estimated monthly average NO$_2$ column based on the sample. L is the total number of measurements for one grid cell in one month. In this way time series based on monthly averages are made for each grid cell. Also time series based on a two weeks period are tested. But this leads to higher variability in the two weeks average columns due to small sample sizes and does not increase the significance of the fit parameters.

To fit time series realistic an error bar is needed for the monthly average column density. In Boersma et al. [2004] a quantitative error analysis is given for the tropospheric NO$_2$ column; therefore it is possible to calculate an error on the column density, based on the retrieval method. However, the variability in the NO$_2$ column during a month is usually higher than the precision of the measurements. Therefore the precision of the monthly mean is determined by taking the standard deviation of the mean (σ_m). Because we use weight factors for pixel overlap, the sample standard deviation (σ_{ssd}) is calculated by,

$$\sigma^2_{ssd} = \frac{\sum_{i=1}^{L} w_i (y_i - \bar{y})^2}{\sum_{i=1}^{L} w_i}. \quad (A2)$$

To calculate the standard deviation of the mean, we introduce the monthly mean μ.

$$\sigma^2_{ssd} = \frac{\sum_{i=1}^{L} w_i \left((y_i - \mu) - (\bar{y} - \mu) \right)^2}{\sum_{i=1}^{L} w_i} = \frac{\sum_{i=1}^{L} w_i (y_i - \mu)^2 + \sum_{i=1}^{L} w_i (\bar{y} - \mu)^2 - 2 \sum_{i=1}^{L} w_i (y_i - \mu)(\bar{y} - \mu)}{\sum_{i=1}^{L} w_i \sum_{i=1}^{L} w_i \sum_{i=1}^{L} w_i} \quad (A3)$$

The first term on the right hand side is the squared of the standard deviation (σ^2), the second term on the right hand side is the squared of the standard deviation of the mean (σ^2_m), the last term can be written as twice the squared of the standard deviation of the mean. Therefore, equation A3 can be written as,

$$\sigma^2_{ssd} = \sigma^2 - \sigma^2_m. \quad (A4)$$

The relation between σ^2 and σ^2_m can be determined from expression A1 and applying error propagation. Based on error propagation the standard deviation of the mean can be calculated from equation A1,
From equation A1 can be derived that,

\[\frac{\partial y}{\partial y_i} = \frac{w_i}{\sum_{i=1}^{L} w_i} \]

(A6)

The standard deviation on a single measurement \(\sigma_{y_i} \) is taken constant \(\sigma \) for all measurements. We can write equation A5 now as,

\[\sigma_m^2 = \frac{\sigma^2}{\left(\sum_{i=1}^{L} w_i \right)^2} \sum_{i=1}^{L} w_i^2. \]

(A7)

We now have a relation between combining \(\sigma^2 \) and \(\sigma_m^2 \). Combining equation A4 and A7 leads to the standard deviation of the mean for a sample,

\[\sigma_m^2 = \frac{\sigma_{std}^2}{\left(\sum_{i=1}^{L} w_i \right)^2 - 1}. \]

(A8)

The measurement error on the tropospheric NO\(_2\) column as calculated by Boersma et al. [2004] shows a dependence on the absolute value of the column. The error has a minimum of approximately \(1 \cdot 10^{15} \) molec/cm\(^2\), see Figure 2.4. This minimum error is caused by errors in the total slant column and the slant stratospheric column. The minimum error is used as lower limit for the error on the monthly average NO\(_2\) concentration to avoid a non-realistic accuracy caused by a limited number of samples.
Appendix B. Precision of the trend

We will derive an approximation of the precision of the trend \(\sigma_T \) in equation 4.1. This precision is used to estimate whether the measured trend is significant. In this derivation the seasonal component and the intervention term are omitted. According to Wheaterhead et al. [1998] omitting the seasonal component does not have much influence on the statistical properties of the other fit parameters. However the seasonal component is essential for modeling the time series. To make this omitting plausible, the covariance matrix is calculated numeric for several pixels. From this covariance matrix the correlation matrix is obtained. This matrix shows that there is not a large correlation between the seasonal component and the trend.

The advantage of omitting the seasonal component is that we can derive an analytical expression for the precision of the trend. The number of months is denoted by \(T \). The model is expressed in the form,

\[
Y = X\beta + N, \tag{B1}
\]

where \(Y \) is the \(T \times 1 \) vector of the monthly means and \(T \) is the number of months. \(\beta \) represents the fit parameters \((A,B)' \) and \(N \) is the \(T \times 1 \) vector of the noise terms. \(X \) is a \(T \times 2 \) matrix and consists of a constant and a time series, expression B1 can also be written as

\[
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_T
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
1 & 2 \\
\vdots & \vdots \\
1 & T
\end{bmatrix} \cdot
\begin{bmatrix}
A \\
B
\end{bmatrix} +
\begin{bmatrix}
N_1 \\
N_2 \\
\vdots \\
N_T
\end{bmatrix}. \tag{B2}
\]

The remainder \(N \) is the unexplained part, it is assumed that \(N \) is autoregressive of the first order,

\[
N_t = \phi N_{t-1} + \epsilon_t, \tag{B3}
\]

where \(N_t \) is the remainder of month \(t \), \(\phi \) is the autocorrelation in the noise and \(\epsilon_t \) are random and independent variables with mean zero, a variance of \(\sigma^2_\epsilon \) and \(\text{cov}(\epsilon) = \sigma^2 I \). It will be assumed that \(-1 < \phi < 1 \). Tiao et.al. [1990] showed that this model is adequate for taking account of autocorrelation, which frequently exist in atmospheric data. It follows that if equation B3 is written as \(N_t - \phi N_{t-1} = \epsilon_t \), the noise vector \(N \) can be transformed to \(\epsilon \) by multiplication of matrix \(P \). Matrix \(P \) can be expressed as
Trend detection and seasonal variation of tropospheric NO2 over China.

\(P = \begin{pmatrix}
\sqrt{1 - \phi^2} & 0 & \cdots & 0 \\
-\phi & 1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -\phi & 1
\end{pmatrix} \) \hspace{1cm} (B4)

Taken the \((1,1)\) element equal to \(\sqrt{1 - \phi^2}\) is suggested by Wheaterhead et al. [1998]. This is adopted from the Prais-Winsten algorithm to utilize the first observation [Yaffee, 2000]. The model for the time series of equation B1 will now be transformed by multiplying B1 with \(P\).

\[
PY = PX\beta + PN
\]
\[
Y^* = X^*\beta + \varepsilon \hspace{1cm} (B5)
\]

The advantage of this transformation is that the properties of the remainder \(\varepsilon\) allow us to apply the Ordinary Least Squares (OLS) method. The precision of the trend can be found in the covariance matrix of the OLS best estimate \(\hat{\beta} = (X^{**}X^*)^{-1}X^{**}Y^*\). \(\text{Cov}(\hat{\beta})\) is given by

\[
\text{cov}(\hat{\beta}) = \text{cov}\left\{ (X^{**}X^*)^{-1}X^{**}Y^*, Y^*X^* (X^{**}X^*)^{-1} \right\}
\]
\[
= (X^{**}X^*)^{-1}X^{**}\text{cov}\{Y^*, Y^*\}X^* (X^{**}X^*)^{-1}
\]
\[
= \sigma^2 (X^{**}X^*)^{-1}, \hspace{1cm} (B6)
\]

where \(X^{**}X^*\) is a 2 x 2 matrix,

\[
X^{**}X^* = \begin{pmatrix} h_1 & h_2 \\ h_2 & h_3 \end{pmatrix} \hspace{1cm} (B7)
\]

The variance of the trend is given by the \((2,2)\) element of the covariance matrix,

\[
\text{var}(\hat{\beta}) = \sigma^2 \frac{h_1}{h_1 h_3 - h_2^2}, \hspace{1cm} (B8)
\]

The elements \(h_1, h_2\) and \(h_3\) will shortly be worked out.
Trend detection and seasonal variation of tropospheric NO$_2$ over China.

\[h_1 = \sum_{u=1}^{T} X_{iu}^* X_{u1}^* = \begin{bmatrix} \sqrt{1-\phi^2}, 1-\phi, \ldots, 1-\phi \end{bmatrix} \begin{bmatrix} 1-\phi \\ \vdots \\ 1-\phi \end{bmatrix} = (T-1)(1-\phi)^2 + (1-\phi^2) \] \hspace{1cm} (B9)

\[h_2 = \sum_{u=1}^{T} X_{iu}^* X_{u2}^* = \begin{bmatrix} \sqrt{1-\phi^2}, 1-\phi, \ldots, 1-\phi \end{bmatrix} \begin{bmatrix} 2-\phi \\ \vdots \\ T-(T-1)\phi \end{bmatrix} = (1-\phi) \left[\frac{T(T-1)}{2} (1-\phi) + \phi + T \right] \] \hspace{1cm} (B10)

\[h_3 = \sum_{u=1}^{T} X_{2u}^* X_{u2}^* = \frac{1}{6} T(T+1)(2T+1)(1-\phi)^2 + T^2\phi(1-\phi) + T\phi - \phi^2 \] \hspace{1cm} (B11)

To calculate h_3 the relation \[\sum_{n=1}^{T} n^2 = \frac{1}{6} T(T+1)(2T+1) \] is used. The last two terms on the right hand side of B11 is the correction for using $n = u^2(1-\phi)^2$ in stead of $n = (u-(u-1)\phi)^2$. For small autocorrelations and large T a close approximation for equation B8 is,

\[\text{var}(\hat{B}) = \sigma_e^2 \frac{12}{T^3(1-\phi)^2}. \] \hspace{1cm} (B12)

The relation between σ_e^2 and σ_N^2 can be derived from expression B3,

\[\sigma_N^2 = \frac{\sigma_e^2}{(1-\phi^2)}. \] \hspace{1cm} (B13)

With this relation the final approximation for the precision of the monthly trend (σ_{BM}) can be found by taking the square root of B12,

\[\sigma_{BM} = \frac{\sqrt{12\sigma_N}}{T^{3/2}} \sqrt{\frac{1+\phi}{1-\phi}}. \] \hspace{1cm} (B14)

In the article a trend per year is used (σ_B). For a precision on the trend per year equation B14 can be written as,

\[\sigma_B \approx \frac{\sigma_N}{n^{3/2}} \sqrt{\frac{1+\phi}{1-\phi}}, \] \hspace{1cm} (B15)

where n is the number of years.
Appendix C. Background on natural emissions.

In the introduction to NO\textsubscript{x} chemistry is mentioned that soil emissions and lightning are the two main natural NO\textsubscript{x} sources. In this appendix we will work out these two sources. It will be shown that the natural sources in West China lead to NO\textsubscript{2} columns with a summer maximum. Based on the vegetation type and the seasonal pattern of rain, temperature and lightning we conclude that soil emissions and lightning are the sources of the summer maximum. First the main properties that effect the soil emissions are discussed. This is done by a small literature overview. Secondly, these properties are used to show that the NO\textsubscript{2} summer maximum is mainly caused by soil emissions. Third, it is shown that lightning over west China only occurs during summertime.

Soil emissions

NO\textsubscript{x} emissions from soil are a result of microbial processes. The emissions are a by product of nitrification and denitrification [Parton et.al., 2001]. Nitrification is the conversion of NH\textsubscript{4} to NO\textsubscript{3} by bacteria and denitrification is the conversion of NO\textsubscript{3} to N\textsubscript{2}. Parton et.al. [2001] used a model to calculate the N\textsubscript{2}O soil emissions. Subsequently, they determined a NO\textsubscript{x}: N\textsubscript{2}O emission proportion based on soil parameters to calculate the NO\textsubscript{x} emissions. They used input parameters like NH\textsubscript{4} and NO\textsubscript{3} concentrations, water filled pore space, temperature, pH, texture and rain events. Yienger et al. [1995] used a model to calculate direct the NO\textsubscript{x} emissions based on temperature, vegetation type, precipitation, nitrogen fertilisation, soil moisture, biomass burning and canopy reduction.

The simulated NO\textsubscript{x} emissions from both models show a seasonal pattern with a summer maximum. They also show a large contribution and influence of rain events on NO\textsubscript{x} emissions. In Jaeglé et al. [2004] is shown that GOME is able to measure higher NO\textsubscript{x} concentration after a shower of rain. According to Yienger et al. [1995] the strongest contribution to global soil emissions are agriculture, grassland and tropical rain forest.

We will now focus on China and the parameters, which are available for China. The relation between soil NO\textsubscript{x} emissions and temperature, vegetation type and rain events is given for China. The soil temperature has a maximum in summer. This contributes to the expectation that the emissions have a maximum in summertime, because there is a positive correlation between soil temperature and soil NO\textsubscript{x} emissions [Yienger et al., 1995]. The vegetation type is an other important parameter for describing soil emissions. In Figure C1 the vegetation of China is given. In the Figure, it can be seen that the main vegetation type in west China is grassland, scrubland and desert. According to Yienger et al. [1995] NO\textsubscript{x} soil emissions can be expected in summertime for grassland and scrubland. The global model of Yienger et al. [1995] does not include the possibility that dessert and arid scrubland have NO\textsubscript{x} emissions. However, they suggest that those areas might have emissions induced by rain also known as the “pulsing effect”.

Figure C1. The vegetation type in China based on MODIS data. This plot is provided by Dr. Guicai Li from the NSMC in China.

The work of Yienger et al. [1995], Parton et al. [2001] and Jaeglé et al. [2004] show the important of the pusling effect. Therefore, we will have a closer look on the rain data. In Figure C2 are examples shown of the average rain fall for some weather stations in West China. It can be seen that the rain fall in West China occurs mostly during summertime.
Trend detection and seasonal variation of tropospheric NO₂ over China.

Figure C2. The yearly average accumulated rain (up) and the last year rain events (down) for Zhangye (38.9, 100.5) and Kuqa (41.7, 82.9) in West China. Time series for other weather stations can be found at the Climate Prediction Centre (www.nws.noaa.gov).

The result of these studies strengthens the idea that the measured summer maximum is partly caused by soil emissions.

Lightning

Rain showers often induce lightning, which creates NO_x. Figure C3 shows the number of lightning events in January 1998 and July 1998, observed by the Optical Transient Detector (OTD). In the Figure, it can be seen that lightning in West China only occurs during the summer. Here, we only show the numbers of lightning events for the year 1998, however, the other years show the same seasonal pattern. Data of the other years can be found at http://thunder.msfc.nasa.gov/data/OTDsummaries/.
Figure C3. The number of lightning events in China for January (left) and July (right) 1998, from http://thunder.msfc.nasa.gov/data/OTDsummaries/