Fluctuations around mean walking behaviors in diluted pedestrian flows

Citation for published version (APA):

DOI:
10.1103/PhysRevE.95.032316

Document status and date:
Published: 15/03/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Aug. 2019
Fluctuations around mean walking behaviors in diluted pedestrian flows

Alessandro Corbetta,1 Chung-min Lee,2 Roberto Benzi,3 Adrian Muntean,4 and Federico Toschi5,*

1Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
2Department of Mathematics and Statistics, California State University Long Beach, Long Beach, California 90840, USA
3Department of Physics and INFN, University of Tor Vergata, Rome I-00133, Italy
4Department of Mathematics and Computer Science, Karlstad University, Sweden
5Department of Applied Physics, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands and CNR-IAC, Rome I-00185, Italy

(Received 1 December 2016; published 15 March 2017)

Understanding and modeling the dynamics of pedestrian crowds can help with designing and increasing the safety of civil facilities. A key feature of a crowd is its intrinsic stochasticity, appearing even under very diluted conditions, due to the variability in individual behaviors. Individual stochasticity becomes even more important under densely crowded conditions, since it can be nonlinearly magnified and may lead to potentially dangerous collective behaviors. To understand quantitatively crowd stochasticity, we study the real-life dynamics of a large ensemble of pedestrians walking undisturbed, and we perform a statistical analysis of the fully resolved pedestrian trajectories obtained by a yearlong high-resolution measurement campaign. Our measurements have been carried out in a corridor of the Eindhoven University of Technology via a combination of Microsoft Kinect 3D range sensor and automatic head-tracking algorithms. The temporal homogeneity of our large database of trajectories allows us to robustly define and separate average walking behaviors from fluctuations parallel and orthogonal with respect to the average walking path. Fluctuations include rare events when individuals suddenly change their minds and invert their walking directions. Such tendency to invert direction has been poorly studied so far, even if it may have important implications on the functioning and safety of facilities. We propose a model for the dynamics of undisturbed pedestrians, based on stochastic differential equations, that provides a good agreement with our field observations, including the occurrence of rare events.

DOI: 10.1103/PhysRevE.95.032316

I. INTRODUCTION

The flow of human crowds is a fascinating scientific topic. The interest comes from both its connections with open scientific challenges related to the development of complex behaviors and pattern formation in nonequilibrium systems [1], as well as from its relevance to the design and safety of infrastructures [2]. Connections with statistical physics [3] and fluid dynamics descriptions [4] have been used to develop models capable of reproducing some of the features observed in crowd phenomenology [5–7]. From a macroscopic point of view, it is no surprise that crowds may be described, at least qualitatively, by means of fluidlike continuity equations for the local crowd density [7].

While it may be tempting to extend this fluid analogy even to the case of rarefied gases and complex fluids as paradigms, respectively, of crowds with low and high pedestrian densities, many more qualitative investigations are needed. A key difference between fluids and crowds is the “active” nature of crowd “particles” with respect to the “passive” nature of particles in ordinary fluids.

Despite the fact that pedestrian crowds are ubiquitous, the availability of high-quality, high-statistics data is still rather limited. This is probably related to technical difficulties in the analysis of camera recordings that can be easily affected by varying lighting conditions and by the difficulties in the accurate identification of pedestrian positions in images [8]. When available, high-quality data are often limited to short recordings not allowing an accurate statistical characterization of the dynamics. This practically impedes investigations beyond mean behaviors. Sufficient statistical accuracy is mandatory to investigate the statistical properties of such rare events as the ones, for instance, corresponding to individuals suddenly changing their directions.

To overcome some of these issues, we have performed a crowd-tracking experiment with high space and time accuracy and with unprecedented statistics. These field data allow us to develop and to validate simple stochastic models capable of quantitatively reproducing the dynamics of single individual pedestrians as well as of the statistical properties.

II. CONCEPTUAL FRAMEWORK

The behavior of single individuals has been modeled in recent literature [6,9] as being subjected to “social forces,” geometry constraints (or “wall forces”), and intrinsic (random) noise. These models account for both “voluntary” as well as “accidental” pedestrian motions. If such a description is correct, we must observe nontrivial effects which cannot be taken into account by a purely deterministic dynamics (i.e., by considering only social forces and no noise). Indeed, this is exactly what happens. Pedestrians with the same starting position and velocity might exhibit different trajectories, and the random noise in the model should be enough to quantitatively explain this departure. Furthermore, with a small but well measurable probability, some pedestrians abruptly invert their own direction of motion during their walk.
random noise in the model should be able to reproduce quantitatively such rare events.

In our observations sudden inversions of walking direction occur with a probability of 1 in about 1000 pedestrians. Because of the low frequency of these events, it can be challenging to study quantitatively and thus explain them in the context of stochastic mathematical models for single-pedestrian behavior. In this paper we provide evidence, with strong support from field observations, that such rare events can indeed be explained by the effect of “external” (nondeterministic) random perturbations. It is important to underline that the effect of these rare events can be extremely important in nondilute crowd conditions, as in several situations where crowd disasters occurred (see, e.g., [10,11]).

For our purpose, we focus on a corridor shaped landing, where the same dynamics repeats everyday (so that statistics can be arbitrarily increased) and where pedestrians have limited freedom (they can enter or exit from a restricted region L and exit or enter from region R). In our system (sketched in Fig. 1) pedestrians walk subjected to a very simple geometrical constraint without particular distractions (no pictures, windows, etc.). The average longitudinal velocity is almost the same (within a 10% margin) in the two possible walking directions (L to R and R to L). Let u indicate the longitudinal velocity; we denote by u_{up} the average value of u (in absolute value).

Under such conditions, a direction inversion event is simply the change $u \rightarrow -u$ of the pedestrian’s walking direction. The key question is whether the occurrence probability of rare events can be quantitatively related to the amplitude of fluctuations (or nondeterministic noise if any), as measured when pedestrians are walking without turning back. At first, this idea may appear hopeless because inversion events, as the one in which we are interested in our case, can be due to several subjective external factors (e.g., receiving a phone call). However, if our postulation is correct, we should be able to compute quantitatively the probability of turning back by a reasonably good measure of the external stochastic noise. It is the purpose of the present paper to show that this is indeed the case, as shown in Fig. 2. In Fig. 2, we report the probability distribution of the number of pedestrians, N_i, observed between two consecutive rare events (inversion events). Such probability distribution (red dots) is expected to be exponential since the statistics of rare events follow a Poisson distribution (after the reasonable assumption that rare events are independent from each other). The blue dotted line is the best exponential fit of the observations providing $\exp(-N_i/N_0)$, where $N_0 \approx 450$, i.e., on average we observe a rare event every 450 walking pedestrians. The black open circles are the probability distribution computed using our model (detailed below) and shows a remarkably good agreement with the observations.

In the following we provide the field measurement and mathematical details of our approach. First, we give the details of our installation, then we describe our stochastic model for
pedestrian dynamics, and, finally, we compare it against field measurements.

III. MEASUREMENT SETUP

We recorded the trajectories of pedestrians walking in a corridor-shaped landing (cf. Fig. 1) in the Metaforum building at Eindhoven University of Technology (the Netherlands). Via two staircases at both ends, the landing connects the canteen of the building (ground floor) to the dining area (first floor). Our installation monitored a rectangular section in the center of the U-shaped walkable area, covering a surface 2.3 m long and 1.2 m wide (full transversal size). Recordings have been carried out on a 24/7 basis for 109 complete working days in the period October 2013–October 2014.

To collect pedestrian trajectories, following [13], we developed a system with the following characteristics. Via a commercial low-cost Microsoft Kinect 3D range sensor [12] we collect raw overhead depth maps of the corridor (sensor height, 4 m; time resolution, 15 frames per second). Depth maps are the distance field between observed objects and the sensor plane: Such scalar fields can be conveniently encoded in grayscale pictures (cf. Fig. 3). Kinect sensors reconstruct depth maps in hardware (via projection of structured IR light), providing a stream at Video Graphics Array (VGA) resolution (640 × 480 px). The depth signal enables head detection and hence the full reconstruction of individual trajectories. We report a typical trajectory provided in Fig. 3. We process the depth-map stream off-line, extracting the head positions frame by frame (cf. [13]); thus, we perform the tracking in a particle tracking velocimetry (PTV) fashion [14] via the library OpenPTV [15]. Through this procedure, further described in Appendixes A–C, we achieve a typical detection and tracking error within a centimeter. In particular, head detection reliability is generally high modulo fluctuations due, for instance, to hair or hats “geometry,” irrelevant for the estimation of trajectories and velocities.

From all pedestrian trajectories connecting L to R and vice versa, we can define an average path, Γ (sketched in Fig. 1), together with few illustrative individual trajectories. The trajectories of individual pedestrians present some degree of stochasticity, and it is thus difficult to disentangle a mean path from fluctuations at the single trajectory level. Such disentanglement is instead easy and very accurate after ensemble averaging on a large collection of trajectories. The time resolution of our recordings and the large statistics allow us to achieve a very accurate estimate of the average path Γ (with an error within 1 mm; cf. Fig. 7), enabling us to study the statistics of fluctuations.

IV. DYNAMICS

In modeling a single pedestrian walking, our starting point is the introduction of a convenient system of coordinates (x, y), where x labels the position in the direction along the corridor and y the transversal position (with $y = 0$ corresponding to the center of the corridor). Assuming that there exists no correlation in the longitudinal and transversal dynamics, we model the dynamics in the two directions independently,

$$\dot{x}(t) = u(t),$$

$$\dot{u}(t) = f(u) + \sigma_x \dot{W}_x,$$

$$\dot{y}(t) = v(t),$$

$$\dot{v}(t) = -2\beta y(t) - 2\gamma v(t) + \sigma_y \dot{W}_y,$$

where u and v are the velocity components in the longitudinal, x, and transversal, y, directions and β and γ are (positive) model parameters. The structure of the function $f(u)$ is still to be identified, and the noise terms \dot{W}_x and \dot{W}_y are assumed, for simplicity, independent, δ-correlated in time, and Gaussian distributed (these assumptions are conventional, although nonmandatory [16]). For the time being, we focus on the transversal dynamics where we model the behavior of a single pedestrian as a linear Langevin equation. There is a priori no reason to believe that a linear approximation is correct or even reasonably good; thus, the only way to assess the validity of Eqs. (3) and (4) is to compare the predictions of the model against the outcome of our observations. In Fig. 4 we show the y autocorrelation function, the probability density distributions of y and of v, respectively. Both y and v show distributions very close to a Gaussian, supporting the linear Langevin model in Eqs. (3) and (4). The autocorrelation function of y shows good quantitative agreement with the prediction of the linear Langevin equations. All values of the fitted parameters are reported in Table I.

Next, we consider the equation for u and we need, thus, to identify the function $f(u)$ in Eq. (2). As already pointed out, we have two almost identical velocities characterizing the average left-to-right and right-to-left walk, with an absolute value of about $u_p = 1 \text{ m/s}$. Therefore, we assume that $f(u_p) = f(-u_p) = 0$; i.e., the two states $u = \pm u_p$ should correspond to stationary solutions of the deterministic part of Eq. (2). We
argue that \(u = 0 \) is also a stationary solution [i.e., \(f(0) = 0 \)], and in particular it should be an unstable stationary solution. As we shall see, the assumption on the state \(u = 0 \) is not exactly true, and it should be considered as a first approximation. Postponing the question on the state \(u = 0 \), we can reasonably assume that \(f(u) \) can be approximated as

\[
f(u) = -4\alpha u(u^2 - u_p^2),
\]

where \(\alpha \) is a positive parameter that represents the modulating factor of the force. The above equation is the simplest form of Eq. (2) in the form

\[
\dot{u} = -4\alpha u(u^2 - u_p^2) + \sigma_x W_x.
\]

Associated with Eq. (6), we can consider the stationary probability distribution \(P(u) \) given by

\[
P(u) = \mathcal{N} \exp \left\{-R\phi(u)\right\},
\]

where \(\phi(u) \equiv (u^2 - u_p^2) \) represents a double-well potential associated with the force \(f(u) \), \(\mathcal{N} \) is a normalization factor, and \(R = 2\alpha/\sigma_x^2 \). The way we write \(P(u) \) in Eq. (7) highlights the fact that the stationary probability distribution depends on a single parameter, namely \(R \). Note that the probability for a rare event to occur is given by \(P(0)/P(u_p) = \exp(-R u_p^2) \), which corresponds to the well-known Kramer’s estimate [17,18].

Table I. Parameters used in the model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.0625 m(^{-2}) s(^{-1})</td>
</tr>
<tr>
<td>(\sigma_x)</td>
<td>0.16 ms(^{-3/2})</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1.63 s/m(^{-2})</td>
</tr>
<tr>
<td>(\sigma_y)</td>
<td>0.16 ms(^{-3/2})</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.207 s(^{-1})</td>
</tr>
<tr>
<td>(u_p)</td>
<td>1.0 ms(^{-1})</td>
</tr>
</tbody>
</table>

To compare our theoretical expectation against observation data, we consider the full set of measured trajectories, in both directions, and we compute the probability density distribution \(P_{\exp}(u) \). From this we construct the potential of the longitudinal dynamics via the relation

\[
\Phi_{\exp} \equiv -\ln \left\{ \frac{1}{2} [P_{\exp}(u) + P_{\exp}(-u)] \right\}.
\]

In Fig. (5a) we compare \(\Phi_{\exp} \) to our theory. There are two main points to be observed: First, for very large, although rarely occurring, absolute values of \(u \), our choice of \(f(u) \) is clearly poor; second, at variance with our assumption, the state \(u = 0 \) seems to correspond to a locally stable state, and there exist two unstable states at \(u = \pm u_p \) with \(u_p \approx 0.2 \) m/s. For the second point, what we are missing in our modeling is the relatively small probability to stay at \(u = 0 \) for a time longer than the one predicted by Eq. (6). This corresponds to pedestrians stopping walking for a while, possibly taking a phone call. However, such a time is two order of magnitudes shorter than the average transition time from \(u \) to \(-u \). We refrain from increasing the complexity of \(f(u) \) to fit the shape of \(\Phi_{\exp} \) (though this would easily be possible) since our major goal here is to accurately model the probability of rare trajectory-inversion events. This goal is relatively simple to achieve; in Fig. (5a) we chose \(R = 4.88 \times 10^3 \) s\(^{-1}\) m\(^{-1}\) so that the maxima of \(R\phi(u) \) corresponds to the two symmetric maxima of \(\Phi_{\exp} \). With such a choice, the probability of a rare event, following Kramer’s estimate, is the same in our model and in the measurements.

To close our parameter estimation for Eq. (6), we need to compute \(\alpha \) and/or \(\sigma_x \) in an independent way. To this purpose, we consider the case of \(u \) close to one of the two “minima” shown in Fig. (5a), say \(u = u_p \), and we linearize Eq. (6) around such a minimum. Upon defining \(\delta u = u - u_p \), we can write

\[
\delta \dot{u} = -8\alpha u_p^2 \delta u + \sigma_x W_x.
\]

From Eq. (9) the correlation function of \(\delta u \) should decay as \(\exp(-8\alpha u_p^2 t) \) (cf., e.g., [19]). It is therefore possible to estimate \(\alpha \) by computing the correlation function of \(\delta u \) from

![FIG. 4. Transversal dynamics: comparison between measurements and model. We model the transversal motion as a harmonically bounded Langevin motion [cf. y and v dynamics in Eqs. (3) and (4)]. In (a) we report the time correlation function of the transversal displacement y. The analytic solution [proportional to a cosine function with exponential decay; cf. Eq. (F5)] is reported as a blue dotted line. Measurements (red dots) and simulations (open dots) in a domain of equal size are in good agreement with the analytic solution. (b), (c) Probability distribution function of, respectively, transversal positions y and transversal velocities v. In both cases the analytic solution is a Gaussian distribution (blue dotted line), which is in good agreement with the measurements (red dots). In the case of transversal positions y we observe rare deviations from the Gaussian behavior at \(|y| > 0.4\). These are due to stopping events [cf. peak at \(u = 0 \) in Fig. 5(c)]. We refer the reader to Appendixes D-F for further details on the calculations. Simulations included the same number of trajectories \(N \) as in the observations (\(N = 72.376 \)).](image)
the longitudinal velocity decays around the expected exponential trend with larger discrepancies after fit the correlation time \[(8^\text{after symmetrization of the velocities—cf. Eq. (8)—red dots}]
with the rescaled potential in a double-well velocity potential [cf. (red dots) and model (open dots). The simulated dynamics captures the entity of the fluctuation as well as the negative velocity tail within the for long times the correlation function does not seem to follow the field data; the results are depicted in Fig. 5(b). Although for long times the correlation function does not seem to follow an exponential, at relatively short times we can safely estimate the correlation time as \(\alpha \approx 0.0625 \text{ m}^2 \text{s}^{-1}\). Given \(\alpha\), we can compute \(\sigma_x = \sqrt{2\alpha/R} \approx 0.16 \text{ ms}^{-1}\). Remarkably, the value of \(\sigma_x\) is quite close to the value estimated for \(\sigma_u\). Although the two noise variances are not constrained to be the same, it is reasonable to argue that the velocity fluctuations should be isotropic; this is in line with what we found. Also, the correlation time \(1/(8\alpha \sigma_u^2) \approx 2 \text{ s}\) is very close to the correlation time \(1/(2\gamma) \approx 2.4 \text{ s}\) estimated for the correlation function of \(v\). Once more, while there is no reason for the system to be perfectly isotropic, we consider the closeness of the values of noise variance and correlation times as a nontrivial self-consistency check of our model.

We are now able to accomplish the last and more significant step in our study, namely the analysis of rare inversion events. To perform a fair comparison between our theoretical approach and the field data, we proceed as follows. We simulate numerically Eqs. (1) and (6) with initial position \(x = 0\) and initial velocity \(u\) having a Gaussian distribution approximating Eq. (7) around \(u = u_p\) [i.e., with variance \(\approx \sigma_u^2/(16\alpha u_p^2)\)]. We integrate the solution up to the point \(x = 2 \text{ m}\) (exit), and then we repeat the integration \(N\) times starting with the same initial conditions. Next, we consider the field data for the same case, i.e., initial condition \(x = 0\). The value of \(N\) is chosen to be the one in the observations (\(N = 72376\)). Finally, we compute \(P(u)\) as obtained by the numerical simulations and compare it with \(P_{\text{exp}}(u)\) from the measurements. Rare events should corresponds to the tail in the probability distribution reaching the state \(u = -u_p\). The comparison between the two probability distributions is reported in Fig. 5(c). Although there is a discrepancy at \(u = 0\) and at extreme values of \(u\) (as expected), the overall comparison is extremely good. Figure 5(c) clearly shows that the probability of rare events, i.e., the individual decision to turn back along the path, can be estimated by the effect of external random perturbations. This result is apparently in contrast with the intuition that the decision to make a U-turn is an external and unpredictable event which cannot be modeled. However, as already pointed out, it is also possible to consider the shape of function \(f(u)\) in Eq. (2) and the variance of the noise as a suitable way, in statistical sense, to model this unpredictable individual freedom. We need to stress that our choice of the observation settings and the very large statistical database are essential for our findings that, to our knowledge, have not been reported by others before. Finally, measurements and simulation are compared in terms of rare events distribution in Fig. 2 showing very good agreement.

Our result opens ways to a number of possible investigations. Clearly, in less diluted pedestrians environments, rare events are statistically modified by the effect of other individuals and of their associated “social forces.” However, even with due modifications, the possibility of rare inversion events can contribute to nontrivial effects, such as the local increase of crowd density. Also, it may be interesting to understand how the probability of rare events is changed by increasing the size of the system (especially in the \(x\) direction). For instance, in the case of a longer corridor it is reasonable to expect the emergence of a peak around \(u = -u_p\) in the longitudinal velocity distribution in connection to the larger relaxation space allowed to reach stable velocity after inversion. We may also expect, in principle, that our parameters \((\alpha, \beta, \gamma)\) are somehow system-size dependent.

V. CONCLUSIONS

Thanks to an innovative crowd-measurement campaign, we investigated quantitatively the statistical properties of single-pedestrian dynamics in a simple geometric setting. We
reliably measured the motion of pedestrians in real-world conditions for one year, removing several of the constraints and biases of laboratory experiments. For example, inversion of trajectories would never occur in a laboratory context where pedestrians are explicitly instructed to walk across a corridor. We considered the simplest flow condition possible: undisturbed pedestrians walking in a quasi-one-dimensional corridor.

Even in this simple scenario, the dynamics shows different levels of stochasticity consistently and reproducibly present in the two symmetric cases (left-to-right and right-to-left) considered. Pedestrians show a randomly fluctuating behavior around a “preferred” average path which connects the two extremes of the observed region. Rarely, strongly deviating behaviors, such as long pauses or inversions, are observed. The presence of such highly deviating behaviors gives the overall picture of the dynamics a nontrivial structure, different from the mean-field average behavior.

In the same spirit of the statistical analysis of other stochastic systems, we analyze the dynamics in terms of probability distribution functions. As a consequence of the extensive measurement campaign performed, we obtained probability distribution functions very well resolved in the tails (extreme events), and we specifically focused our attention to positions and velocities probability distribution functions. In the case of the longitudinal velocity, the large deviations measured reflect in a non-Gaussian statistic.

To reproduce such stochastic behavior and its specific statistical features, we use a Langevin-like equation with a bistable pseudopotential in the velocity space. The stochastic fluctuation of the velocity in the positive velocity well of the potential, excited by a forcing white noise, reflects the natural fluctuations across the preferred path. Furthermore, the white noise allows us to reproduce rare transitions responsible for U-turns, corresponding to transitions from the positive velocity well to the negative well. Remarkably, this behavioral change is not determined a priori, but rather it is the result of a purely random process.

We believe that the present model can be extended to more complex crowd dynamics like, e.g., conditions where the crowd density is high, as common in many civil infrastructures in our cities.

ACKNOWLEDGMENTS

We acknowledge the Brilliant Streets research program of the Intelligent Lighting Institute at the Eindhoven University of Technology. A.C. was partially funded by a Lagrange Ph.D. scholarship granted by the CRT Foundation, Turin, Italy and by the Eindhoven University of Technology, The Netherlands. This work is part of the JSTP research programme “Vision driven visitor behavior analysis and crowd management” with Project No. 341-10-001, which is financed by the Netherlands Organisation for Scientific Research (NWO). Partial support from the EU COST Action MP1305 is kindly acknowledged.

APPENDIX A: DEPTH MAPS ACQUISITION AND PEDESTRIAN TRACKING

Our field measurements are based on the 3D data delivered by an overhead Microsoft Kinect device [12]. In addition to a standard camera, a Microsoft Kinect provides a structured-light sensor enabling the evaluation of the depth map of the filmed scene. Depth maps encode the distance between each point (pixel) in the scene and the camera plane. They are typically represented via grayscale images (cf. Fig. 3; darker shades of gray are closer to the camera). Following the approach introduced in [13], and discussed for the current scenario in [20,21], overhead depth maps allow an accurate detection of the pedestrian positions. Performing an agglomerative clustering of the foreground part of the depth map through a complete linkage [22], we identify pedestrians via a 1:1 correspondence with the clusters appearing in the scene. Clusters are found after cutting the hierarchical clustering dendrogram at a height commensurable with the shoulder size (cf. reliability analysis in [13]). Finally, heads are associated with the “upper” part (i.e., having lesser depth) of each cluster (fifth percentile). Employing overhead sensors with vertical top-to-bottom view is not mandatory. In fact, larger recording can be achieved via cameras having pitch angle smaller than 90°; however, this comes at the cost of increased probability of mutual pedestrians occlusions and higher automatic detection difficulty. Measurements from sensors in this more general configuration are not treated here. The interested reader can refer, e.g., to [23].

After head positions are assessed on a frame basis, we perform a spatiotemporal matching to reconstruct trajectories. We employ the tracking algorithms in the Open Particle Tracking Velocimetry (OpenPTV) library [14,15]. We use OpenPTV also to deal with the conversion of camera “pixel” coordinates to “metric” coordinates. Calibration has been helped by a “checkerboard” composed of nine circular holes in a 3 × 3 configuration (hole diameter, 9 cm, hole center distance with first neighbors, 13 cm). This allowed a final resolution of circa 3.9 mm per px in the spanwise direction (x) and circa 4.1 mm per px in the transversal direction (γ) around the head plane (approximately 1.7 m above the ground).

To reduce noisy fluctuations from 3D reconstruction and head detection, we adopt the Savitsky-Golay smoothing filter [24], common in the particle-tracking velocimetry community (cf., e.g., [25,26]). We employ a local quadratic approximation based on a symmetric window having width equal to seven time samples.

APPENDIX B: PEDESTRIAN TRAJECTORIES

In our continuous recordings, we observed up to six pedestrians walking simultaneously. In this paper we focus on trajectories by individuals moving undisturbed by peers (cf. [21,27] for an overview of other possible traffic conditions including coflows and counterflows). To select these trajectories we operate as follows.

1. For each trajectory γ we compute \(L(γ) \): the average number of pedestrians observed in the site along this trajectory. The pedestrian whose trajectory is γ is always observed; hence, by construction, \(L(γ) ≥ 1 \) holds.

2. We retain all those trajectories γ for which \(L(γ) ≤ L_1 = 1 + ε_L \), with \(ε_L = 0.05 \) in our case). Allowing a small \(ε_L \) allows one to include trajectories in which for a few frames (in our case typically one) a pedestrian appeared with a peer.
Relaxing the selection condition \(L_1 = 1 \) enables increased statistics. When \(\epsilon_L \) is small we argue a reasonably negligible perturbation on the individual trajectories by the presence of a peer. In fact, at small \(\epsilon_L \) two individuals can appear together just when at the opposite sides of the facility one enters and one leaves.

We further employed the following quality checks on the trajectories, to remove faulty or low-quality data potentially compromising statistics.

(1) We restrict to fully reconstructed trajectories connecting either of the two virtual boundaries \(x_L = -0.8 \text{m} \) and \(x_R = 1.0 \text{m} \) [cf. vertical boundary bands in Fig. 1 and in Figs. 6(a) and 6(b)] or that feature an unconventionally long time duration (as suggested in [23]).

(2) Selected trajectories are of the order of several tens of thousands. These can still contain detection or tracking errors. We screened them manually, mostly exhaustively, prioritizing trajectories providing outlying values from position or velocity (joint) distributions. Among others, we employed the following empiric trajectory-based quantity. For each trajectory \(\gamma \), we define

\[
F(\gamma) = \frac{\max_s(s) - \alpha_{0.50,\gamma}(s)}{\sqrt{N}},
\]

where, respectively,

(i) \(s \) is a speed measurement along \(\gamma \), i.e., \(s = \sqrt{u^2 + v^2} \);
(ii) \(\max_s(s) \) denotes the maximum value of \(s \) along \(\gamma \);
(iii) \(\alpha_{0.50,\gamma}(s) \) denotes the 50th percentile (median) of \(s \) along \(\gamma \);
(iv) \(N \) is the number of samples in \(\gamma \).

This observable \(F \) highlights discrepancies between the maximum and the median speed along a trajectory. Outlying \(F \) values are likely a synonym of jittery trajectory reconstructions. As large differences between \(\max_s(s) \) and \(\alpha_{0.50,\gamma}(s) \) are likely to occur in case of trajectories spanning long time intervals, which for our site means one (or more) stop and go, we introduce the (empiric) weight \(N^{-1/2} \). This weight reduces the \(F \) “penalty” for long, and possibly correct, trajectories.

We ultimately classify trajectories in dependence on the direction, either left to right or right to left (with reference to Fig. 1). The classification is performed on the basis of the entering side or, when not possible, considering the average longitudinal velocity. Neglecting differences between the dynamics left to right and vice versa (cf. [27]), we merge the two classes after reversing the direction of the class right to left.

APPENDIX C: VELOCITIES, POSITIONS AND AVERAGE PATH

The U-shape of the recording site yields pedestrian trajectories that are slightly curved; as a consequence, Cartesian coordinates \(x-y' \) that follow the longitudinal and transversal directions of the landing (cf. Figs. 1 and 6) cannot be used as a reference for the longitudinal and transversal walking directions [coordinates \(x-y \) in Eqs. (1) to (4)]. We define these directions according to curved coordinates following the pedestrian motion, as described in the following. We use adapted coordinate systems obtained independently for the two classes of pedestrians (left to right and right to left). Thus, we merge the components calculated this way to obtain the final probability distribution functions.

First, to find motion-adapted position coordinates, we refer to the average path \(\bar{T} \), that is curved as the trajectories. We evaluate average paths from the positions distributions [cf. background in Figs. 6(a) and 6(b)]. Using a binning in the longitudinal \(x \) direction (40 bins), we consider per-bin averages of positions on the \(y' \) axis. The average path is given by connecting the bin-dependent \(y' \) averages. Using an
Let \(\tilde{x} \) be calculated with respect to the pedestrian state at the domain velocity component that the trajectory be the value of observable \(\text{CORBETTA, LEE, BENZI, MUNTEAN, AND TOSCHI PHYSICAL REVIEW E 95} \)

pedestrians transversal position \(\text{FIG. 7) Finally, for comparison with the model we remap distance between the average paths computed splitting our the average path with low error. For instance, the average way may yield two preferred paths, one on each side. On wide \(\text{where} \ E \ (\text{Eulerian) velocity field. We consider a two-dimensional} \)

pedestrians going left to right and vice versa. In both cases we split evenly and randomly the measurement sets in two. We report the absolute error on Eq. (C1) between the sets, which remains within the millimeter.

\(x \)-dependent parametrization, we write

\[
\Gamma(x) = (x, \mathbf{E}(y'|x)), \tag{C1}
\]

where \(\mathbf{E}(y'|x) \) is the average value of \(y' \) for measurements in longitudinal location \(x \) (i.e., in the same bin as \(x \)). Notably, as per the large number of measurements we can assess the average path with low error. For instance, the average distance between the average paths computed splitting our measurements in two random subsets is about 0.6 mm (cf. Fig. 7). Finally, for comparison with the model we remap pedestrians transversal position \(y' \) to account for the offset with the average path. In formulas, a pedestrian in location \((x,y) \) is mapped to location \((x,y') \), where

\[
y = y' - \mathbf{E}(y'|x). \tag{C2}
\]

The presence of a preferred path is a key assumption for the dynamics Eqs. (1)–(4). We remark that its physical existence is likely scenario dependent. For instance, an obstacle in the way may yield two preferred paths, one on each side. On wide corridors preferred paths might be many, up to a continuum.

Second, for the evaluation of the longitudinal and transversal components of pedestrians velocity we refer to the average (Eulerian) velocity field. We consider a two-dimensional spatial binning of our domain composed of \(40 \times 40 \) bins, which define a grid size comparable with the typical head displacement between two following frames (a typical crossing over the observation window takes between 32 and 37 frames). We obtain the Eulerian velocity field after an average per bin of all velocity measurements. In Figs. 6(c) and 6(d) we report the Eulerian velocity fields for pedestrians going left to right and vice versa. We evaluate the longitudinal velocity component \(u \) by a projection on the local (binwise) Eulerian velocity (rescaled to unit modulus). The transversal velocity component \(v \) remains defined by the difference between the considered velocity measurement and its longitudinal velocity component.

APPENDIX D: TIME CORRELATION

The time-correlation functions for positions and velocity are calculated with respect to the pedestrian state at the domain entrance (initial time step, \(t_0 \), of each trajectory). Let \(\Xi' \) be the value of observable \(\Xi \) (e.g., transversal position or velocity component) that the trajectory \(y \) assumes at time \(t \). Let \(\tilde{\Xi}' = \Xi' - \mathbf{E}[\Xi'] \) be the fluctuating component of \(\Xi \) with respect to the trajectorywise average \(\mathbf{E}_t[\Xi'] \) at time \(t \). The time-correlation function of \(\Xi \) satisfies

\[
C_{\Xi}(t) = \frac{\mathbf{E}_t[\tilde{\Xi}' \cdot \tilde{\Xi}'] - \mathbf{E}[\tilde{\Xi}'][\mathbf{E}[\tilde{\Xi}']]}{\sqrt{\mathbf{N}(t_0) \cdot \mathbf{N}(t)}}, \tag{D1}
\]

where \(\mathbf{E}_t \) denotes the average over the trajectory ensemble and the normalization terms \(\mathbf{N}(t) \) read

\[
\mathbf{N}(t) = \mathbf{E}_t[(\tilde{\Xi}' - \mathbf{E}[\tilde{\Xi}'])[\mathbf{E}[\tilde{\Xi}']])]. \tag{D2}
\]

APPENDIX E: SIMULATIONS

We discretize Eqs. (1)–(4) via the two-stage Heun’s method (see, e.g., [28]) using the same data acquisition time step \(\Delta t \), i.e., \(\Delta t = 1/15 \) s. Let \(x^n, y^n, u^n, v^n \) approximate the pedestrian state \(x(t), y(t), u(t), v(t) \) at instant \(t_n = n \Delta t \) (with \(n = 0, 1, 2, \ldots, M \)), the approximated state at \(t_{n+1} \) reads

\[
x^{n+1} = x^n + \frac{1}{2}(u^n + u^*) \Delta t, \]

\[
u^{n+1} = u^n - 2\alpha u^n[\{(u^n)^2 - u_p^2\}] \Delta t + \sigma_x \Delta \eta, \tag{E1}
\]

\[
y^{n+1} = y^n + \frac{1}{2}(v^n + v^*) \Delta t, \]

\[
v^{n+1} = v^n - \beta(y^n + v^n) \Delta t - \gamma(v^n + v^*) \Delta t + \sigma_y \Delta \eta, \tag{E2}
\]

and \(\Delta \eta \) is the integral of a Gaussian white noise in the interval \([t_n, t_{n+1}] \); thus, \(\Delta \eta \sim \text{Normal}(0, \Delta \eta) \). We initialized simulated pedestrians in a virtual corridor at \(x = 0 \) m, we terminated the advancement of Eqs. (E1) and (E2) once one of the two boundaries \(x = 0 \) m or \(x = 1.8 \) m was reached. We initialized the transversal position \(y \) and transversal velocity \(v \) as zero-averaged normal distributions having the same variance as the field measurements.

APPENDIX F: PARAMETER FITTING

We treat the motion in longitudinal and transversal directions \((x \text{ and } y) \) as independent, and so we fit the model parameters. We address here the transversal motion to complement the discussion on the longitudinal motion included in Sec. IV. From Eqs. (3) and (4) the probability \(P(v, y) \) to observe a given transversal velocity \(v \) and position \(y \) follows the (stationary) Fokker-Planck equation (e.g., [29]),

\[
\partial_t \left((2\beta y + 2\gamma v)P(v, y) + \frac{\sigma_y^2}{2}\partial_y^2 P(v, y) \right) - \partial_y \left(P(v, y)v \right) = 0, \tag{F1}
\]

with solution (cf., e.g., [30])

\[
P(v, y) = P(v)P(y) = N \exp \left(-\frac{2\gamma y^2}{\sigma_y^2} - \frac{4\beta y^4}{\sigma_y^4} \right). \tag{F2}
\]
Values for three parameters—γ, β, and σ_γ—are to be identified. We fit the ratios $\frac{2\gamma}{\sigma_\gamma^2}$ and $\frac{4\beta\gamma}{\sigma_\gamma^2}$ (thus, β) in (F2) by comparison with the observations via the relations

\[-\ln[P_{\text{exp}}(v)] \approx \frac{2\gamma}{\sigma_\gamma^2} v^2 + K', \tag{F3} \]

\[-\ln[P_{\text{exp}}(\gamma)] \approx \frac{4\beta\gamma}{\sigma_\gamma^2} \gamma^2 + K'', \tag{F4} \]

where $P_{\text{exp}}(v)$ and $P_{\text{exp}}(\gamma)$ are, respectively, the empiric distributions of v and of γ, while K' and K'' are fixed by normalization constraints. We use the time-correlation function of γ as a third fitting equation. From, e.g., [19], such correlation function satisfies

\[C_\gamma(t) = N \exp[-\gamma t](\cos \omega t + \frac{\gamma}{\omega} \sin \omega t), \tag{F5} \]

for the frequency $\omega = \sqrt{2\beta - \gamma^2}$. For the sake of completeness, the (stationary) Fokker-Planck equation associated with Eq. (2) and solved by Eq. (7) reads

\[\delta_v \left\{ \left[f(u) + \frac{\sigma_u^2}{2} \delta_u \right] P(u) \right\} = 0. \tag{F6} \]