An on-line compensation of input additive disturbances: an evolving Gaussian process models approach

Citation for published version (APA):

Document status and date:
Published: 01/01/2016

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
An on-line compensation of input additive disturbances: an evolving Gaussian process models approach

Mohamed A. H. Darwish and Roland Tóth

†CS Group, EE department, Eindhoven University of Technology, The Netherlands.

Motion control

\[M(q(t))\ddot{q}(t) + F_0(q(t), \dot{q}(t)) = u(t) \]

Known forces
First principles

\[F_1(q(t), \dot{q}(t)) \]

Unknown disturbances
Nonlinear, time-varying
Data-driven modeling

Case study: compensation of input additive disturbances for servo positioning system

How to compensate for disturbance, i.e., to estimate \(w(t) \)?

Nonparametric regression, e.g., LLR or GPR + Efficient on-line learning

Figure 1: Servo positioning system with mechanical friction brake that can be manually engaged. The additional mass can be added for the gravity compensation experiment.

\[M(\cdot)\ddot{q}(t) + F_0(\cdot)\dot{q}(t) = u(t) \]

known dynamics
unknown disturbances

\[u(t) = u_n(t) + w(t) \]

nominal control (PD)
disturbance compensation

Nonparametric regression for disturbance compensation

Efficient on-line learning of disturbances;
Selection of input/output regressors.

References

Acknowledgments

This research has benefited from the financial support of the Student Mission, Ministry of Higher Education, Government of Egypt.