3D face tracking for infant monitoring using dense HOG and drift reduction

Citation for published version (APA):

Document license:
CC BY-SA

Document status and date:
Published: 01/01/2016

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Jun. 2019
3D Face Tracking for Infant Monitoring Using Dense HOG and Drift Reduction

Ronald W.J.J. Saeijsa, Walther E. Tjon a Tenb, and Peter H.N. de Witha
aDepartment of Electrical Engineering, Eindhoven University of Technology, The Netherlands
bDepartment of Pediatrics, Máxima Medical Center Veldhoven, The Netherlands

Abstract

This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. Drift reduction is obtained from re-registration in combination with multi-pose state estimation by a square-root unscented Kalman filter. Results on videos of moving infants in hospital show good tracking for poses up to 50 degrees from upright-frontal, with mean eye-location error relative to inter-ocular distance below 9%.

1. Introduction

This paper considers infant face tracking for video analysis of facial pain expression in a clinical context, e.g. for monitoring infants suspected of gastro-esophageal reflux disease (GERD). In this context, the tracking problem has three characteristics that existing solutions cannot handle. Firstly, with infants, and especially very young ones, facial texture is less pronounced than with adults. For example, infants do not have prominent eyebrows and their eyes are often closed. Secondly, parts of the face may be covered. For example, in case of monitoring for GERD, there are plasters on the face and a tube into the nose. Also, infants may have a pacifier in their mouth, with a large variety of appearances, and cuddles, blankets, etc. may partly obscure the face. Thirdly, infants being monitored are not oriented towards a camera, and more cameras may be needed to keep the face in view. For example, in case of monitoring for GERD, infants are in bed where they can shift and turn their head. As a result, tracking has to handle wide pose ranges.

We propose a face tracking algorithm to accommodate the above characteristics. Focusing on the first two (texture and occlusion), we give its single-camera version. However, it is developed to extend to multiple cameras so as to fully accommodate the third characteristic. For details see [3, 4].

2. Approach and related work

We model the face as part of the head and solve the more general problem of tracking 3D head pose. This enables maximum use of image information for robustness, because visible features of both face and non-face parts of the head can be used. It also allows to extend to multi-camera setups.

For general face tracking, state-of-the-art approaches are based on aligning a deformable face model to input images, with models covering all variations of shape and appearance. This is not feasible here, because of wide pose ranges, unknown appearances of plasters, pacifiers, etc. Instead, we follow other approaches that recover head motion using an assumed 3D head shape. In particular, we follow [5] where Lucas-Kanade template alignment is used with a cylinder head model. As innovation, we use densely sampled HOG features (instead of pixel intensities), which can improve Lucas-Kanade alignment [1]. In addition, we use insights from [2] to define a probabilistic version of drift reduction.

3. Basic tracking algorithm

We assume full-perspective image projection, while modeling the infant head as a 3D cylinder, with its pose defined by a 3D rigid-body transformation (using a 6-dim. vector \([\omega_x, \omega_y, \omega_z, t_x, t_y, t_z]\) of exponential coordinates).

Our aim for tracking is to estimate the pose of the head in each new image by aligning templates derived from older images. Here, a template is a set of 3D points on the head surface with associated appearance values and the intuition that it represents a textured part of the head. We can derive a template from a given image with a given pose, by reverse-projecting pixel locations (with their appearance values) onto the head surface. For initialization, we need the pose in the initial image and a specification of the head surface.

As building block for our algorithm, we use an alignment step that takes an image and a template and a start pose. It yields a new pose that aligns the template with the image by minimizing the sum-of-weighted-squared-errors of its 2D projection. To implement this, we use the Lucas-Kanade (LK) method for gradient descent optimization with...
template point weights \(w = w_D \cdot w_R \) adapted per LK-iteration. Here, \(w_D \) relates to image projection of the head (so that points seen from the side contribute less than points seen from the front), and \(w_R \) relates to the IRLS method of [5] to handle noise, non-rigid motion and occlusion (so that points with large errors for the current pose contribute less). For robustness, every alignment step is preceded by outlier removal. For removal, we pick a reference image and use the pose computed earlier for this image to project the template and remove template points with a large error. In the basic algorithm we use one alignment step for each image, with a template derived from the preceding image and using its predecessor as reference for outlier removal.

As a main innovation from [5], we have re-defined all of the above to use dense-HOG features instead of pixel intensities. As shown in [3], this significantly improves accuracy.

4. Algorithm extensions for drift reduction

The basic algorithm from Section 3 may drift because alignment errors accumulate during tracking. We introduce two options for extending the algorithm for drift reduction. Both options add a second alignment step for each image. This second step uses another template that is derived from a key image with a pose that is ‘close’ to the pose resulting from the first alignment step. For the second step, we use the pose resulting from the first alignment step as start pose, and the preceding image as reference for outlier removal. In both options, we select a limited set of key images during tracking, in such a way that their poses are just ‘far’ enough apart. (To define ‘close’ and ‘far’, we set thresholds on the differences of both the angles and the positions of poses.) The two options differ in treating key and reference poses as either fixed values or probabilistic estimates, as follows:

For the first algorithm option, we output poses per image and consider them fixed forever. As a result, templates from key images are derived once and then stored and re-used.

For the second option, we consider poses as probabilistic estimates. Based on Method 3 in [2], the idea is to keep improving estimates for key images and reference images that may still be used in the future. For this, we define a ‘multi-pose’ vector composed from the exponential coordinates of the poses associated with the (dynamically updated) set of key images and reference images. We model this multi-pose as a multivariate Gaussian distribution and we maintain the probabilities. As shown in [3], this significantly improves accuracy.

5. Experimental results and conclusions

For experiments, we used video from handheld cameras of infants in bed, relaxed or in pain (see Figure 1). Table 1 shows accuracy for 10 sequences with angle \(\theta \) of rotation from upright-frontal (with respect to the camera) limited to 50 degrees so that both eyes are visible. (Note: one \(\theta \)-value corresponds to many combinations of yaw, pitch, and roll.) For this, we use ELE (eye location error relative to interocular distance) in a normalized front view (cf. Figure 1). It shows good tracking behavior, with mean ELE below 0.09.

![Figure 1: Example frames. Left to right: Sequence 2, 8, 9. Top: original. Mid: input with front-of-posed-cylinder output (green visible, yellow not). Bottom: normalized front view (green eye location, yellow ground truth).](image)

<table>
<thead>
<tr>
<th>nr.</th>
<th>length (#frames)</th>
<th>estimated (\theta) (degrees)</th>
<th>with re-use probabilistic ELE</th>
<th>with re-use probabilistic max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>982</td>
<td>7.9</td>
<td>48.0</td>
<td>0.026</td>
</tr>
<tr>
<td>2</td>
<td>750</td>
<td>13.4</td>
<td>47.1</td>
<td>0.046</td>
</tr>
<tr>
<td>3</td>
<td>430</td>
<td>5.8</td>
<td>34.0</td>
<td>0.071</td>
</tr>
<tr>
<td>4</td>
<td>739</td>
<td>7.0</td>
<td>22.5</td>
<td>0.037</td>
</tr>
<tr>
<td>5</td>
<td>458</td>
<td>8.4</td>
<td>43.6</td>
<td>0.044</td>
</tr>
<tr>
<td>6</td>
<td>1274</td>
<td>0.7</td>
<td>41.9</td>
<td>0.051</td>
</tr>
<tr>
<td>7</td>
<td>1007</td>
<td>3.7</td>
<td>48.6</td>
<td>0.021</td>
</tr>
<tr>
<td>8</td>
<td>466</td>
<td>21.5</td>
<td>32.4</td>
<td>0.039</td>
</tr>
<tr>
<td>9</td>
<td>760</td>
<td>13.7</td>
<td>32.9</td>
<td>0.054</td>
</tr>
<tr>
<td>10</td>
<td>480</td>
<td>20.8</td>
<td>31.9</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Table 1: Tracking accuracy.

References