Human Gender Classification: A Review

Feng Lin, Yingxiao Wu, Yan Zhuang

Department of Computer Science and Engineering,
University at Buffalo, SUNY
Buffalo, NY, USA
E-mail: {flin28,ywu36,yanzhuan}@buffalo.edu

Xi Long

Department of Electrical Engineering,
Eindhoven University of Technology
Eindhoven, The Netherlands
E-mail: x.long@tue.nl

Wenyao Xu∗

Department of Computer Science and Engineering,
University at Buffalo, SUNY
Buffalo, NY, USA
E-mail: wenyaoxu@buffalo.edu
*Corresponding author

Abstract: The gender recognition is essential and critical for many applications in the commercial domains such as applications of human-computer interaction and computer-aided physiological or psychological analysis, since it contains a wide range of information regarding the characteristics difference between male and female. Some have proposed various approaches for automatic gender classification using the features derived from human bodies and/or behaviors. First, this paper introduces the challenge and application of gender classification research. Then, the development and framework of gender classification are described. We compare these state-of-the-art approaches, including vision-based methods, biological information-based methods, and social network information-based methods, to provide a comprehensive review of gender classification research. Next we highlight the strength and discuss the limitation of each method. Finally, this review also discusses several promising applications for future work.

Keywords: Gender classification; vision-based feature; biometrics; bio-signals; social network information.

1 Introduction

Automatic gender classification is receiving increasing attention, since gender carries rich and distinguished information concerning male and female social activities [1]. The aim of gender classification is to recognize the gender of a person based on the characteristics.
that differentiate between masculinity and femininity. In the area of artificial intelligence, gender classification is considered to be one of the most important applications of pattern recognition method [2]. The progress of gender classification research has driven many potential applications. For instance, a computer system with gender recognition functions has a wide range of applications in fundamental and applied research areas including: human-computer interaction (HCI) [3], the security and surveillance industry [4], demographic research [5], commercial development [6], and mobile application and video games [7]. Furthermore, multi-mechanisms are proposed to enhance the performance of gender recognition in terms of both accuracy and efficiency [8].

To date, however, few related surveys exist regarding human gender recognition and classification. Mäkinen et al. [9] carried out a comparative study of the gender classification methods combined with automatic real-time face detection. Poppe et al. [10] provided a detailed overview of vision-based human action recognition, where they focused on using body movements to generalize variations of human activities. Delac et al. [11] reviewed biometric recognition methods by describing their advantages and disadvantages, where biometric recognition refers to an automatic recognition of individuals based on feature vectors derived from their physiological and behavioral characteristics. Gender classification based on facial/body images and gait videos have been summarized by Khan et al. [8] and Ng et al. [12].

To understand the current research challenges, progress, and opportunities of gender classification, in this paper we draw a comprehensive overview by systematically summarizing and comparing the existing gender classification methods which are based on the characteristics of appearance, behavior, biometrics, bio-signals, and social network-based information. These characteristics or features are highlighted in several aspects, including universality, distinctiveness, permanence, and collectability to perform gender classification [13]. In particular, these four requirements for the qualified features are listed below:

1. Universality: The features should be universal among each individual which can be used for distinguishing gender. If the feature is unable to be extracted from each individual, it is not appropriate for gender classification.

2. Distinctiveness: The features should be sufficiently discriminative between male and female, e.g., features such as appearance, biometrics, bio-signal, and social network-based information.

3. Permanence: The features should be stable and not change over a long period of time, e.g., regardless of age and environment.

4. Collectability: The features should be measured quantitatively, which has a great effect on the applications. The approach based on features with high collectability such as a vision-based application is suitable for real-time or on-line applications. In contrast, the approach based on features with lower collectability can only be utilized in complicated or off-line applications.

We compare and evaluate existing gender recognition approaches in terms of accuracy, trustworthiness, invasiveness, collectability, and scope of the application. Accuracy demonstrates the effectiveness of a gender classification system. Trustworthiness indicates robustness and reliability. Invasiveness and collectivity jointly imply the complexity of the
system. The scope of application is based on the merit of each system, which is a case-by-

The remainder of this review paper is organized as follows. Section II introduces the

2 Applications

The development and progress in gender recognition technology has lead to many

2.1 Human-Computer Interaction

In the field of HCI [14], robots or computers need to identify and verify human gender
to improve the system performance based on personalized information. By successfully
determining gender, the system can provide appropriate and customized services for users
by adapting to them according to their gender [5].

2.2 Surveillance Systems

Classifying gender in surveillance systems for public places (e.g., bank, school) can assist
intelligent security and surveillance systems to track moving objects, detect abnormal
behaviors, and facilitate the security investigation off criminals who intentionally try to hide
their identity information. In addition, gender-focused surveillance can helop evaluate the
threat level for a specific gender if the gender information can be automatically obtained in
advance [13].

2.3 Commercial Development

Gender classification is useful for guiding effective marketing and establishing smart
shopping environment, in which production can be directed to specific users through
websites, electronic marketing, and advertising [15], etc. For instance, in a supermarket
or department store, knowing the number of male and female customers helps the store
managers to make effective sales and managing decisions.

2.4 Demographic Research

The application of a gender classification system helps demographic research in efficiently
collecting demographic information [7]. Automatic identification of human gender
enhances demographic statistics (e.g. gender, disability status, race definition) and
Human Gender Classification: A Review

The ability to automatically detect gender information acts as a supplementary method to demographic research conducted on the web or in public places [17].

2.5 Mobile Application and Video Games

Gender classification can provide supportive information to improve the user experience in mobile applications (apps) and video games. In mobile apps, some researchers use this method to facilitate the use of the mobile Internet by customizing apps according to gender. In video games, male and female often have different preferences, which would enable the use of gender information to provide their preferred game characters or contents. For example, to optimize the realism of a video game, character features, such as gait, can be analyzed using gender classification techniques. Then applying different gait patterns to virtual characters in the games according to gender will apparently enhance the sense of reality [18].

3 Overview of Gender Classification Methods

3.1 Challenges of Gender Classification

In practice, gender classification is a two-class problem in which the given information is assigned as male or female. Gender classification is a relatively easy task for humans but a challenging task for machines. Human beings are often able to make accurate and fast decisions on gender through visual inspection. For example, on the most basic characteristic, gender is a relatively invariant aspect of faces [19]. Humans can readily determine gender for most faces, and additional information from hairstyle, body shape, clothing, eyebrows, and posture will support the evidence gained from the visual image [20]. Acoustical differences between male and female voices have been discussed by various investigators [21]. Besides the differences between males and females in physical features, psychological and neural signals provide a dynamic cue for gender analysis. Previous psychological and neural studies [22][23] indicated that different gender exhibits diversity in changing facial expressions and head movement when they are stimulated. In addition, according to physiological measurements including electroencephalograph (EEG) and deoxyribose nucleic acid (DNA), as well as the daily social information such as handwriting, blog, email, etc, males and females also reveal different features or properties for the machine to classify.

Some researchers have explored these aforementioned cues and made significant progress for gender classification. Some of these features are in the form of images and can be analyzed by image processing[17]. Research on gender classification using facial images started at the beginning of the 1990s. In 1990, Golomb et al. [24] used a multi-layer neural network to classify gender based on human faces. They reported a gender classification error rate of 8.1% by using a Cottrell-style back-propagation image compression network. Since then, applications of gender classification were developed extensively in various domains, bringing the emergence of gender classification approaches, from which iris [16], hand shape [14] and eyebrows [25] were considered as features in the literature. In recent years, clinical signal processing techniques have been proposed to serve in the field of gender recognition using EEG [26] and electrocardiograph (ECG) [27] signals.

Although some progress is reported, gender classification is still challenging work for the machine because of the variation in gender features, particularly, gender characteristics
of the face may result in problems with automatic gender detection. Variation in gender information extraction occurs due to changes in illumination, pose, expression, age, and ethnicity [15]. Similarly, during the image capturing process the factors of image quality like dithering, noise, and low resolution also make image analysis a challenging task. On the other hand, the choice of features is one of the most critical factors [12]. The classification techniques are also affected by feature extraction and classification algorithms.

3.2 Classification Framework

The gender classification framework generally consists of five procedures, which is demonstrated in Fig. 1 including sensing, preprocessing, feature extraction, classification, and evaluation.

![Figure 1: The general classification framework.](image)

Sensing: The first step of gender classification is to obtain the effective raw data using specific sensors, including camera (images, videos) [8], recorder (voice), physiological measurements (EEG, ECG), social network-based information (e.g., Facebook posts, Tweets, blogs). Based on the acquired features, various approaches are employed to perform gender classification.

Preprocessing: Preprocessing is a necessary procedure to improve the quality of raw data, which includes the normalization of the main signal detection, the extraction of the informative area, and the correction of imperfections such as filling holes, noise removal, face detection, etc. With the appropriate signal preprocessing procedure, the undesired information is eliminated from the raw information and has few effects on the quality of the feature extraction, leading to an improvement in the identification accuracy rate.

Feature extraction: Feature extraction captures the main characters of the preprocessed signal as the input parameter for the classification algorithm. The feature extraction module minimizes the size of data by extracting the features of the preprocessed information that are useful for classification. The desired features should be easily computed, robust, distinctive, and insensitive to various conditions. In the next phase, the classifier will process these extracted features and conduct the classification.

Classification algorithm: The classification algorithm is the core of gender identification. Generally, classification approaches can be divided into two categories: appearance-based approaches and non-appearance-based approaches. The appearance-based approach is using a static image or an animated video to conduct gender classification. The non-appearance-based approach classifies the gender by analyzing a person’s physical, biometric, or social network-based information. Among these two approaches, several types of classifiers have been utilized for gender classification, such as support vector machine (SVM) [28], k-nearest neighbors (kNN) [29] and Gaussian mixture models (GMM) [30]. The choice of the classification algorithm is crucial depending on each case in order to achieve a higher identification accuracy.

Evaluation: In this step some measures are used to assess the performance of the gender classification system. Basically, the system is tested in terms of accuracy, trustworthiness,
invasiveness, etc. One of the most important standards is accuracy, which refers to the probability of correct recognition of a person as a male or a female. Publicly available databases can be used to investigate and verify gender classification algorithms, such as the Multiple Biometric Grand Challenge (MBGC) database [31] and the Face Recognition Grand Challenge (FRGC) database [32].

3.3 Gender Classification Taxonomy

In the gender classification research community, several approaches have been proposed such as face, apparel, gait, iris, hand shape, and hair. Generally, in this paper we categorize these approaches into two categories: the appearance approach and the non-appearance approach, as shown in Fig. 2. The appearance-based approach recognizes gender based on the features derived from the external information of individuals. It includes static body feature (face, eyebrow, body-shape, hand shape, fingernail, etc.), dynamic body feature (gait, motion, gesture, etc.) and the apparel information feature (clothing, footwear, etc.). The non-appearance-based approach uses the biological feature and human daily social network information (email, blog, hand-writing, etc.) for gender classification. Biological features include biometrics information (fingerprint, iris, voice, emotion-speech, ear, etc.) and bio-signals features (ECG, EEG, DNA, etc.).

Figure 2: The human gender classification taxonomy.

Appearance Approach: The appearance approach is a vision-based approach, and has three categories of features that can be extracted. They are static body feature, dynamic body feature, and apparel feature. The static body features are the static traits of the human body, including body-shape [33], face [34, 35, 8, 36], eyebrows [25], hand shape [14], and fingernails [37]. Dynamic body feature refers to the movement and activity of a human body such as gait [7], motion [38], etc. Apparel feature is derived from what a person wears, including footwear [39], clothing [40], etc. The vision-based approach utilizes the image processing method to conduct gender identification. Images of human appearance exhibit many variations which may affect the accuracy of a computer vision system. Thus, gender
classification based on vision-based approaches is relatively fragile because these features are easily affected by illumination changes, poses, age, and ethnicity, or different facades on the face (e.g., glasses, jewelry, and hats).

Non-appearance Approach: The non-appearance approach refers to the features extracted from the person’s physical and biometric information. With the non-appearance approach, features are extracted from biological information and social network-based information. Biological information comes from biometrics, e.g., voice [41], iris [16], fingerprint [42], emotional speech [43], and bio-signals, e.g., EEG [44, 45], ECG [27] and DNA [46] information. The Bio-signal refers to human biometric information, which is used for gender classification. In clinical psychophysiology, the effects of age and gender on the EEG signal have been investigated and brain maturation is found to associate with the topographic differences [45]. Social network-based information means the information from the daily social activities of a person, which includes email [47], hand-writing [48], blog [49]. Thus with distinguished language and social styles among males and females, it is possible to conduct gender classification using these features.

4 Appearance-based Gender Classification

The vision-based approach utilizes the classification features extracted from exterior information of the human body. This approach was used for gender classification universally in the early stage of gender recognition research. Table 1 lists the examples that work on gender classification using appearance-based features.

4.1 Static Body Feature-based Gender Classification

Facial imaging is the most common method for gender classification. It is non-intrusive and suitable for the real-time recognition application. Basha et al. [34] proposed a novel approach to recognize gender using face images where the continuous wavelet transform was employed to perform the feature selection from each image, and an SVM with linear kernel classified the data as male or female. Their method performs well in images containing variations in lighting and facial expression, pose angles, aging effects, etc. Moreover, This method consumes less time compared with other classification approaches. Shan et al. [35] employed local binary patterns (LBP) to describe faces and they used the Adaboost method to select discriminative LBP features. They obtained the performance of 94.81\% by applying SVM with the boosted LBP features. Li et al. [50] classified gender by utilizing only five facial features (nose, eyes, mouth, forehead, brows). One problem with their approach is that their feature extraction method is affected by complex backgrounds. Based on the different parts of facial feature extraction, the gender classification via face can be divided into local feature extraction and global feature extraction methods [8]. The local feature extraction method extracts features from certain facial points like the mouth, nose and eyes [50], whereas the global features extraction method extracts features from the whole face instead of extracting features from facial points [34][35].

Dong et al. [25] presented a new approach using eyebrows to classify gender. They used shape-based eyebrow features under non-ideal imaging conditions for biometric recognition and gender classification. They compared three different classification methods: minimum distance (MD) classifier, linear discriminant analysis (LDA) classifier and SVM classifier. The methods were tested on images from two publicly available facial image databases,
i.e., the Multiple Biometric Grand Challenge (MBGC) [31, 51] database and the Face Recognition Grand Challenge (FRGC) [32, 52] database. This classification algorithm obtained a biometric recognition rate of 90% using the MBGC database and 75% using the FRGC database as well as the gender classification rates of 96% and 97% for each database, respectively.

Amayeh et al. [14] suggested that hand shape is a prominent feature for gender classification, and they segmented the hand silhouette into six different parts corresponding to palm and fingers. To represent the geometry of each part, they used region and boundary features based on Zernike moments and Fourier descriptors. In addition, they computed the distance of a given part from two different eigenspaces for classification, one is the male class and another is the female class. The identification rate of this approach was 98%. Cho et al. [53] used heat-earth mover’s distance (EMD) to identify different people based on thermal handprint. The method is even feasible when users wear a glove.

Cao et al. [33] built a system of recognizing gender from full body images; their work was the first attempt to investigate gender recognition using static human body images. By integrating the part-based representation and ensemble learning algorithms, they proposed a part-based gender recognition (PBGR) method to classify gender using either a single front or a back view image with an accuracy of 75.0%. Their method is robust when small misalignment occurs. Kakadiaris et al. [54] used ratios of anthropometric measurements from still images as features to classify human gender. The classification accuracy using SVM+ achieves 98.18%. Linder et al. [55] used a novel gender recognition method based upon a depth-based tessellation learning approach, which is able to learn the best selection, location and scale of a set of simple point cloud features. This approach achieves 90% accuracy.

Fingernails can also be a feature to distinguish between males and females. HongáLim et al. [37] demonstrated a novel method for human gender classification by measuring the Raman spectrum of fingernail clippings. Because Raman spectroscopy reveals the characteristics of vibrational frequencies of the fingernails, the result can be used to describe the molecular structure differences of fingernails between males and females. In their work, principal component analysis (PCA) and the SVM algorithm were used for classification. The classification accuracy for male and female was about 90%.

The first part of Table 1 (Table 1-I) describes different gender classification techniques based on static body features. Recognition based on face and hand shape achieve higher accuracy due to the fact that face and hand shape features are more discriminative compared with other features. On the other hand, the body shape feature has a higher similarity between males and females, leading to a lower recognition accuracy rate. Although static body features can be easily captured with a camera, they are easily affected by the quality of the image.

4.2 Dynamic Body Feature-based Gender Classification

Gender classification based on static body features can perform identification. However, since people constantly change their appearance, styles, and locations, some proposed to utilize behavioral features for gender classification such as body movement and activity. Yu et al. [7] firstly demonstrate an experiment in which they asked participants to identify the gender of moving human silhouettes. Then their appearance-based gender classification was enhanced by the extracted human knowledge from the experiment. In the experiment, they chose the CASIA Gait Database. The result of their study indicated that gait features
Table 1 Gender classification via appearance approach.

<table>
<thead>
<tr>
<th>Static Body Features</th>
<th>Publications</th>
<th>Feature Extraction Algorithms</th>
<th>Classification Algorithms</th>
<th>Database Description</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>Basha et al., 2012</td>
<td>Continuous wavelet Transform, LBP</td>
<td>SVM</td>
<td>ORL</td>
<td>98%</td>
</tr>
<tr>
<td></td>
<td>Caifeng Shan, 2013</td>
<td></td>
<td>SVM</td>
<td>Labeled Faces in the Wild (LFW) FERET and BCMI data set</td>
<td>94.81%</td>
</tr>
<tr>
<td>Eye brows</td>
<td>Dong et al., 2011</td>
<td>Global shape features (GSF), Local area features (LAF) and Critical point features (CPF)</td>
<td>MD, LDA, and SVM</td>
<td>MBGC database and FRGC database</td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td>Li et al., 2012</td>
<td></td>
<td></td>
<td>about 90%</td>
<td></td>
</tr>
<tr>
<td>Hand shape</td>
<td>Amayeh, G. et al., 2008</td>
<td>Zernike moments and Fourier descriptors</td>
<td>Score-level fusion and LDA</td>
<td>A small database containing 20 males and 20 females</td>
<td>98%</td>
</tr>
<tr>
<td>Body-shape</td>
<td>Cao et al., 2008</td>
<td>AdaBoost and Random Forests (RF)</td>
<td>HOG+ feature, Part-Based Gender Recognition (PBGR) algorithm</td>
<td>MIT pedestrian database</td>
<td>76.6%</td>
</tr>
<tr>
<td></td>
<td>Kakadiaris et al., 2016</td>
<td>LUPI</td>
<td>SVM+</td>
<td>CAESAR database</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linder et al., 2016</td>
<td>Geometric point cloud</td>
<td>Tessellation learning</td>
<td>RGB-D database</td>
<td>90%</td>
</tr>
<tr>
<td>Fingernail</td>
<td>Hong Lim et al., 2008</td>
<td>Raman spectrum</td>
<td>PCA and SVM</td>
<td>About 90%</td>
<td></td>
</tr>
</tbody>
</table>

II: Gender Classification via Dynamic Body Feature

<table>
<thead>
<tr>
<th>Dynamic Body Features</th>
<th>Publications</th>
<th>Feature Extraction Algorithms</th>
<th>Classification Algorithms</th>
<th>Database Description</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gait</td>
<td>Yu et al., 2009</td>
<td>Gait energy image (GEI)</td>
<td>SVM</td>
<td>CASIA Gait Database</td>
<td>87%</td>
</tr>
<tr>
<td>Motion</td>
<td>Hadid et al., 2009</td>
<td>EVLBP (extended volume local binary pattern) features (combining appearance and motion)</td>
<td>Five different algorithms including HMMs and ARMA models as benchmark methods for spatio-temporal representations and PCA, LDA and LBP for still image-based ones AdaBoost</td>
<td>Momo, USCD/HONDA and CRIM</td>
<td>Best: 93.4%</td>
</tr>
<tr>
<td></td>
<td>Williams et al., 2016</td>
<td>Principle component analysis</td>
<td></td>
<td>Twenty five men and twenty four women</td>
<td>87.8%</td>
</tr>
<tr>
<td>Gesture</td>
<td>Won et al., 2012</td>
<td>Calculated the angles between two different bones of the skeleton</td>
<td>Linear regression</td>
<td>12 men and 12 women</td>
<td>83%</td>
</tr>
</tbody>
</table>

III: Gender Classification via Apparel Feature

<table>
<thead>
<tr>
<th>Apparel Features</th>
<th>Publications</th>
<th>Feature Extraction Algorithms</th>
<th>Classification Algorithms</th>
<th>Database Description</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothing</td>
<td>Ueki, K. et al., 2004</td>
<td>PCA</td>
<td>GMM</td>
<td>2,397 female images and 5,035 male images</td>
<td>92.2%</td>
</tr>
<tr>
<td>Footwear</td>
<td>Yuan et al., 2010</td>
<td>HOG</td>
<td>Non-linear SVM</td>
<td>Established the first footware image</td>
<td>85.49%</td>
</tr>
</tbody>
</table>
could help improve the accuracy of gender classification. Besides, Abdenour et al. [38] proposed and compared various schemes for facial recognition. Their experimental results showed that the combination of motion and appearance were only useful for gender analysis for the familiar faces. Their analysis clearly assessed the promising performance of the LBP-based spatio-temporal representations for describing and analyzing faces based on three video databases (MoBo, USCD/HONDA and CRIM). The obtained recognition rates were 90.3%, 78.3%, and 88.7%, respectively, by using the VLBP-based spatio-temporal approach. Williams et al. [56] propose novel automated gender classification of subjects while engaged in running activity. The method with preprocessing steps using principle component analysis and AdaBoost classifier [57] achieves an accuracy of 87.8%.

Nonverbal behavior is a very important part of human interactions. Previously, the study [58] described a new method for determining gender identity using machine learning with gestures taken from Microsoft Kinect. Their method achieved 83% accuracy in predicting one’s gender, even from very short exposures such as ten seconds exposure of the participants.

In the second part of Table 1 (Table 1-II), the gender recognition approaches using dynamic body features performs better because of adding features such as gait and gestures. The method to capture dynamic body feature is similar to that of static body feature by using a camera, except that it will need more continuous frames to acquire the dynamic body feature. Thus, this gender classification also requires a higher computational complexity because behavior features need image sequencing for recording movements.

4.3 Apparel Feature-based Gender Classification

Males and females have distinctive preferences regarding dressing. Thus, according to an individual’s dressing feature, Ueki et al. [40] proposed a method of gender classification that integrates the information from different parts of a single image. By integrating likely hairstyle and clothing and applying the PCAs and GMMs on thousands of sample images, experimental results demonstrated that their integration strategy significantly lowered the error rate by 25.1% in gender classification than the conventional approaches that use facial features only.

The study conducted by Yuan et al. [39] for the first time demonstrated the effectiveness of footwear appearance for gender recognition as a feature. According to preliminary experimental results, they concluded that the histogram of oriented gradient (HOG), which represented a footwear image plus nonlinear SVM classifier, has given satisfactory results with the average recognition rate of 85.49%.

Apparel features can serve as another source of features to classify gender, which is easier to obtain and discriminative even within low-quality images. The approaches based on apparel features are summarized in the third part, Table 1 (Table 1-III).

4.4 Multi-Factors-based Gender Classification

The gender recognition classifier with single feature achieves a classification accuracy that is far from perfect. One possibility to improve gender classification accuracy is to combine several features together to perform multi-factor-based gender classification. The multi-factors means gender classification using several features together. Hadid et al. [38] combined motion and appearance for gender analysis, and they obtained recognition rates of 90.3%, 78.3% and 88.7%, respectively, which are tested over the three different databases.
Ueki et al. [40] presented a method of gender classification that integrated facial information, hairstyle, and clothing information. They were able to reduce false classifications made by the conventional approach that only uses facial features by 25.1%. Xia et al. [59] investigated the combination of shape and texture modalities for gender classification. They performed the experiment in two ways: one fuses the results from gray images and range images, and the other fuses the results from gray images and 3D meshes. They achieved a correctness of about 94%, which outperformed the results obtained with one modality and was comparable to state-of-the-art. Erno Mäkinen and Roope Raisamo [60] combined all the classifier outputs together using four types of combination methods: voting, class voting, arithmetic, and arithmetic class voting, and found that using more than one gender classifiers decreased the classification speed. However, when classification was preceded by face detection, the more important factor was the face detection speed.

4.5 Summary of Appearance-based Gender Classification

Vision-based gender classification methods utilize different characteristics of the body, body movement, and clothing to identify a person as male or female. As a non-invasive approach, it does not require wearing any sensors. The static body and apparel features are the still information derived from the human body, which are easy to use and can achieve a high accuracy. However, these approaches might be limited by the application conditions and may not be suitable for applications such as surveillance system and video games. On the other hand, a dynamic body features-based method capture a person’s activity information, which makes it applicable in dynamic environments, e.g., when a person is walking. However, processing sequence images of movements may lead to high computational complexity. For example, Hadid et al. [38] extracted over 4000 video shots with 15-300 frames in each. Static body and apparel feature extraction only need one frame of each person. Moreover, all the gender classification approaches using vision-based features are affected by the quality of the image. Hence, an image with deteriorated quality will decrease the accuracy for gender identification. This issue can be resolved by combining several features, namely the multi-factors-based method, to improve the classification accuracy.

5 Biological Information-based Gender Classification

Biological information does not change over a long period of time compared with the vision-based approach, therefore some have proposed the biological information-based approaches for gender classification as shown in Table 2.

5.1 Biometric Information-based Gender Classification

Biometric data are considered as an alternative to be used in gender recognition because they are comparatively less affected by factors such as mood and clothing. A list of representative studies on gender classification using biometric information is presented in the first part of Table 2 (Table 2-I).

Because the complex patterns of the iris contain many distinctive features such as arching ligaments, furrows, ridges, crypts, rings, and corona, Thomas et. al. [16] predicted human gender based on iris image data by employing a decision tree classifier that could reach an accuracy of around 80%, with a biometric database built from 40 subjects.
Human Gender Classification: A Review

Table 2 Gender classification via biological information.

<table>
<thead>
<tr>
<th>Biometrics</th>
<th>Publications</th>
<th>Feature Extraction Algorithms</th>
<th>Classification Algorithms</th>
<th>Database Description</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>Thomas et al., 2007</td>
<td>Geometric features (machine learning)</td>
<td>C4.5 decision tree algorithms (machine learning)</td>
<td>Built a small database containing 40 people</td>
<td>80%</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>Badawi et al., 2006</td>
<td>RTVTR and the white lines count</td>
<td>Fuzzy C means (FCM), LDA, and artificial neural network (ANN)</td>
<td>10-fingerprints for 2200 persons of different ages and gender (1100 males and 1100 females)</td>
<td>80.39%, 86.5%, and 88.5% using FCM, LDA, and ANN</td>
</tr>
<tr>
<td>Voice</td>
<td>Shue et al., 2008</td>
<td>Min-max normalization feature selection algorithm (MFCC)</td>
<td>SVM</td>
<td>CID database</td>
<td>About 90%</td>
</tr>
<tr>
<td>Emotional Speech</td>
<td>Kotti et al., 2008</td>
<td>MFCC</td>
<td>SVM</td>
<td>BDES and the Danish Emotional Speech (DES)</td>
<td>99.07% and 99.00% with different database</td>
</tr>
<tr>
<td>Ear</td>
<td>Gnanasivam et al., 2013</td>
<td>Euclidean distance</td>
<td>Bayes classifier, KNN, and ANN</td>
<td>Internal database of about 342 samples of male and female ears</td>
<td>90.42%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bio-signal Information</th>
<th>Publications</th>
<th>Feature Extraction Algorithms</th>
<th>Classification Algorithms</th>
<th>Database Description</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>Nguyen et al., 2013</td>
<td>Popular EEG features and paralinguistic features (MFCC)</td>
<td>SVM</td>
<td>Australian EEG database</td>
<td>Near 97%</td>
</tr>
<tr>
<td>ECG</td>
<td>Ku et al., 2012</td>
<td>Features of HRV</td>
<td>Least square support vector machine (LS-SVM) and SVM</td>
<td>In-house developed ECG data acquisition system</td>
<td>92%</td>
</tr>
<tr>
<td>DNA</td>
<td>Pötsch et al., 1992</td>
<td>Not applicable</td>
<td>Dot hybridization</td>
<td>Patients</td>
<td>Near 100%</td>
</tr>
</tbody>
</table>

Fingerprints have been used as vital parts for gender classification because of their unique properties. They are also important factors in forensic anthropology used to identify gender [61]. A previous study [62] analyzed different features from a fingerprint that are significantly different between males and females, where the highest gender classification rate was 88% using a neural network classifier and 86.5% using LDA classifier, respectively.

Gnanasivam et al. [18] used the biometric information from the ear for gender classification. The ear hole was considered as the primary reference point. Relative (Euclidean) distance has been measured between the ear identification points (ear features) and the ear hole. They used an extensive internal database of about 342 measurements of male and female ears. A Bayes classifier, a kNN classifier, and a neural network classifier have been used for the classification, respectively. The overall gender classification rate of 90.42% was achieved with the kNN classifier, which performed the best among the three classifiers.

Analyzing emotional speech [43] for identifying gender made the problem even more interesting. A branch and bound feature selection algorithm was applied to select a subset of 15 features among 1379 originally extracted features. SVM classifiers with various kernels were tested on two databases, namely the Berlin database of Emotional Speech and the Danish Emotional Speech database. The reported classification results outperformed those techniques obtained by that time. A perfect classification accuracy was obtained. Because males and females have different voice characteristics, Yen et al. [41] examined
the role of acoustic measures related to the voice source in automatic gender classification, implemented using SVMs. Gender classification accuracy was about 90%.

However, gender classification via ear, fingerprint, and iris also are based on image processing techniques, from where researchers selected the biometrics as the features for gender recognition. The data processing speed made them appropriate for a large-scale identification system. On the other hand, voice and emotional speech are based on measurements of physical and behavioral characteristics, the feature extraction algorithm, which applies global information and requires a large amount of computational resources. Meanwhile, voice and emotional speech are sensitive to background noise. These disadvantages of voice and emotional speech-based methods are not suitable for a large-scale classification system.

5.2 Bio-signals Information-based Gender Classification

With the development of bio-signal information technology, the bio-signals that can be measured and monitored from humans has gained increasing interest among researchers. In this sense, the bio-signals such as EEG and DNA are feasible for gender classification. The advantages of bio-signals are their inherent uniqueness, universality and resistance to spoofing. A list of representative works on gender classification by bio-signals are summarized in the second part of Table 2 (Table 2-II).

Bio-signals can also mean biomedical signals originating from many sources such as the heart, brain, and blood. The analysis of these signals is important for gender identification. To study the EEG information for gender classification, Phuoc et al. [26] proposed a framework of automatic age and gender classification using EEG data from a person. The features were sent to a machine learning module, for example, SVM, to build age and gender models for that person. The experiments suggested that the paralinguistic features were very promising for this task.

Besides EEG data, other biomedical signals were also used for classification. Rajesh et al. [27] dealt with gender classification from ECG signals using least squared SVM (LS-SVM) and SVM techniques. Different features extracted from ECG signals using heart rate variability (HRV) analysis were applied to the LS-SVM and SVM classifier. The LS-SVM classifier with a radial basis function (RBF) kernel produced a classification rate of 92%, which is higher than the accuracy of other models. Up to now, there have been reports on various means of gender classification using DNA and chromosome techniques. It is well known that DNA conveys a considerable amount of personal information. Pötsch et al. [46] investigated the use of human dental pulp as a source of DNA for determining gender in the 1990s. The gender was correctly classified for all cases in the study.

Gender classification via bio-signal information is an invasive approach. These bio-signals were reliable methods for gender classification up to now. The preceding studies show the potential trustworthiness of these signals for gender classification, since tangible gender differences exist within the bio-signals. However, the limitations of these approaches cannot be overcome in some real applications. For instance, the technique of acquiring a bio-signal requires extra professional devices and the individual to wear the sensors. Thus, it is not suitable for on-line and real-time recognition.

5.3 Summary of Biological Information-based Gender Classification

Gender classification via biological information is relatively unaffected by aging, making it more suitable for long-term identification compared with other non-invasive techniques such
as vision-based recognition. A gender classification approach via biometric information has a lower anti-tamper and distinctive trait than the classification approach via bio-signals. In general, the gender classification via bio-signal information can obtain an accuracy of 90% or even higher, according to the aforementioned studies. This indicates that biological information provides relatively credible data for gender classification. One problem with an approach using bio-signals is that those signals can not be easily acquired in an unobtrusive way. In other words, subjects need to wear sensors to acquire the data. The invasiveness makes such signals difficult to acquire and not practical for real-time applications. Further investigations may solve these problems and lead to a better approach to bio-signal based gender classification.

6 Social network information-based Gender classification

The way that men and women use languages and converse are different, even sharing the same language. This could be a feature to identify gender. Traditionally, handwriting is used as social information for gender classification. The Internet has transformed the traditional social networks. Email, blogs, etc., are becoming important forms of communication. Several researchers have studied the problem of gender classification based on social information. Suitable corpora of social information are needed to be generated for the study. The attributes/features being selected from the corpora for classification include language structure, gender-preferential words, character based styles, etc. The procedure of extracting attributes from social data (e.g., email, blogs, and documents) is called text mining [63], which makes predictions or classifications for new data, explains existing data, and summarizes the contents of a large database to support decision making for gender classification. Table 3 lists some representative studies on gender classification using daily social network-based information.

The classification of gender based on handwriting has been a research topic for many decades. However, only a few study reports exist that investigate automatic detection of gender from handwriting. The writing samples, which are similar to body language, can serve as a behavioral representation to interpret human behavior related to thinking styles, personal traits, and social skills. For example, Liwicki et al. [48] proposed a system that

<table>
<thead>
<tr>
<th>Social network information</th>
<th>Publications</th>
<th>Feature Extraction Algorithms</th>
<th>Classification Algorithms</th>
<th>Database Description</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>Corney et al., 2002</td>
<td>Manual extraction</td>
<td>SVM</td>
<td>The inbox of a member of a large (greater than 15,000 users) academic organization</td>
<td>About 70%</td>
</tr>
<tr>
<td>Blog</td>
<td>Mukherjee et al., 2010</td>
<td>A new ensemble feature selection (EFS) algorithm</td>
<td>SVM classification, SVM regression and naive Bayes (NB) as learning algorithms</td>
<td>Real-time blog dataset (and blog search engines, e.g., blogger.com, technorati.com, etc. The data set consists of 3100 blogs)</td>
<td>88.56%</td>
</tr>
<tr>
<td>Handwriting</td>
<td>Liwicki et al., 2007</td>
<td>eBeam (eBeam System by Luidia, Inc.) interface</td>
<td>SVM and GMM</td>
<td>IAM-OnDB, a large on line handwriting database acquired from a whiteboard (Liwicki and Bunke, 2005b)</td>
<td>67.06%</td>
</tr>
</tbody>
</table>
can classify gender and handedness by online, Roman handwriting. In that study, both of
the problems are binary-class problems, i.e., male/female and left-/right-handedness. Thus
two classifiers were applied to the gender and the handedness classification problems. The
first classifier used GMM to model the classes, while the second one was based on SVMs.
The GMM classifier achieved a gender classification rate of 67.06%, which is better than
that obtained with SVM.

With the emergence of email and blog in the computer era, these domains provide
additional sources for gender classification. Corney et al. [47] conducted an investigation on
authorship gender attribution mining from email text. The researchers used an extended set
of content-free email document features, such as style markers, structural characteristics,
and gender-preferential language features, together with an SVM learning algorithm to
make the gender classification. Rjun et al. [49] introduced a new set of features, which
are variable length part of speech (POS) sequence patterns that are extracted from the
training data using a sequence pattern mining algorithm. In the same work, another new
feature selection method based on an ensemble of several feature selection approaches was
proposed. Experimental evaluation using a real-life blog dataset showed that these two
feature selection methods could improve the classification accuracy significantly.

Gender classification via social network-based information captures the communication
and interaction among human beings. However, the accuracy of it is lower than the other
gender classification approaches. The number of features of this information usually is
very large, and the dataset is massive because individuals receive a large number of emails
that usually increase with elapsed time. For example, in the literature [47], the corpora of
e-mail documents used in the experimental evaluation came from the inbox of a person who
worked in a large academic organization (greater than 15,000 users), and the total number
of attributes used in the experiment was 222. The resource for gender recognition needed
extensive preprocessing work. The complexity and collectability of these approaches may
limit their use in some areas from a practical perspective.

7 Comparison and Discussion

According to the previous investigation on the aforementioned gender classification
methods, each has distinct advantages and disadvantages depending upon the requirements
of the application. We compared those approaches from the application point of view.
The comparison was carried out based on several characteristics, including accuracy,
trustworthiness, invasiveness, collectability, and application scope. More details are
explained and discussed in the following paragraphs.

7.1 Accuracy

Accuracy implies the probability of the correct recognition results. Distinctive features
and an effective classifier determine the classification accuracy. Features of a vision-
based approach can be damaged by image processing, and the accuracy also can decline
as a result of frequent changes in hair, weight, and clothing. The approach based on
biological information delivers higher accuracy by extracting the particular feature from
the biometric and bio-signal information of humans. Besides the distinct feature, the choice
of classification algorithm also influences the classification accuracy.
7.2 Trustworthiness

Trustworthiness indicates the reliability and robustness of an approach for gender classification. According to the previous research results, approaches based on appearance and social information with the features extracted from images or text may fail due to noise, low resolution, and tampering. However, a biological information-based approach uses physiological signals that make identification difficult. However, biological information usually does not change over time and has the highest rate of uniqueness. Therefore, it is a reliable way to identify the gender.

7.3 Invasiveness

The means of acquiring data can be invasive or non-invasive. Gender classification via vision-based feature is a non-invasive approach. However, gender classification via a biological information requires specific devices invading the human body to record the internal information. In other words, biological information cannot be casually acquired in an unobtrusive way.

7.4 Collectability

Collectability means the information can be acquired. Vision-based features are conveniently obtained from videos or images, thus the approaches utilizing them with a strong computation ability are appropriate for real-time or online applications. For biological information and social information, it is difficult to acquire since they require more invasive techniques to obtain information from the human body and activity.

7.5 Application Scope

Methods of acquiring information correspond to various application scopes, and the choice of features depends on the specific applications. Gender classification by vision-based approaches which have the requirement of real-time and convenience of information acquirement is appropriate for surveillance, the security industry, and HCI applications, etc. Gender classification based on internal information, especially approaches via bio-signal features, is suitable for the security system, commercial development, and demographic research because of its high reliability. The applicability of a specific gender classification technique mainly depends on the requirements of the application field. There is no a single approach that outperforms all the others in various conditions. In other words, each gender classification approach is suitable in a particular field according to performance and requirements of data acquisition. Table 4 presents the performance comparison.

8 Conclusion and Future Research

In this paper, we reviewed the state-of-the-art gender classification approaches, which are divided into two groups according to these metric traits: the appearance approach (i.e., static body features, dynamic body features, and apparel features) and the non-appearance approach (i.e., biometrics, bio-signals, and social network information). Moreover, a comparison among them was presented. We found that biology information using the physiological signal is not easily tricked in the classification and it has a higher accuracy
Table 4 Comparison of various approaches based on appearance feature, biometric feature, bio-signal and social information.

<table>
<thead>
<tr>
<th>Feature Scope</th>
<th>Distinctiveness</th>
<th>Permanence</th>
<th>Trustworthiness</th>
<th>Invasiveness</th>
<th>Collectability</th>
<th>Accuracy Scope</th>
<th>Application Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance (Vision-based)</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High−Medium (74.6%−98.2%)</td>
<td>Security and surveillance industry, HCI application</td>
</tr>
<tr>
<td>Biometric</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>High (80%−99%)</td>
<td>Security industry, HCI application, demographic research, commercial development, mobile application and video games</td>
</tr>
<tr>
<td>Bio-signal</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High (92%−100%)</td>
<td>HCI application, commercial development, demographic research, security and surveillance industry</td>
</tr>
<tr>
<td>Social</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Low (67%−88.6%)</td>
<td>Security and surveillance industry, commercial development</td>
</tr>
</tbody>
</table>

(92%−100%) than other gender classification methods since it is directly measured from the human body. However, it is invasive and has low collectability compared with the vision-based approach. As an alternative to bio-signals, biometric information also has a high accuracy (80%−99%) because it is comparatively less affected by other factors such as mood and clothing. Appearance-based methods achieve high to medium accuracy (74.6%−98.2%), which depends on the specific appearance feature and algorithm used for classification. Accuracy can be compromised with the deteriorated quality of collected images or videos. Social network information-based methods have the lowest accuracy (67%−88.6%) because social behaviors are apt to be assimilated by ambient environment and social activities. We also concluded that the applicability of a particular gender classification technique depends on the environmental requirements. A single approach cannot satisfy all the gender classification requirements in various conditions, and each gender classification approach is suitable in a particular field according to the characteristic of performance.

The existing approaches also have some limitations such as low accuracy, low efficiency, and restricted application domain. This review brings a new insight analysis on various gender classification methods in different contexts. To improve the performance of the gender classification system, the upcoming research effort should focus on the enhancement of accuracy and reliability. The reviews of these approaches suggest that more in-depth studies are required focusing on the following:

First, we should improve the preprocessing and classification algorithm to enhance accuracy and efficiency. The classification algorithm is key for gender recognition. Therefore, it is suggested to utilize more advanced classification approaches to strengthen
Human Gender Classification: A Review

the performance, such as multi-objective synchronous recognition or a larger-scale recognition system.

Second, we should seek and employ new features for gender classification. The features that are used for classification often depend on the particular application. Therefore, one should seek new features that satisfy the four requirements (universality, distinctiveness, permanence, collectability) for gender recognition.

Third, we could combine the three vision-based, biological information-based, and social network-based gender classification approaches to improve accuracy, i.e., multi-factor combination approaches for recognition. The combined approaches will outperform any method with one single technique.

References

