Revealing the band structure of InSb nanowires by high-field magnetotransport in the quasiballistic regime

Vigneau, F.; Gül, Ö.; Niquet, Y.-M.; Car, D.; Plissard, S.R.; Escoffier, W.; Bakkers, E.P.A.M.; Duchemin, I.; Raquet, B.; Goiran, M.

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.94.235303

Published: 05/12/2016

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
I. INTRODUCTION

Among all bulk semiconductors, InSb has the smallest band gap, $E_g = 0.017$ eV, the largest electronic mobility $\mu_e = 77$ 000 cm2/V-s at room temperature [1], and benefits from a strong spin-orbit coupling associated with a high Landé factor $|g^*|=51$ [2]. Owing to these properties, InSb nanowires (NWs) are promising objects for future nanoelectronic devices. For example, spin-filtering devices can be envisioned due to strong spin-orbit coupling leading to the formation of helical states [3–5]. They are also strongly involved in the spin-orbit coupling associated with a high Landé factor $|g^*|=51$ [2]. Owing to these properties, InSb nanowires (NWs) are promising objects for future nanoelectronic devices. For example, spin-filtering devices can be envisioned due to strong spin-orbit coupling leading to the formation of helical states [3–5]. They are also strongly involved in the search for Majorana fermions when coupled to superconducting leads [6–8]. As compared to bulk InSb, the charge carriers’ confinement in one-dimensional (1D) NWs strongly affects the band structure with the formation of electrical subbands. Since a small band gap precludes any optical investigation, the band structure of InSb NWs remains largely unexplored and suffers from a lack of direct experimental investigations.

The energy levels can be probed through electronic transport in the ballistic regime. Indeed, band-structure information is obtained by analyzing the conductance in the frame of Landauer-Büttiker formalism. In addition to the successive conductance plateaus observed as the back-gate voltage is varied [9–11], a direct probe of the energy levels can be achieved using bias voltage spectroscopy, and compared with dedicated theoretical models [12–16].

The application of a strong enough magnetic field lifts the orbital and spin degeneracy of the electric subbands, providing additional knowledge of the band structure [11,17–19]. When the magnetic field is applied normal to the NW axis, the cyclotron diameter may become smaller than its NW counterpart. The device evolves towards a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime where the spatial separation of the charge current associated with opposite momentum leads to a decrease in the backscattering [20–23].

II. EXPERIMENTAL METHODS

Transport measurements are performed on two InSb NW devices, named A and B, both having a diameter of $W = 100 \pm 5$ nm. The NWs are grown by metal-organic vapor phase epitaxy (MOVPE) on prepatterned InP substrates covered by arrays of gold islands. Prior to the InSb growth, InP-InAs stems are synthesized in order to improve the nucleation and to reduce the lattice mismatch. The NWs are positioned on a heavily p-doped Si/SiO$_2$ substrate using micromanipulators [24]. The thickness of the insulating SiO$_2$ is 285 nm. Such a substrate acts as a back gate, allowing control of the carrier concentration in the device through the application of a voltage V_g. The NWs are connected by two metallic electrodes (Ti/Au 5/145 nm) defined by electron beam lithography. They are deposited by evaporation after argon plasma etching. The channel length between the contacts L is 1 μm for device A and 600 nm for device B. More details concerning the device fabrication can be found in Refs. [25–27].

The samples are inserted in a 4He cryostat and cooled down at 4.2 K. The two-probe conductance is investigated as a function of both bias and gate voltages by a standard lock-in amplifier technique. A bias voltage spectroscopy is realized by sweeping a dc bias ($0–30$ mV) voltage superimposed on an ac component of 0.5 mV$_{\text{rms}}$ at a fixed gate voltage (in the $0–20$ V range depending on the sample). The procedure is repeated for several electronic concentrations. The magnetoconductance is measured using an ac bias voltage of 1 mV$_{\text{rms}}$ at a frequency around 1 kHz, under a pulsed magnetic field applied perpendicular to the NW axis, with a total duration of 0.3 s and up to 50 T [28].
III. BAND-STRUCTURE SIMULATION

The electronic structure of a 100 nm diameter InSb NW was computed with a $sp^3d^5s^*$ model [29,30] including spin-orbit coupling. The band structure at zero magnetic and electric fields is plotted in Fig. 1(a) and its evolution under perpendicular magnetic fields in Figs. 1(b)–1(d).

The band structure evolves into magnetoelectric subbands as the field increases. The spin degeneracy is lifted by the Zeeman effect, which is particularly strong due to the high g* factor. The orbital degeneracy is also lifted by the coupling of the electron orbital momentum with the magnetic field. The subbands tend towards nondispersive bulk states and dispersive edge states for small and large k vectors, respectively. Finally, the whole spectrum is shifted to higher energy due to diamagnetism. We extract from the simulation a g* factor of 52.51 for the first subbands, and slightly lower values for higher modes. This result is in line with previous studies reporting an exceptionally high g* factor and strong spin-orbit coupling in confined InSb based systems, such as NWs [14,31], quantum dots [32–34], and quantum point contacts [32–34], at least for the first subbands.

Since the carrier population is controlled by a back gate, it is important to understand how the electric field and the electron-electron interactions act upon the band structure and conductance. We have, therefore, performed self-consistent tight-binding calculations of the band structure of infinitely long NWs lying on a 285 nm thick SiO$_2$ layer. The electron-electron interactions are treated in the mean-field (Schrödinger-Poisson) approximation [35].

Figure 2(a) compares the non-self-consistent (NSC) and self-consistent (SC) band structures at $B = 0$ T for a given density while Fig. 2(b) shows the number of occupied subbands computed versus gate voltage. The capacitance extracted from the SC simulations, $C \approx 39$ pF/m, is significantly larger than the experimental one (estimated ≈ 11 pF/m in the next section), but close to the geometrical capacitance $C \approx 45$ pF/m of a metallic NW. The mismatch between the calculated and experimental capacitances likely results from finite size effects (the ratio between the length of the NWs and the thickness of the oxide being relatively small) and the electrostatic screening of the contacts. This is frequently observed for NWs [11,36,37]. We have therefore scaled the gate voltage axis in Fig. 2(b) by a factor 39/11 in order to match the experimental capacitance. Alternatively, we have verified that similar results are obtained when we mimic the experimental capacitance in the self-consistent simulations by decreasing the dielectric constant of the oxide.

Figure 2 demonstrates that the electric field has little influence on the position and the width of the first few conductance plateaus at $B = 0$ T. The impact of the electric field is larger at high magnetic field, but remains reasonable for the low capacitances measured experimentally. The NSC band structures can therefore provide the main guidelines for the interpretation of the experimental data. For larger capacitances however, the $E_4 \uparrow$ and $E_1 \downarrow$ bands might get closer and cross at larger magnetic fields.

IV. BIAS VOLTAGE SPECTROSCOPY

For a 1D conductor in the quasiballistic regime, the conductance is expressed, in the Landauer-Büttiker formalism, as the sum over all occupied subbands $G_0 Tr$ [21]. $G_0 = 2e^2/h$ is the spin degenerate quantum of conductance and Tr the transmission coefficient of the subbands. The conductance is measured versus bias voltage for different gate voltages increasing by steps of $\Delta V_g = 0.2$ V. In Fig. 3(a), the curves tend to converge at the plateaus since the conductance is nearly constant between two successive V_g steps. The low bias conductance versus gate voltage $G(V_g)$ is extracted and plotted in Fig. 3(b). The monotonous increase of $G(V_g)$ is punctuated by plateaus together with strong fluctuations. We are not able to determine the exact nature of these fluctuations, either due to universal conductance fluctuations or Fabry-Pérot oscillations because of the large step value.
At finite bias voltages, as the energy window defined by V_{bias} exceeds the subband energy spacing, conductance plateaus evolve towards so-called “half plateaus” at intermediate conductance values [13,14,16]. We find clear evidence of the formation of the half plateaus in Fig. 3(a). At high bias, quantum interferences are suppressed due to the electron-electron scattering [21,38,39].

The transconductance $\partial G/\partial V_g$ was numerically derived from the data depicted in Fig. 3(a) and is shown in the color plot in Fig. 3(c). Transconductance maxima appear between successive plateaus corresponding to the alignment of the Fermi energy with the bottom of each subband. As the bias voltage is increased, adjacent transconductance maxima merge, forming a checkerboard pattern. The intersection gives an estimate of the energy difference $\Delta E = eV_{bias}$ between the two involved subbands [14]. The results, summarized in Table I, are in reasonable agreement with the simulated NSC band structure for the two lower subbands and slightly different for the two immediately above. The discrepancy might be attributed to the effect of electric field on the subband energy, as explained previously.

The corresponding theoretical Landauer-Büttiker conductance in the absence of quantum interferences is calculated in order to fit the experimental results using the calculated band structure [11]. The result is plotted on the $G(V_g)$ graph together with the experimental curve. The gate coupling C_g and the transmission coefficients T_r are set as free parameters. A good agreement was found for $C_g = 11 \text{ pF/m}$ and $T_r = 0.14$.

V. MAGNETOTRANSPORT SPECTROSCOPY

In the following, we shall focus on sample B, which shows similar results as sample A but with greater experimental resolution. The transfer characteristics and its temperature dependence are reproduced in Fig. 4(a). The low temperature magnetococonductance $G(B)$ is plotted in Fig. 4(b) for several gate voltage values. It mainly shows a decreasing behavior together with different features depending on the field range. Additional measurements of the magnetococonductance (not shown here) from $V_g = 2.5$ to 10 V in steps of 0.5 V were performed to interpolate the $G(V_g)$ characteristic in a magnetic field range from 0 to 26 T in Fig. 4(c). From 0 to 5 T, weak conductance modulations are observed on $G(B)$. Above 5 T, the fall of the conductance is punctuated by clear plateaus at 0.3-0.6-1.3-1.6G_0. These plateaus are also visible in the interpolated $G(V_g)$ curves. As the magnetic field is swept, the different subbands rise progressively above the Fermi energy, reducing the number of conducting channels and the conductance thus decreasing stepwise [11,40].

The well-defined conductance plateaus at integer multiples of $0.3G_0$ (except at $0.9G_0$, as explained later) above 5 T

TABLE I. Energy splittings for the five first degenerate subbands.

<table>
<thead>
<tr>
<th>ΔE</th>
<th>Computed (meV)</th>
<th>Measured (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_1 - (E_2, E_3)$</td>
<td>9.6</td>
<td>7.5 ± 3</td>
</tr>
<tr>
<td>$(E_2, E_3) - (E_4, E_5)$</td>
<td>11.7</td>
<td>8 ± 3</td>
</tr>
<tr>
<td>$(E_4, E_5) - E_6$</td>
<td>4</td>
<td>10 ± 3</td>
</tr>
<tr>
<td>$E_6 - (E_7, E_8)$</td>
<td>9.3</td>
<td>6 ± 3</td>
</tr>
</tbody>
</table>
subbands \((B,V_g)\) coordinates is obtained for the unique fitting parameter \(C_g = 13\) pF/m. This value is very close to the one obtained from bias voltage spectroscopy of device A in Fig. 3. A broad transconductance maxima between the 0.6\(G_0\) and 1.3\(G_0\) plateaus lie in between the \((B,V_g)\) coordinates of \(E_1 \downarrow\) and \(E_4 \uparrow\). Self-consistent simulations of the band structure at high field suggest a lower energy difference between these subbands, resulting in a single transconductance maximum trace. This situation explains the “missing conductance plateau” expected at 0.9\(G_0\) in Figs. 4(b) and 4(c).

Finally, at high magnetic field, the conductance drops towards zero. Assuming a constant carrier density, the Fermi level is pinned on the lowest subband and one should observe a constant conductance value of \(G = Tr(e^2/h)\). The diamagnetic shift of the lowest subband ultimately collapses the quantum capacitance. This effect is not taken into account in the simulation. For low gate voltages, the quantum capacitance lowers the total capacitance, resulting in the canal depletion [41,42].

VI. MAGNETOTRANSPORT THROUGH BALLISTIC EDGE STATES

In similar studies, a resistance of few kΩ associated with the contact resistance is subtracted to the conductance curves [14,27,43]. In this work, we consider a transmission probability at the interface between the metallic pads and the NW. The total transmission \(T_{tot}\) is the product of the channel transmission \(T_{ch}\) with the contact transmission \(T_{co}\). In contrast to the expected conductance plateaus at 0.5-1-2-2.5\(G_0\), the experimental plateaus at 0.3-0.6-1.3-1.6\(G_0\) are explained by considering a contact transmission coefficient of \(T_{co} = 0.65\).

Assuming that the transmission at the contact is independent of the magnetic field, the value of the channel transmission \(T_{ch} = T_{tot}/T_{co}\) at \(B = 0\) T is found to be around 0.23. The corresponding mean free path \(\ell = 180\) nm is deduced from the relation \(T_{ch} = \ell/(L + \ell)\). This value is larger than the diameter of the NW and a few times smaller than its channel length, in agreement with the quasiballistic regime.

The conductance plateaus allow a precise investigation of the charge transport evolution. As the cyclotron diameter of the Landau state \(n, d_c = 2(2n + 1)^{1/2}\ell_B\) (with \(\ell_B = \sqrt{\hbar/eB}\) the magnetic length and \(h\) the reduced Planck constant) becomes smaller than the NW diameter, the magnetic confinement overcomes the electronic confinement and the subbands start to form well-defined Landau states [20,21]. The electron gas tends to behave as a 2D gas in the QHE regime. The number of occupied Landau levels (or filling factor) \(v = (h/eB)N_{2D}\) is linear with \(1/B\) until the cyclotron radius becomes comparable to the width of the channel [40,44–47].

The conductance is measured up to 50 T for a gate voltage \(V_g = 8\) V corresponding to around ten occupied spin degenerate subbands at 0 T. The filling factor as a function of the reciprocal magnetic field is reported in Fig. 6. The number of occupied channels follows a linear behavior above a critical field of approximately 7 T. Deviation from linearity starts at the crossover between the 1D and the QHE regime. An effective 2DEG carrier density is computed by dividing the number of electrons \(C_g V_g/e\) by \(L \cdot W\) with \(L = 600\) nm. A
gate coupling of $C_g = 13 \text{ pF/m}$ is considered. An agreement is found between the curve in Fig. 6, and the theoretical formula with a width W around 66 ± 3 nm. This estimation is close to the observed diameter of 100 nm. Hall effect measurements have already been reported in InP core-shell NW by Storm et al. [48] and in InAs NW by Blömers et al. [49] using local probes on devices with widths around 200 nm. In contrast, the result presented here is evidence of the QHE regime in a NW, highlighting the specific transport properties under high magnetic field.

VII. CONCLUSION

The 1D conducting modes of individual InSb NWs are investigated by conductance measurements at low temperature and under large magnetic fields oriented perpendicularly to the nanowire axis. Bias voltage spectroscopy gives direct estimation of the subband energy difference between the few first subbands at zero magnetic fields. The results are in relatively good agreement with the band-structure simulation. Magnetoconductance measurements show signatures of nondegenerate subbands. They are well reproduced by the band-structure simulation taking into account the Zeeman splitting, the orbital degeneracy lifting, and the diamagnetism shift of the 1D electronic modes. The perpendicular high magnetic field reveals 2D-like Landau levels characterized by conducting edge states that suppress the backscattering.

ACKNOWLEDGMENTS

High magnetic field measurements were performed at LNCMI under the EMFL proposal TSC10-213. Parts of the calculations were run on the CCRT/Curie machine using allocations from GENCI.

