Visual comfort of luminescent solar concentrators in offices
Vossen, F.M.; Aarts, M.P.J.

Published in:

Published: 01/01/2014

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 04. Dec. 2018
Introduction

The need for energy conservation in buildings has spurred innovations in (window) technologies. One of these innovative technologies is the Luminescent Solar Concentrator (LSC). The LSC is a device, employing a polymeric of glass waveguide and luminescent molecules to generate electricity from sunlight when attached to a photovoltaic cell. Such a device has the potential to find extended use in an area traditionally difficult for effective use of regular photovoltaic panels: the built environment.

However, a major issue in the use of LSC as a window technology is the color of the dye on the glass essential for the energy performance of the device. The colored glass alters the daylight penetrating into the room in terms of wavelength, distribution and luminous flux. All this affects the perception and quality of a space and therefore the acceptance of the user.

The objective of this research is to find the optimum percentage of LSC in terms of energy efficiency related to the preference and acceptance of the user. A sub question is whether the tolerance of people towards colored glazing changes when they are aware of the fact that the colored glass is part of a sustainable device.

Methods

Furnished scale models (1:6) of a day lit office room are made and evaluated (Figure 1), using different percentages of colored glass in the transparent façade (Dubois et al., 2007). For this evaluation, 40 test subjects in the age between 21 and 28 are asked to complete questionnaires. The subjective ratings obtained from the questionnaire responses are analyzed statistically with SPSS statistics. Different light measurements are done to assess the illuminance, luminance and spectral irradiance inside and outside the scale model and to link the subjective ratings to objective light values.

Results

The pilot studies demonstrate that in general the visual impression is scored increasingly positive in linear proportion as the percentage of colored glass decreases. Surprisingly, people valued the transparent façade with 25% of colored glazing as more comfortable than a fully transparent façade (0% of colored glazing). When people are informed about the energetic aspect, 1/3 accepts a higher percentage of colored glass in the transparent façade than without knowing.

The full experiment is planned in September and October 2014. Results will be presented in December at the Eindhoven University of Technology.

Reference