Cleaning output of tractography via fiber to bundle coherence, a new open source implementation

Citation for published version (APA):

Document status and date:
Published: 26/06/2016

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Nov. 2019
Purpose

The output of tractography algorithms often contains spurious fibers, which are isolated and poorly aligned with the surrounding bundle of fibers. The fiber to bundle coherence (FBC) [1] provides us with a quantitative measure of fiber alignment and is therefore useful in pruning the results of tractography algorithms by removing spurious fibers that are identified by a low FBC. Here we propose a novel open-source module included in the DIPY (Diffusion Imaging in Python) library [2].

Fiber to Bundle Coherence measures

Fibers resulting from tractography are lifted to 5D curves by including the local orientation of the tangent to the fiber. In order to include a notion of alignment between neighboring fiber tangents, we embed the 5D domain with the non-flat differential metric that takes into account that the angular components are determined by the structure of the rigid body motion Lie Group SE(3) together with a sub-Riemannian metric.

The kernels used in the kernel density estimation have a probabilistic interpretation: the FBC measures are implemented based on kernel density estimation in the non-flat 5D domain. First we compute the kernel density estimator induced by the full neighboring fiber tangents, we embed the 5D domain with the non-flat differential metric that takes into account that the angular components are determined by the tangent to the fiber.

Figure 1: The local fiber to bundle coherence LFBC is obtained from the sum over all such locally aligned kernels on the 5D space of positions and orientations (depicted via 3D glyph field visualization, left). The contribution of fiber points to the kernel density estimator is depicted in 2D for simplicity (middle) and is shown color-coded for each fiber. The relative FBC or RFBC (right) provides a scalar measure for each fiber and successfully identifies the spurious fiber.

The FBC measures are implemented based on kernel density estimation in the non-flat 5D domain. First we compute the kernel density estimator induced by the full output of the tractography. Then, the Local FBC (LFBC) results from evaluating the estimator along each element of the lifted fiber (Fig. 1, left). The Relative FBC (RFBC) is a whole fiber measure that is calculated by the minimum of the moving average LFBC along the fiber. (Fig. 1, right).

Implementation details

- Implemented in the DIPY framework using the Cython language, including multi-thread processing via the OpenMP library.
- Fiber tractograms are obtained from the ‘LocalTracking’ probabilistic tractography algorithm in DIPY.
- Considerable speedup of the kernel density estimation is achieved by computing lookup-tables, inspired by [3], containing rotated versions of the contour enhancement kernel sampled over a discrete set of orientations.
- In order to apply the lookup table, it is required to match each tangent orientation with the discrete orientation that is closest. Efficient orientation matching is achieved with a KD-tree to minimize the number of angular distance computations.

Probabilistic interpretation of the kernel

The kernels used in the kernel density estimation have a probabilistic interpretation: they are the limiting distributions of random walkers which randomly move forward or backward, randomly change their orientation, but cannot move sideways. For details see [4]. An analytic Gaussian approximation [5] of the contour enhancement kernel was used for kernel density estimation. For a comparison to recently derived exact solutions see [6].

Results

An example illustrating the method is performed on the Stanford HARDI dataset [8] (160 orientations, b=3000s/mm²). Constrained Spherical Deconvolution [9] is used to create the fiber orientation density function, after which probabilistic tractography is applied. The optic radiation is reconstructed by tracking fibers from the calcarine sulcus (visual cortex V1) to the lateral geniculate nucleus. The initial output of tractography has a large number of incoherent fibers (Fig. 2, top row). The spurious fibers identified by a low RFBC are removed (Fig. 2, bottom row) by setting a threshold.

Figure 2: The fibers of the reconstruction of the optic radiation are color-coded by the Local FBC value (LFBC). The tractography result is cleaned (shown in bottom) by removing fibers with a Relative FBC (RFBC) lower than 0.3 (30%).

Discussion

A tool is presented to quantify and remove spurious fibers from any tractography result. Our new module in DIPY makes this method widely available to the neuroimaging community and can readily be included within a processing pipeline. The fast implementation via KD-trees, multithreading and lookup-tables allow for large scale experiments.

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2014) / ERC grant agreement no. 335555.

References