Design and results of a new interference refractometer based on a commercially available laser interferometer

Schellekens, P.H.J.; Spronck, J.; van der Pasch, E.A.F.; van der Wolf, A.C.H.

Published in:
CIRP annals

DOI:
10.1016/S0007-8506(07)61912-X

Published: 01/01/1986

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Oct. 2018
Design and Results of a New Interference Refractometer Based on a Commercially Available Laserinterferometer

P. Schellekens, Eindhoven University of Technology/Netherlands (2); J. Sprock, Van Swinden Laboratory, Delft/Netherlands; E. van de Pasch, Eindhoven University of Technology/Netherlands — Submitted by A.C.H. van der Wolf (1), Eindhoven University of Technology/Netherlands

A new type of interference refractometers, based on a commercially available laserinterferometer, has been developed. The design and behaviour of this refractometer are presented in this paper.

A review of measurements on stability, absolute measuring accuracy and a comparison with calculated values of the refractive index of air will be given. The maximum uncertainty has been evaluated as 5 parts in $10^{-6}$.

This refractometer can be very useful for the accurate determination of the refractive index of air and other gases and also for the calibration of automatic compensators of commercially available laserinterferometers.

1. INTRODUCTION.

Laserinterferometry has been used for many years as a useful tool for the accurate measurement of length, angle and straightness. Today laserinterferometers are the basic instruments for the calibration of coordinate measuring machines and other accurate length measuring instruments.

There is also a growing need for the very accurate determination of errors in scales, straightness and squarness of coordinate measuring machines, because these data are now used for software error correction in these instruments.

Laserinterferometers are also used as measuring systems in very accurate production- and measuring machines. When using interferometry the measured length $L$ is generally calculated from

$$ L = \frac{\lambda_0}{2n} k $$

where $k$ is the number of pulses counted,

- $\lambda_0$ the vacuum wavelength of the lasersource,

- $n$ the refractive index of air and,

- $p$ a numerical factor usually two or four, depending on the optical and electronic properties of the instrument.

The relative uncertainty of $L$ can be calculated from Eq. (1):

$$ \frac{\Delta L}{L} = \frac{P}{\lambda_0} \cdot \frac{\Delta \lambda_0}{\lambda_0} + p \cdot \frac{\Delta n}{n} $$

Earlier in these Annals we have published information about the determination of the accuracy of $\Delta L$ limited by the accuracy $\Delta \lambda_0$. Today the most accurate measurement $\lambda_0 < 10^{-7}$ is demanded which means that at least the same accuracy for $\Delta \lambda_0$ is required. For most commercially available laserinterferometers $\Delta \lambda_0$ has to be calculated from the measured values of pressure, temperature and humidity using Edlén equation [3]. Somewhat modified in the air this equation can be written as:

$$ N - 1 = 0.373 \times 10^{-6} \frac{L}{T} - 0.373 \times 10^{-6} \frac{P}{T} - 0.373 \times 10^{-6} \frac{F}{T} $$

where $N = 0.2761756 \times 10^{-3} (1 + 0.54 \times 10^{-4} (c-300))$,

- $P$ the pressure of the air in Pa,

- $T$ the air temperature in °C,

- $F$ the vapour pressure in Pa and,

- $C$ the CO$_2$ content in ppm.

Commercially available laserinterferometers with electronic correction for changes in $N$, the so called automatic compensation, use a constant value for $C$, normally 300 ppm. From Eq. (3) the influence of errors can be calculated. For sake of completeness they are given in Eq. (4):

$$ \frac{\Delta N}{N} = 2.67 \times 10^{-3} \frac{P}{T} $$

$$ \frac{\Delta N}{N} = -9.20 \times 10^{-7} \frac{F}{T} $$

$$ \frac{\Delta N}{N} = -4.21 \times 10^{-10} \frac{T}{F} $$

$$ \frac{\Delta N}{N} = 1.45 \times 10^{-10} \frac{F}{P} $$

Since the model-accuracy of Edlén equation has been claimed to be $5 \times 10^{-8}$ [3], it will be very difficult to reach the $10^{-7}$ level for $\Delta N$. Due to errors in the determination of $F$, $T$, $P$ and $C$. To get a more accurate measurement of the interference refractometers have been built in recent years [4,5,6]. By these refractometers the refractive index including the contribution of all constituents in the air is measured. As can be expected this method gives better results than the Edlén-method. This has been confirmed by an international project on the comparison of interference refractometers. In this project, supported by BCR-EXC, Brussels, four refractometers developed in different countries are compared. The measured values of $N$ are also compared with calculated values using Edlén equation. The complete results are published now [6].

The Dutch participants in this project have decided to redesign their refractometers and to build improved instruments based on the same concept: using commercially available laserinterferometers. Two refractometers have been built based on the same principle but using different lasersources and counting systems [7] of a well known manufacturer. It should be noted that these refractometers can be used also with other lasersources and counting systems.

We have compared these refractometers and, separate, calculated $N$ from Eq. (3). In this way we could also determine the differences between measured and calculated values of $N$. Finally, the results of the calibration of automatic compensators of laserinterferometers performed with this refractometer are given.

2. DESIGN OF THE INTERFERENCE REFRACTOMETER.

The refractometer has been based on a symmetric double-beam interferometer. One of the beams is passing through a sample-chamber which can be filled with the medium to be measured, normally air. The other beam is passing a vacuum chamber as a reference.

Vacuum and air chambers are drilled in an aluminium block, sizes 70 x 70 x 600 mm. The chambers are closed by optical windows. Connections for filling and pumping out the chambers are provided in the aluminium block. Two sensors for temperature measurement are mounted in the sample-chamber. The optics for beam-splitting, beam-bending and reflection are mounted separately on a common base together with the aluminium block and the lasersource. These optics are not standard components of the laserinterferometer used, but are available commercially.

The principle of the refractometer is shown schematically in Fig. 1. The quarter-wave plate is only necessary if a polarizing beamsplitting prism is used as is the case in our refractometers. It should be noted that the prisms for beamsplitting, beambending and also the lasersource can be fine adjusted to optimise the interference signal for the counting system.

The method of measurement is very simple: first the chambers are evacuated to a sufficient low pressure, after which the diaphragm filling station. The changing optical path has been measured by a vacuum laserinterferometer. The length of the path is calculated from Eq. (1):

$$ L = \frac{\lambda_0}{2n} k $$

where $k$ is the number of counts due to the changing optical path in the sample-chamber.

- $p$ a numerical factor, and

- T the actual length of the sample-chamber.
FIG. 1: PRINCIPLES OF THE REFRACTOMETER


By electronic extension provided with laser-source type A \[7\] a value \( p = 400 \) has been reached while for type B \[7\] a value of \( p = 600 \) has been used, using the build-in computer in connection with the straightness-measurement mode.

To ascertain that the air in the sample-chamber has the same humidity content as the air in an isolated volume, next called the sample-volume, the air has been circulated smoothly (1 l min\(^{-1}\)) from this volume through the sample-chamber. In the sample-volume we have measured air pressure, temperature and humidity. Daily we took several air samples for determination of the \( \text{CO}_2 \) content and other constituents by gas chromatographic techniques. For the pressure measurement a Forin-type mercury barometer and a metal barometer have been used. Temperature measurement in the sample-chamber, on the aluminium block and in the sample-volume are carried out by resistance thermometers. The thermometers, the Pt-100 type, are coupled to an measuring set-up according to Dauphinee \[8\]. In this set-up the resistance of the thermometers has been compared with a standard using a Diezelhorst-compensator with null-detection. Most of the humidity measurements were carried out by measuring the dewpoint temperature \( T_d \) and from these results the water-vapour pressure was calculated from Eq. (6):

\[
F = 611 \exp(17.5 \times 10^{-3} T_d) \times (1 + 2.18 \times 10^{-4} T_d + 7.5 \times 10^{-9} T_d^2) \quad (6)
\]

where \( T_d \) is the dewpoint temperature in °C, and

\( F \) the water-vapour pressure in Pa.

A wet and dry bulb psychrometer has been used also for comparison.

The actual length \( L_0 \) of the sample-chamber can be calculated from \( L_0 = L_0(1 + \alpha(T-T_a)) \). Here, \( \alpha \) is the linear coefficient of expansion of aluminium, \( L_0 \) the length of the chamber at \( T_a \) and \( T \) the temperature of the aluminium block. The resolution of the type A refractometer has been calculated to be 4 parts in \( 10^9 \) and for type B 2 parts in \( 10^9 \). The refractometers are connected to filling and pumping stations coupled by valves. Connections were made by thick-walled flexible PVC tubes. Vacuum measurement was carried out by a Pirani-gauge.

The refractometer and optics are situated in a Polystyrene-cabinet in order to avoid temperature gradients in the refractometers. Fig. 2 shows a diagram of the complete refractometer set-up for the comparison of the measured and calculated values of \( N \).

3. MEASUREMENTS AND RESULTS.


Before the refractive index measurements have been started the stability of the refractometers was studied. For this measurement both chambers have been evacuated and after equilibrium the change in optical path has been measured by the interferometer over periods of several hours. Both refractometers have shown nearly the same behaviour: a drift in \( N \) of a few parts in \( 10^9 \).

Fig. 3 shows a sample graph of the drift.

FIG. 2: MEASUREMENT SET-UP OF REFRACTOMETER FOR THE COMPARISON "MEASURED/CALCULATED" N-VALUES.
After evacuation a single measurement of \(N\) takes about 5 minutes so in that case the drift is negligible. Continuous measurement of \(N\), without intermediate evacuation of the sample cell, over longer periods, needs small correction for the most accurate measurements.

3.2. Comparison of values measured by the refractometer, with calculated values of \(N\).

In this set-up both refractometers were connected to the sample-volume. From this volume air was admitted to both sample-chambers by separate filling stations. During the measurements the air was circulated through both sample-chambers. Temperature was measured in the sample-chambers and in the sample-volume to correct the measured values of \(N\) for temperature difference between these places.

In the sample-volume also pressure, humidity and \(CO_2\) content have been measured. From these results values of \(N\) have been calculated. Fig. 4 shows graphically some results for both refractometers. Several measurements have shown a slight tendency for the measurements of \(N\) to be higher than the calculated values as we have found also in the international comparison mentioned earlier. To confirm this, it will be necessary to improve our measurements of \(P, T\) and \(F\).

3.3. Direct comparison of the refractometers.

For these measurements both refractometers have been connected to one filling and pumping system. In this way the vacuum and air conditions were the same for both instruments. After evacuation air from the sample-volume has been admitted into both sample-chambers. Also a slight circulation of air through both chambers was accomplished. Air temperature in both sample-chambers has been measured to correct for temperature differences. Fig. 5 shows the complete set-up for the comparison of the refractometers. In this case the insulated cabinets around the refractometers are removed.

In Fig. 6 the relative difference of the measured values of both refractometers is plotted. The results show a small difference after a longer measuring period due to the drift effect mentioned earlier. Also there can be some effect of the temperature measurement because small corrections for temperature difference have been carried out. Short time measurements have shown better results [9].

3.4. Role of \(CO_2\)-content and other constituents.

For the most accurate measurements with laser interferometers one has to measure the \(CO_2\)-content of the air and generally to correct for it [6]. To get a good idea about the situation in our laboratory the air has been analysed over longer periods by gas chromatography. Every day showed the same tendency: a starting value around 350 ppm and thereafter an increasing \(CO_2\)-content reaching a level between 700 and 950 ppm at the end of the day depending on the number of people in the 400 m\(^3\) volume of the

\[\Delta N = N_0 - N \quad 10^{-8}\]

\[-\]

\[Time \quad (hours)\]

\[\quad N \quad 10^{-8}\]

\[\quad 120\]

\[\quad 27000\]

\[\quad 0\]

\[\quad 1\]

\[\quad 2\]

\[\quad 3\]

\[\quad 4\]

\[\quad 5\]

\[\quad 6\]

\[FIG. 3: STABILITY MEASUREMENT OF THE REFRACTOMETER.\]

\[FIG. 4: MEASURED VALUES OF REFRACTIVE INDEX AND CALCULATED "EDLEN"-VALUES, RESULTS OF TWO DAYS.\]

\[FIG. 5: SET-UP FOR DIRECT COMPARISON OF REFRACTOMETERS.\]
The interference refractometers described can be used also for the determination of the refractive index of other gases at conditions can be measured. Each measured point represents the average value of four analyses of the same air sample. The uncertainty of this average value has been calculated to be 15 ppm.

Different values on the same time in different days are due to the different numbers of people in the laboratory during the measuring period.

The maximum increase of around 700 ppm corresponds to \( \Delta N = 10^{-7} \), so it is important to correct for the CO\(_2\)-content. The determination of other constituents showed minor concentrations of hydrocarbons which can be neglected. During the calibration of a coordinate measuring machine at a car manufacturing plant an air sample has been analyzed. The following concentrations have been detected:

- Carbon dioxide: 700 ppm
- Methane: 595 ppm
- Ethane: 205 ppm
- Propane: 130 ppm
- N-Butane: 98 ppm
- Octane: 50 ppm
- N-Fluorine: 72 ppm

It may be concluded that in the car manufacturing plant situation only the carbon dioxide concentration has a significant influence on the measuring accuracy.

4. ADDITIONAL APPLICATIONS.

The interference refractometers described can be used also for the determination of the refractive index of other gases at very low concentrations of other gases. Much higher concentrations have been reported in comparable environmental conditions [5]. The following concentrations corresponding to a relative change of \( 10^{-7} \) in \( N \) each:

- Carbon dioxide: 700 ppm
- Methane: 595 ppm
- Ethane: 205 ppm
- Propane: 130 ppm
- N-Butane: 98 ppm
- Octane: 50 ppm
- N-Fluorine: 72 ppm

Again a high concentration of CO\(_2\) has been detected but very low the concentrations of other gases. Much higher concentrations have been reported in comparable environmental conditions [5]. The following concentrations corresponding to a relative change of \( 10^{-7} \) in \( N \) each:

- Carbon dioxide: 700 ppm
- Methane: 595 ppm
- Ethane: 205 ppm
- Propane: 130 ppm
- N-Butane: 98 ppm
- Octane: 50 ppm
- N-Fluorine: 72 ppm

It may be concluded that in the car manufacturing plant situation only the carbon dioxide concentration has a significant influence on the measuring accuracy.

5. DISCUSSION.

The interference refractometers described here have shown a stability better than 5 parts in \( 10^7 \) over several hours. At least a part of this drift can be explained from small temperature-effect on the mechanical structure for the adjustment of the optics. Direct comparison showed also relative differences less than 5 parts in \( 10^7 \). Part of these differences are due to small errors in the temperature-measurement in the sample-chambers. The uncertainty in this measurement was less than 0.02 K which causes maximum relative errors of \( 5 \times 10^{-8} \). Also small effect have been measured from local expansion of the optical windows arising from the vacuum-air change in the sample-chamber. These effects are evaluated now.

Comparison between measured and calculated values of \( N \), as was shown in Fig. 4, indicating relative differences up to 8 part in \( 10^7 \). Part of these differences can be explained from the uncertainty in the calculated value of \( N \). The uncertainty of the pressure measurement has been determined to be at least 15 Pa and the uncertainty in the dewpoint measurement will be 0.3 K. The carbon dioxide content has been calculated from interpoltion between measured values. The maximum uncertainty will be less than 50 ppm. From these values and the model uncertainty of \( \pm 5 \) parts in \( 10^8 \) the total uncertainty in the calculated values of \( N \) will be \( \pm 7 \) parts in \( 10^7 \). The results showed in Fig. 4 are within this range.

6. CONCLUSIONS.

It may be stated that the interference refractometers described are very useful instruments for the accurate determination of the refractive index of air and for the calibration of automatic compensators in laser interferometers. Relative uncertainty will be less than 5 parts in \( 10^8 \) even when
the instruments are used continuously for periods of several hours. The instruments can be build relatively easy because they are based on commercially available laserinterferometers. For some types it is even possible to use the refractometer parallel to the interferometer using the same las ersource [9].

It has been proved that the CO₂-content plays an important role in accurate interferometric measurements and generally it is not allowed to use the standard value of 300 ppm for calculating W values. Especially in industrial environments the CO₂-content can be very high but also the butane and octane content can be important [5].

We have measured a relation between the number of people and the CO₂-content in our laboratory. The air in this laboratory is conditioned by closed circuit. Generally it can be stated that for interferometric length measurements with relative uncertainty less than 1 part in 10⁷ the refractive index has to be measured by an air-refractometer.

7. ACKNOWLEDGMENTS

We like to thank Ir. H. Zeedijk and Mr. A. van Hijen of the Chemical Department of Eindhoven University for the fast and accurate gaschromatographic analyses of the air samples taken during the measurements. The Metrology Laboratory of Rank Xerox Holland, Venray has kindly lent to us a laserinterferometer with automatic compensator.

REFERENCES


[7] Two laserinterferometers manufactured by Hewlett-Packard have been used:
Refractometer A: laser 5500C + 5505A display + resolution extender 59995A
Refractometer B: laser 5518A + 5508A display. The automatic compensators calibrated are also manufactured by H-P both belonging to the A-type laserinterferometer.
