Spontaneous formation of one-dimensional Rydberg crystals in an ultracold gas

Citation for published version (APA):

Document status and date:
Published: 11/10/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.
If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Rydberg atoms have experimentally interesting properties such as strong long-range Van der Waals interactions and the dipole blockade effect. In optical lattices the blockade effect ensures that only one Rydberg excitation per site is allowed, effectively creating a Rydberg crystal. We theoretically show that it is also possible for a one-dimensional Rydberg crystal to spontaneously form in a random ensemble of atoms, e.g. a magneto-optical trap. This is done using an existing Monte Carlo model [1] to simulate the excitation dynamics inside the intersection of two lasers for a two-step excitation scheme. With a blue-detuned laser for the upper transition, the first Rydberg excitation will occur after a relatively long time. That first Rydberg atom will then seed further Rydberg excitations, as the blockade effect shifts atoms at a certain distance into resonance. If two dimensions of the laser intersection are smaller than the blockade radius, a one-dimensional Rydberg crystal will form.


Quantum non-demolition measurements came up in the eighties [1] in connection to the design of interferometric gravitational wave detectors and have recently triggered interest again since several experimental groups succeeded in beating the standard quantum limit [2,3]. We present an optomechanical setup for evading classical measurement-induced backaction. Following a theoretical proposal by Clerk et al. [4], we use a cavity with a movable end mirror (trampoline resonator) and an amplitude-modulated cavity drive. This enables us to measure one single mechanical quadrature of the resonator with in principle infinite precision. We aim to extend the setup so that also quantum measurement backaction coming from the particle nature of light can be evaded.


We investigate the propagation of quantum states in massively multichannel networks. The networks consists of an array of five thousand nearest-neighbour coupled silicon nitride waveguides. The control is achieved using adaptive phase modulation of the light incident in every waveguide. In this way we realize massively multichannel linear optical networks with programmable quantum correlations, without tuning the network itself. We will report on the progress of this research and show first results.

We discuss these calculations in the context of our recent experimental measurements.

Beam splitters are primitive components in any linear optical quantum network. When two indistinguishable single photons are incident on the two input ports of a lossless symmetric beam splitter, they both exit the beam splitter through the same output port. This is the well-established Hong-Ou-Mandel (HOM) interference. With the advent of complex wavefront shaping of light in a multiple scattering medium, programmable beam splitters for coherent light have been demonstrated. These beam splitters support any arbitrary phase relation between the two output ports and hence are asymmetric. Furthermore, the light lost due to the partial control of the incoupled light in the scattering medium results in lossy asymmetric beam splitters. Here, we derive the output states of these beam splitters and discuss the dependence of the HOM visibility on the phase difference between the output ports. We discuss these calculations in the context of our recent experimental measurements.