Self-tuning feedforward control for active vibration isolators

Citation for published version (APA):

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 01. Aug. 2019
Self-tuning Feedforward Control for Active Vibration Isolators

M.A. Beijen and M.F. Heertjes
Eindhoven University of Technology
Control Systems Technology group
PO Box 513, 5600 MD Eindhoven (NL)
m.a.beijen@tue.nl, m.f.heertjes@tue.nl

1 Introduction

Active vibration isolators are applied to isolate precision machines from floor vibrations. A simplified model for such a vibration isolator is shown in Figure 1. Self-tuning feedforward control is applied, using measured floor accelerations \(a_0\) as controller input. Feedback control by measuring machine acceleration \(a_1\) is used to add skyhook damping to the suspension mode of the system. This abstract is a summary of our work in [1].

![Figure 1: Model of an active vibration isolator.](image1)

2 Controller design

The controller scheme is shown in Figure 2. The machine motion \(a_1\) is formed by two signal components: a component \(d_e\) that is caused by the disturbance signal from the primary path \(P\), i.e. the passive system, and a component \(y_e\) that is caused by the control action from the secondary path \(S\). The actuator force \(F_a\) is the sum of the outputs computed by the controllers \(K\) (feedback) and \(W\) (feedforward). From Figure 2 it follows that perfect cancellation of floor vibrations is obtained using the feedforward control law:

\[
W_{opt}(s) = -S^{-1}(s)P(s) = -\frac{1}{s} \left(d_1 + \frac{k_1}{s} \right).
\]

![Figure 2: Combined feedforward/feedback control scheme.](image2)

Note that the controller does not need any information about the internal mode. The low-frequency control action must be limited to prevent sensor noise and drift problems:

\[
W_{opt}(s) = -\frac{1}{s} \left(\frac{1 - L_0(s)}{s} \right)^2 w_2. \quad (2)
\]

in which \(L_0\) may be any arbitrary \(n\)th-order low-pass filter with unity gain. A higher \(n\) results in more performance, but comes at the cost of a higher static controller gain. From (2), we define the IIR filters \(F_1(s), F_2(s)\), and the self-tuning weights \(w_1, w_2\) containing estimations for \(d_1, k_1\). Values for \(w_1, w_2\) are determined by minimizing a quadratic cost function using the Filtered-x LMS algorithm [2].

3 Results and Conclusions

The feedforward controller is implemented on an experimental setup of a vibration isolator, using different orders \(n\). Measurements (Figure 3) show a broadband vibration isolation up to 40 dB. Future research will focus on reduction of model uncertainties to further increase the performance.

![Figure 3: Measurements of the transmissibility \(a_1/a_0\).](image3)

References

[1] M.A. Beijen et al. (2014), Self-tuning Feedforward Control for Active Vibration Isolation of Precision Machines. Submitted to The 19th IFAC World Congress (2014).

[2] G.W. Van der Poel (2010), An exploration of active hard mount vibration isolation for precision equipment, University of Twente, The Netherlands