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Summary

Reducing the e�ect of uncertainty in robust optimization for oil recovery

Water-flooding involves the injection of water in an oil reservoir to increase oil produc-

tion. Dynamic optimization of the water-flooding process has shown significant scope

for improvement of the economic life-cycle performance of oil fields compared to a more

conventional reactive strategy. In these optimization problems a financial measure, i.e.,

Net Present Value (NPV), is maximized. One of the key challenges in this model-based

economic optimization is high levels of uncertainty arising from the limited knowledge

of model parameters and from strongly varying economic conditions. As a result, the

potential advantages of such optimization are not fully realized and the risk of losing

the expected economic objective is very high. The prime focus of this work is to develop

novel robust optimization strategies to improve the performance of model-based decision

making under both geological and economic uncertainty for the economic operation and

production of oil from oil reservoirs.

We have considered two distinct solution trajectories to achieve our research objective.

The first set of approaches aims at mitigating the negative effect of uncertainty in an

open-loop situation. Uncertainty is quantified with a scenario-based approach where

model uncertainty is characterized by an ensemble of reservoir models and economic un-

certainty is represented by an ensemble of varying oil prices. At first a multi-objective

optimization framework is adopted. A robust objective, i.e., an average NPV over an

ensemble of geological realizations, with a focus on long-term gains is chosen. The sec-

ondary robust objective is the same, except with the focus on short-term gains. This

multi-objective optimization results in an optimal solution which balances long-term and

short-term economic objectives and also offers robustness to the long-term NPV. To im-

prove robustness, a single mean-variance optimization approach is introduced which

with the maximization of the average NPV also minimizes the variance of the NPV

distribution. The reduction of variance corresponds to minimizing the effect of uncer-

tainty on the achieved NPV. Furthermore, due the symmetric nature of variance, a

v



mean-variance optimal solution equally penalizes both the worst-case and the best-case

NPV values. In a maximization problem, a decision maker is mainly concerned with the

worst-case values. Therefore, concepts from the theory of risk are used to provide an

asymmetric shaping of the NPV distribution, i.e., to improve the worst-case NPV values

without heavily compromising the best-case values. Worst-case optimization, Condi-

tional Value-at-Risk (CVaR) and semi-variance are considered with both geological and

economic uncertainty.

In the second solution direction, the main focus is to reduce uncertainty by using avail-

able information (production data in our case) in a closed-loop setting. A robust online

closed-loop scheme is developed using the concept of residual analysis. The basic idea

of residual analysis is to confront models in an ensemble with data such that models

are invalidated if they do not sufficiently agree with the observed data. A deterministic

metric, i.e., the Best-Fit Ratio (BFR), is used to define the invalidation test. An adapted

ensemble is formed with only those models that are not invalidated thus providing a less

conservative description of uncertainty with a reduced number of models in an ensemble.

The adapted ensemble is used for robust optimization in an online fashion. This online

(closed-loop) robust scheme with its steps, i.e., data collection, residual analysis and

robust optimization with the adapted ensembles, can be repeated at each time step till

the end of the production life of the reservoir. Furthermore, as in case of large-scale

reservoirs with hundreds of injection and production wells, the complexity of model-

based control and optimization is drastically increased. In a two-level time-separation

approach, the life-cycle economic optimization and control are decomposed into two lev-

els of a hierarchical structure. We focus on reducing the complexity of multivariable

control problem. A data-driven estimation approach is introduced to identify the domi-

nant control inputs which matter the most for control and to remove the non-dominant

ones. We use system identification theory with sparse estimation techniques to quan-

tify the interactions between input-output pairs which also corresponds to finding the

inter-well connectivity in oil reservoirs. An input which does not affect any output is

considered to be non-dominant and hence it can be removed from the control synthesis

problem, thus reducing the complexity of the multivariable control problem.
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1
Introduction

1.1 Oil and natural gas in our lives

Oil and natural gas play substantial roles in countless ways in our every day life. They

are like oxygen to our transportation system, heating our homes, cooking our food

and help in generating electric power. By-products from oil refining are also the major

building blocks of plastic products, cosmetics, fertilizers, asphalt etc. Though interest in

alternative energy sources such as solar, nuclear, wind etc. is increasing at a rapid pace,

the applicability of these sources is limited due to the cost and the basic infrastructure

required to implement them. Specially the developing countries, which constitute a large

part of our globe, still lack the necessary infrastructure to utilize these sources in an

efficient way. Hence oil and natural gas remain instrumental sources of energy. Fig 1.1

(as appeared in BP Statistical Review of World Energy: June 2016) shows that natural

gas and oil are the most consumed energy sources in the world with a 32:9% share of

oil in the global energy consumption. Fig 1.2 (as appeared in EIA, Short-Term Energy

Outlook June 2016) shows the world liquid fuels production and consumption balance.

It can be observed that the projected balance for the future gives an indication of the

need for an improved production of hydrocarbons.
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1.2. Oil production from oil reservoirs

Figure 1.1: World consumption of energy sources (source: BP Statistical Review of
World Energy June 2016)

Figure 1.2: World liquid fuels production and consumption balance (Source: EIA,
Short-Term Energy Outlook June 2016)

1.2 Oil production from oil reservoirs

The production of oil from an oil reservoir has a life cycle of a number of decades and

passes through different phases. In the primary production phase, high pressure in

the reservoir is the main driving force for the production of oil. The production rate

drops with the decreasing pressure in the reservoir and unfortunately only 5% to 15%

of the total amount of oil can be recovered in this manner. In the secondary phase,

the application of an external force is required to maintain a steady pressure and hence

a desired level of oil production. Usually fluids such as water are injected to force oil

towards production wells. With this secondary phase of production, between 20% to

70% oil is recovered. To further improve recovery, the properties of the fluids (oil, gas
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or water) are changed e.g., by injecting steam or surfactants. This is classified as the

tertiary or enhanced oil recovery (EOR) phase of production. A 100% recovery can

be theoretically achieved but from a practical viewpoint only 30% to 70% oil can be

recovered, see e.g., Van den Hof et al. [2012]. This mainly has to do with an inefficient

application of these recovery methods.

Water-flooding is one of the most common secondary recovery methods. In this recovery

mechanism, water is injected to maintain reservoir pressure to displace oil towards the

producing wells. This thesis focuses on the economic optimization of this recovery

mechanism. The water-flooding process is schematically depicted in Fig. 1.3. The

reservoir exhibits a very heterogeneous nature which directly affects the flow of the

oil-water front as shown in Fig. 1.3.

Figure 1.3: Water flooding with horizontal injection and production wells. The
heterogeneities of the reservoir cause this irregular oil-water front (Source: Brouwer

[2004],Van Essen et al. [2006],Zandvliet [2008],Van Doren [2010])

1.3 A model-based optimization approach to oil reservoirs

1.3.1 Introduction

In view of an increasing demand of hydrocarbons and also according to the ’peak oil

theory’1, the easy oil has been produced, therefore the quest for economically efficient

ways to improve the total recovery of oil is becoming more and more critical. Since

more than a decade, the serious need for rationalizing the decisions involved in oil

production and driving them with available knowledge in a more systematic way have

been among the prime research questions in the petroleum engineering literature. With

1Peak oil, an event based on M. King Hubbert’s theory, is the point in time when the maximum
rate of extraction of petroleum is reached, after which it is expected to enter terminal decline, see e.g.,
Hubbert [1982], De�eyes [2001], Roberts [2004]
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1.3. A model-based optimization approach to oil reservoirs

the technological developments, specially with the introduction of ’smart wells’, the

opportunities for the use of model-based optimization have increased. These smart wells,

besides the ability to control the process, are equipped with sensors to measure physical

variables such as downhole pressures, flow rates etc. The concepts from the theory of

systems and control such as dynamic optimization, parameter estimation and complexity

reduction of reservoir models can be very beneficial in increasing the production of oil

from oil reservoirs. In this direction, some recent developments have been made, see

e.g., Brouwer [2004],Zandvliet [2008],Jansen et al. [2008], Van Doren [2010],Van den Hof

et al. [2012],Van Essen [2015].

The basic idea behind model-based optimization is to devise optimal decisions by making

use of available knowledge, e.g., the dynamic model that represents how fluids flow in

the reservoir, with practical operational constraints and an economic objective. Model-

based optimization is equipped with useful tools to cope with uncertainties and handle

complex models with nonlinearities. The economic objective quantifies the economic

value of oil reservoir over its production life cycle. In the oil industry, the use of model-

based optimization with the available sensors and control valves is often referred to as

smart fields, intelligent fields, real-time reservoir management, or closed-loop reservoir

management, see e.g., Jansen et al. [2008, 2009]. The concept of closed-loop reservoir

management, as originally introduced in Jansen et al. [2005], is shown in Fig. 1.4. The

key elements of this approach are dynamic model-based optimization under physical

constraints and/or geological uncertainties as indicated by the blue loop, and parameter

estimation/data assimilation aimed at at continuous updating of the system model(s)

as indicated by the red loop.

Figure 1.4: Closed-loop reservoir management (Source: Jansen et al. [2005])
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Model-based optimization can be posed as an optimal control problem. For linear sys-

tems with a quadratic performance measure of the states and input trajectories, the

optimal control theory can offer an analytical solution, see e.g., Zhou et al. [1996]. Un-

fortunately, the reservoir dynamics are nonlinear in nature and represented by large-scale

complex models (partial differential equations) and a typical number of state variables

in the order of 104 � 106 with similar numbers for the model parameters. The resulting

optimization problem using these complex models is highly non convex and nonlinear,

hence it limits the application of optimization methods. Therefore alternative methods

to compute the optimal control solution, e.g., dynamic programming, need to be used,

see e.g., Bryson and Ho [1975], Srinivasan et al. [2003]. In the petroleum engineering

literature, different secondary recovery or tertiary techniques with different production

settings have been optimized in Asheim [1987, 1988], Sundaryanto and Yortsos [2000],

Virnovsky [1991], Zakirov et al. [1996]. Dynamic optimization of the water-flooding pro-

cess has gained a new boost after the work of Brouwer [2004], Brouwer and Jansen [2004],

where it has been shown that the optimization has a significant scope for improvement

of the economic life-cycle performance with smart wells compared to a conventional

reactive strategy. This has been followed by new opportunities and applications of dy-

namic optimization in the water-flooding process as indicated in Sarma et al. [2005a],

Sarma et al. [2008a], Jansen et al. [2008], Van den Hof et al. [2009], Ciaurri et al. [2011],

Foss [2012], Van den Hof et al. [2012]. The availability of production data has opened

up opportunities for the estimation of physical parameters. Due to the high number

of to-be-estimated parameters, these estimation problems are generally ill-posed and

have many solutions. In petroleum engineering literature, the reservoir model variables

(states and/or parameters) are updated using data assimilation or Computer Assisted

History Matching (CAHM) techniques such as Ensemble Kalman filter (EnKF), vari-

ational approaches, streamline-based approaches, etc., see e.g., Tarantola [2005],Oliver

et al. [2008], Sarma and Chen [2009], Evensen [2009], Aanonsen et al. [2009], Oliver and

Chen [2011], Kaleta et al. [2011]. To overcome the problem of ill-posedness, CAHM uses

a Bayesian approach on the basis of a prior distribution of the model parameters.

To reduce the complexity of mathematical models, model reduction offers an attractive

set of techniques. As reservoir models are very complex and they can take long time for

simulations, model reduction can be useful in minimizing the complexity of these models

for optimization and also for history matching, see e.g., Heijn et al. [2003], Van Doren

et al. [2006], Cardoso et al. [2009], Kaleta et al. [2011],Insuasty et al. [2015]. For a recent

survey of model reduction techniques in oil reservoirs, see Jansen and Durlofsky [2016].

The major challenges in the model-based approach to decision making in oil reservoirs

are highlighted in the next subsections.
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1.3. A model-based optimization approach to oil reservoirs

1.3.2 Uncertainty

Geological uncertainty

The reservoir dynamic model is the most important ingredient of model-based optimiza-

tion. Geological static models are first generated which represent the static characteris-

tics of reservoir, e.g., parameters, structure, etc., with millions of parameters and as it

is infeasible to run fluid-flow simulations directly on the geological model, upscaling is

required to obtain dynamic reservoir models. Reservoir models provide a mathematical

representation of the dynamic behavior of the reservoir, i.e., how fluids flow through

the reservoir as a result of a depletion strategy. These models suffer from high levels

of uncertainty about the model structure and the model parameters. Geological uncer-

tainty arises mainly due to the lack of knowledge of subsurface geology that defines the

reservoir. The quality and the uncertainty of reservoir models make the performance of

the optimization strategy less reliable.

Economic uncertainty

Model-based optimization aims at maximizing some economic measure to improve the

production of oil from oil reservoirs. Economic variables, such as oil price, interest rate,

etc., which give an economic value to oil reserves, fluctuate with time and can not be

predicted correctly. Unlike geological uncertainty, economic uncertainty grows with time

and has a dynamic effect. With the long life cycle of reservoirs, using a fixed and certain

value of these variables results in an unreliable optimal strategy.

Other sources of uncertainty

Besides geological and economic uncertainties, oil production is affected by the opera-

tional conditions, organizational changes and political circumstances. The operational

conditions over the life span of reservoirs pass through several changes such as number,

type and/or capacity of wells etc. Besides these planned changes, there are many dis-

turbances in the form of equipment failures or environmental issues that directly affect

the production of oil.

Limited amount of information in data

The information available to model geology is either accurate but sparse (such as well

logs) or dense but very noisy and of low resolution (such as seismic). The sparsity and
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the low quality data induce considerable uncertainties in the models. The available

production data can be used for parameter estimation but due to a large number of

to-be-estimated parameters the estimation problem is ill-posed, i.e., many combination

of parameter values will result in the same minimum value of the cost function. In

other words, reservoir model parameters are not uniquely identifiable from available

data. The issue of unreliable parameter estimation has been addressed in Watson et al.

[1984],Oliver [1996], Zandvliet et al. [2008],Van Doren et al. [2011].

1.3.3 Nonlinearity and complexity

Reservoir models exhibit strong nonlinearities and are large-scale and very complex.

The complexity corresponds to a large number of states and parameters in the range

of thousands to millions, which limits the applicability of many optimization methods.

The complexity of reservoir models results in large-scale, non-linear and non-convex

model-based optimization problems. Due to non convexity, many local optima can be

attained. The application of global optimization is also limited due to the computational

complexity. For a gradient-based optimization approach, the gradients are obtained

by solving a system of adjoint equations, see e.g., Sarma et al. [2005a], Jansen [2011]

or by using an ensemble-based method, see e.g., Chen [2008], Fonseca [2015]. The

nonlinearity also limits the possibility of linear black-box modeling using e.g., the theory

of system identification. It is also a batch process, where the position of the oil-water

front determines different linear operating points. With the flow of the oil-water front

the oil reservoir experiences these operating regions only once. The possibility of learning

from a batch is also ruled out as the reservoir can be operated/run only once.

1.4 Research Objective

Due to the challenges discussed in the previous sections, the potential advantages of

model-based economic optimization for oil recovery are not fully realized. The objective

of this research can be formulated as:

To improve the performance of model-based decision making under uncertainty for the

economic operation and production of oil from oil reservoirs.
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1.4. Research Objective

An example of model-based optimization

To illustrate the potential benefits of model-based decision making compared to the

traditional reactive strategy and to observe the effect of uncertainty on the optimized

results, an example of model-based optimization with an economic objective, i.e., Net

Present Value (NPV) is given. In the traditional reactive control (RC) strategy, water

is injected at the maximum rate and each production well is simply shut-in when water

is co-produced too much with the oil and production is no longer profitable. NPV is

typically used in optimization and can be defined as a net value of the revenues generated

by oil production and the cost involved in water injection and production, also taking

the present value (value degradation of money over time) into account. NPV for the

cumulative oil and water production over a fixed time horizon can be mathematically

represented in the usual fashion as:

J =
KX

k=1

2

4 ro � qo;k � rw � qw;k � rinj � qinj;k

(1 + b)
t k
� t

�∆tk

3

5 ; (1.1)

where ro; rw and rinj are the oil price, the water production cost and the water injection

cost in $
m3 respectively. K represents the production life-cycle i.e., the total number of

time steps k and ∆tk the time interval of time step k in days. The term b is the discount

rate for a certain reference time �t. The terms qo;k; qw;k and qinj;k represent the total

flow rate of produced oil, produced water and injected water at time step k in m3

day .

Optimization of NPV as in this example is also referred to as Nominal Optimization

(NO), i.e., uncertainty is not included and it is based on a single reservoir model. In

this example, a single realization of the ’standard egg model’ as shown in Fig. 1.5 is

used. For details about the model and a complete list of reservoir and fluid parameters

we refer to appendix A and Jansen et al. [2014]. The economic variables such as oil

price ro are kept constant for the complete production life cycle of the reservoir model.

The reservoir model has a life cycle of 3600 days. The control inputs are the water

injection rates while the bottom-hole pressures (bhp) of the production wells are kept

constant. The maximum possible injection rate is 79:5m
3

day for each injection well. The

obtained optimal injection rates are applied to the model and the result in terms of the

time buildup of NPV is compared with the traditional reactive control (RC) strategy as

shown in Fig. 1.6. The first observation is that the NPV for the achieved NPV from

model-based optimization is 4:9% higher compared to the reactive strategy.

Key question that has been raised in the petroleum literature is: Can this improvement

of NPV at the end of production life, i.e., in this case at 3600 day, be trusted? Specially

in view of the fact that model-based optimization is based on a model which may be
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Figure 1.5: Permeability field of the realization 1 of a set of 100 realizations.

Figure 1.6: Time-evolutions of NPV as a result of a model-based strategy compared
to a conventional reactive control strategy

drastically different from the true reservoir, how reliable is this predicted increase in

NPV? Also keeping the economic variables, such as oil price, fixed for such a long

life-cycle is unrealistic. Hence there is a high risk that when this optimal solution is

applied to the true system, the predicted optimal NPV may not be realized. At the

same time, it also results in low short-term gains compared to the one resulting from

the reactive strategy. Therefore, even though the realized NPV of the reactive strategy

is smaller compared to the predicted NPV of a model-based strategy, the certainty of

the reactive approach with high short-term gains gives confidence and often becomes a

preferred choice of decision makers. As a result of the above mentioned observations,

the potential advantages of model-based economic optimization are not fully realized.
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1.5 How to address uncertainty?

1.5.1 Introduction

At the time of the start of our research, several attempts had been made to show the

effect of uncertainty on the model-based optimization problem. For well-placement op-

timization, where the optimal well locations are determined based on reservoir and fluid

properties under geological uncertainty, economic costs, and technical ability, in Guyag-

uler and Horne [2001] the utility theory framework has been used to address uncertainties

associated with this optimization. In Yeten [2003] a strong need to incorporate the effect

of uncertainty during the optimization process has been stressed. Genetic Algorithms

(GA) have been used to incorporate uncertainty with a mean-standard deviation ob-

jective. The use of GA has been extended for the determination of optimal well type,

location and trajectory in Aitokhuehi et al. [2004]. In Manceau et al. [2001], experimen-

tal design and joint modeling methods have been combined to quantify the impact of

reservoir uncertainties on the cumulative oil production and to optimize the future field

development in a risk analysis approach. For water-flooding production optimization,

in Van Essen [2015], the question of improving the performance of model-based eco-

nomic optimization by addressing uncertainty in the optimization framework has been

addressed. We consider the work of Van Essen [2015] as the key source of inspiration

and the starting base of our research. In Van Essen [2015], the following three strategies

have been introduced to address the issue of uncertainty in model-based water-flooding

optimization.

1.5.2 Robust optimization

To deal with model uncertainty, a so-called robust optimization approach has been in-

troduced by explicitly including geological model uncertainty in the optimization frame-

work, see Van Essen et al. [2009a]. The uncertainty has been quantified by an ensemble

of model realizations. The robust objective or mean optimization (MO) is defined as

the average of NPV over the considered ensemble as given below:

JMO =
1

Ngeo

NgeoX

i=1

Ji; (1.2)

where Ngeo is the number of realizations and JMO is the mean optimization (MO)

or robust optimization objective. In Van Essen et al. [2009a], the notion of robust

optimization has been used for this approach, which has now become a standard notion

in the petroleum engineering community.
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In order to analyze how the solution of this approach handles the effect of uncertainty on

the achieved NPV, the results of Van Essen et al. [2009a] are reproduced. An ensemble

of 100 geological realizations of the standard egg model (Appendix A) with variation

in uncertain model parameter (permeability fields) is used. The optimal strategy is

applied to the complete ensemble resulting in 100 NPV values from each model. A

probability density function (PDF) can be approximated on these NPV values. The

obtained NPV distribution from this approach is compared with nominal optimizations

(NO) and reactive control (RC) strategies of the 100 different realizations. NO and RO

strategies are based on single realization’s of the ensemble. Fig. 1.7 (similar to the

one in Van Essen et al. [2009a]) depicts the probability density function (PDF) of the

NPV resulting from these strategies. 100 NO strategies are applied to the complete

ensemble resulting in 100 PDFs. MO aims at maximizing the average of the NPV

Figure 1.7: PDF (long-term NPV) based on NO, RC and MO strategies for 100 model
realizations (also shown in Van Essen et al. [2009a])

distribution, while NO is optimal for a single realization but it does not consider the

complete ensemble. From Fig. 1.7, it can be observed that, on average, MO performs

better than all NO and RC cases. The average NPV from MO is higher compared

to almost all NO strategies. This shows the benefit of including uncertainty in the

optimization framework. It can be seen that the NPV distribution shows the effect of

uncertainty on the achieved NPV. A larger uncertainty in the parameters will result

in a higher variance of the distribution and vice versa. MO only aims at maximizing

the average and does not take any measure to shape this NPV distribution, e.g., by

minimizing variance, improving the worst-case value etc. Here the shaping of the NPV

distribution corresponds to the minimization of the effect of uncertainty. Therefore,

irrespective of an average maximization and showing the effect of uncertainty on the

achieved NPV, MO does not actually provide uncertainty reduction and offers a poor
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uncertainty handling. In this work, the robust optimization of Van Essen et al. [2009a]

is later referred to as mean optimization (MO).

1.5.3 Hierarchical optimization

The example of model-based optimization has shown that the NPV optimization results

in low short-term gains compared to the one resulting from a reactive strategy. The

question of balancing long-term and short-term NPV gains has been addressed by intro-

ducing a hierarchical multi-objective optimization Van Essen et al. [2011]. In that study,

the primary objective, being the undiscounted NPV, is used to represent the long-term

NPV gain. The short-term gains are represented by considering a highly discounted

NPV as a secondary objective. In the hierarchical multi-objective optimization, the sec-

ondary objective is maximized under the optimality condition of the primary objective.

Economic uncertainty has a dynamic nature and its effect grows with time, increasing

the rate of oil production indirectly minimizes this negative effect of uncertainty, see

Van Essen et al. [2011]. Uncertainty is not explicitly included in this (hierarchical)

multi-objective optimization aproach .

1.5.4 Integrated dynamic optimization and feedback control

The optimization schemes discussed in the previous sections do not consider data and

increase robustness to uncertainty a priori. Another approach has therefore focused on

reducing the effect of uncertainty in an online way with the help of production data

Van Essen et al. [2013]. It has used a two-level time-separation approach, where the up-

per layer uses dynamic real-time optimization (DRTO) with a first principles reservoir

model and generates an economically optimal reference trajectory to be followed by the

lower layer with a data-driven linear model and a tracking Model-predictive controller

(MPC), see Van Essen et al. [2013]. Any deviation of this trajectory is correlated with

the change in economic performance. Here the effect of uncertainty on the output is

considered as the undesired disturbance, and the deviations are rejected by using an

MPC feedback controller. System identification techniques have been used to obtain

a state-space black-box model around a linear operating point. The DRTO layer is

based on first principles model which is highly uncertain, hence the to-be-tracked refer-

ence trajectory generated from this uncertain model may not reflect the best economic

performance for the true system.
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1.6 Research Question

The following conclusions can be drawn from the discussion in the previous section:

� For a reliable application of model-based optimization, it is indispensable to take

account of uncertainty. The potential of improving the economic performance of

an oil reservoir under uncertainty has been shown in Fig. 1.7

� The current robust approaches are generally ad-hoc and offer an implicit way of

handling uncertainty, or they do include uncertainty but do not effectively mini-

mize the effect of uncertainty. The issue of a systematic and explicit handling of

uncertainty is still an open question where the optimization focuses on the reduc-

tion of the effect of these uncertainties on the achieved economic objective.

� The current approaches have focused on geological uncertainty while economic

uncertainty is not explicitly addressed.

This leads to the research question of this work:

How can the effects of uncertainties be explicitly reduced in model-based economic

optimization for oil recovery?

Our research focuses on both geological and economic uncertainties.

1.7 Solution ingredients

1.7.1 Decision making under uncertainty

Decision making under uncertainty is a very broad concept that plays a role in various

social sciences and humanities, e.g., finance, engineering, medicine, economics etc.

Uncertainty modeling

One of the first steps in optimization under uncertainty is the quantification of uncer-

tainty. In a probabilistic setting, uncertainty of a parameter is modeled by a distribution

and it is assumed that the parameter takes values from this distribution. An optimiza-

tion problem is then defined over this distribution of uncertainty, see e.g., Kali and
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Wallace [1994]. In most practical cases, the exact distribution of uncertain parameters

is rarely known. As an alternative approach, uncertainty can also be modeled as a de-

terministic bounded set and the optimization focuses, for example, on the worst-case

performance, see e.g., Ben-Tal et al. [2009].

Handling uncertainty in optimization for large-scale nonlinear systems, either with a

distribution or with a deterministic set, becomes a challenging task in most of the ap-

plications. Therefore, uncertainty can be represented by sampling the uncertainty space

and defining the objective function and/or constraints over these samples. Optimiza-

tion using a scenario-based approach is connected to randomized methods in control and

optimization, see e.g., Tempo et al. [2012]. This scenario- or ensemble-based optimiza-

tion is used in chemical industry for the control of batch processes, see e.g., Terwiesch

et al. [1994],Terwiesch et al. [1998],Srinivasan et al. [2003]. Similarly, due to the com-

plexity of the water-flooding optimization problem, a general practice of quantifying

uncertainty is by considering an ensemble of uncertain parameters, see e.g., Van Essen

et al. [2009a], Capolei et al. [2013]. It is equivalent to descretizing the uncertainty space,

i.e., ΘN := f�1; �2; � � � ; �Ng, where �i is a realization of an uncertain parameter in an

ensemble of N members. Both geological and economic uncertainty can be represented

with this scenario-based approach.

With a given uncertainty representation, the following approaches can be used to handle

uncertainty in an optimization framework:

Stochastic optimization

Stochastic optimization is one of the classical ways of dealing with uncertainty. It

dates back to the original work of Dantzig, Dantzig [1955], in 1955. SO refers to the

minimization (or maximization) of a function in the presence of randomness in the

optimization process. The randomness can be introduced either in the objective function

or in the constraints by assuming a probabilistic description of the uncertainty. In most

of the cases, the exact uncertainty distribution is poorly known and it may become

a source of uncertainty as well, see e.g., Sahinidis and Infanger [1995], Fouskakis and

Draper [2002], Birge and Louveaux [2011], Prékopa [2013].

Robust control and robust optimization

In the systems and control literature, robust control provides useful tools for designing

controllers in the presence of uncertainty to achieve closed-loop stability of the system

with some desired level of performance. Robust control offers a systematic way of dealing
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with uncertainty and provides well defined criteria, a clear description and bounds for

the allowed perturbations (uncertainty) and guarantees stability and/or performance, see

e.g., Zhou et al. [1996]. Typically the linear control design problem involving uncertainty

can be presented in a linear fractional transformation representation as shown in Fig. 1.8.

The uncertainties in the system model G are ’pulled out’ and combined in one ∆ block

Figure 1.8: Linear fractional transformation (LFT) representation

which is a norm-bounded set, i.e., jj∆jjH1 � , where  2 R. Using this framework, a

controller C, e.g., using H1; ��analysis/synthesis tools, can be synthesized to obtain a

stable controlled system with some desired level of performance.

For large-scale nonlinear systems, the applicability of the robust control methodology

is very limited. A more generic scenario-based robust optimization framework needs to

be considered for these large-scale complex problems. Robust optimization, in contrast

to SO, is a deterministic optimization problem where it is assumed that the uncertain

parameters belong to a deterministic uncertainty set. Instead of optimizing for a solution

that is immune, in some probabilistic sense to stochastic uncertainty, RO aims for a

solution which is feasible for any realization of uncertainty in the given set. Hence it

mainly focuses on the worst-case optimization, see e.g., El Ghaoui and Lebret [1997],

Ben-Tal and Nemirovski [1998], Ben-Tal and Nemirovski [1999], Ben-Tal et al. [2009],

Bertsimas et al. [2011]. The major drawback of the worst-case approach is often the

overly conservative solution. In this thesis, the notion of robust optimization, in contrast

to the different use of this term in the petroleum community, is used for the worst-case

approach.
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Risk management

Risk management uses the ideas from both SO and RO and provides a systematic

approach to handling uncertainty. Risk is a broad concept that plays a role in different

social sciences and humanities, e.g., ethics, psychology, medicine, economics, etc. The

theory of risk helps in modeling (or defining) risk, measuring it, and also provides tools

for minimizing or managing the effect of it, see e.g., Artzner et al. [1999], Krokhmal

et al. [2011]. In the early 50’s, Markowitz Markowitz [1952], has proposed a ’risk-return’

portfolio selection approach, where the risk is characterized as the variance of the returns.

Other most commonly used risk measures are the negative mean return, Value-at-risk

(VaR), Conditional Value-at-risk (CVaR), Shortfall Risk, lower partial moments, mean

absolute deviation from the median, standard deviation/variance less mean, Sharpe ratio

etc, see e.g., Rockafellar and Uryasev [2000],Krokhmal et al. [2011],Postek et al. [2014].

In parallel to our research, as an early work of introducing the theory of risk in the

water-flooding optimization, different risk measures with their pros and cons have been

reviewed in Capolei et al. [2015a] and their suitability for the production optimization

has been studied.

1.7.2 Using robust approaches in an online or offline way

Robust approaches as presented in the previous sections, can be either used in an of-

fline/static fashion or in an online/dynamic way. In the static, offline or open-loop

schemes, an uncertainty description, either probabilistic or deterministic is used and the

optimization is performed only once in the beginning of the production. The optimal

solution is devised for the entire production period. The online, dynamic or closed-loop

approaches focus on the problem of reducing uncertainty, i.e., shrinking the uncertainty

space and on minimizing the mismatch between the model and the true system. The

uncertainty reduction can be achieved by taking into account the available information

over time, which can be used to update/adjust the strategy. Hence online approaches

aim at reducing the uncertainty space.

1.7.3 Offline robust approaches

In the petroleum engineering literature, several offline or open-loop robust schemes have

been introduced to handle geological uncertainty in the form of an ensemble of model

realizations. However economic uncertainty has not received attention in petroleum

engineering literature and is still an open problem.
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Mean optimization (MO)

One of the simplest approaches, stemming from SO, is to maximize an expected value

of the objective function, e.g., NPV, as given below:

JMO =

NgeoX

i=1

piJi (1.3)

where pi is the probability associated with the ith scenario and where Ji is the objective

function as defined in eq. (1.1) for model realization i = 1; 2; � � � ; Ngeo. Generally, and

also in the case of an ensemble of reservoir models, the probability distribution of the

underlying models is poorly known. In Van Essen et al. [2009a], this MO has been used

with a uniform distribution of the model realizations, i.e., pi = 1=Ngeo. Therefore, the

problem is simplified to an arithmetic average given in eq. (1.2).

Robust multi-objective optimization

As NPV is the cumulative cash flow over the, typically long, life-cycle of oil reservoirs, the

optimization problem focuses on the long-term gains while the short-term production

does not play an explicit role, as also shown in Fig. 1.6. An ad-hoc way to balance

short-term and long-term gains has been proposed in Van Essen et al. [2011] where a

lexicographic or hierarchical multi-objective optimization approach has been used by

exploiting the redundant degrees of freedom in the optimization (Jansen et al. [2009]).

For details about hierarchical or multi-objective optimization in general, see Haimes

and Li [1988], Marler and Arora [2004]. In Chen et al. [2012], first steps have been

made to add robustness while balancing both objectives where a constrained robust

optimization with geological uncertainty has been proposed. An average short-term

(highly discounted) NPV has been maximized over a model ensemble while explicitly

enforcing, using an augmented Langrangian method, the optimality condition of the

average long-term (un-discounted) NPV as a constraint. In Fonseca et al. [2014], the

hierarchical approach of Van Essen et al. [2011] using a switching method has been

extended to consider geological uncertainty with the same average objectives.

Mean-variance optimization (MVO)

Henry Markowitz in his seminal work in Markowitz [1952] has introduced a risk-return

portfolio selection approach, which involves a quantitative characterization of risk in

terms of the variance of the returns distribution. In context of the water-flooding opti-

mization, in comparison to MO, with the reduction of variance of the objective function
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(NPV) distribution the MVO really offers an opportunity to improve robustness and will

result in a reduced uncertainty on the achieved NPV. MVO also stems from stochas-

tic optimization and it requires a priori knowledge of the uncertainty distribution. In

parallel to our research, in Capolei et al. [2015b] a bi-criterion mean-variance objective

function has been used honoring only geological uncertainty. Uniform distribution of

the ensemble of model realizations has been considered and the key economic indicators

have also been given in Capolei et al. [2015b]. Similar MVO approaches, e.g., for a well

placement problem, have been described in, e.g., Yeten et al. [2003], Bailey et al. [2005],

Yasari et al. [2013].

Asymmetric or downside risk measures

One of the drawbacks of mean-variance optimization is the symmetric nature of the

objective which equally penalizes both the worst cases and the best cases. Generally

the decision maker is mainly concerned with the worst-case NPV values. For water-

flooding optimization, in Xin and Albert [2015], a multi-objective optimization has been

implemented that maximizes the average of the objective function and the worst-case

NPV value with respect to geological uncertainty. Downside or asymmetric risk/de-

viation measures such as worst-case optimization (Ben-Tal et al. [2009]), Conditional

Value-at-Risk (CVaR) (Rockafellar and Uryasev [2002]) and semi-variance optimization

(Markowitz [1952]) provide an increase in worst-case values without heavily compromis-

ing the best-case values.

1.7.4 Online closed-loop data-based robust approaches

The application of online closed-loop data-based robust approaches is limited by the

complexity of reservoir models. The following approaches can be beneficial for water-

flooding optimization.

Closed-loop reservoir management

The concept of closed-loop reservoir management (CLRM), see Jansen et al. [2009],

is based on the hypothesis that, ’It will be possible to significantly increase life-cycle

value by changing reservoir management from a batch-type to a near-continuous model-

based controlled activity’. CLRM uses model-based optimization with an estimation

of states/parameter, while the optimization is repeatedly performed with the improved

model. The idea of using a continuous feedback mechanism has already been proposed

in Chierici [1992]. In Foss and Jensen [2011], the performance of closed-loop reservoir
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management has been analyzed. In Chen et al. [2009], an ensemble-based closed-loop

optimization method has been proposed which combined ensemble-based optimization

(EnOpt) with the ensemble Kalman filter (EnKF). The adjoint-free EnOpt optimizes

the expectation of NPV based on the updated reservoir models. In Chen and Oliver

[2010], ensemble-based closed-loop optimization has been applied to the Brugge field

which is a large-scale SPE benchmark model. A closed-loop scheme in a moving horizon

manner has been implemented in Capolei et al. [2013] using ensemble Kalman filter

and a gradient-based production optimization where gradients are obtained by solving

a system of adjoint equations.

An ’exclusion approach’ to uncertainty modeling

In Tarantola [2006], Caers [2011], an ’exclusion approach’ to uncertainty modeling in the

earth sciences has been discussed. It focuses on starting from all possibilities (models)

and then excluding those possibilities (models) that can be ’rejected’, e.g., with rejec-

tion sampling, by any information available to us. In Popper [1959], Karl Popper, in his

seminal work, has presented an interesting discussion on model verification and falsifi-

cation. According to his philosophy, physical processes are laws that are only abstract

in nature and can never be proven, they can only be disproven (falsified) with facts or

data. Model invalidation is important to access the quality of a model and also to gain

confidence to use it for the subsequent purposes, e.g., optimization. It is a very common

practice in regression analysis, where tests are typically defined by computing the model

residuals and giving statistics about it, see e.g., Draper and Smith [2014].

Data-driven system identi�cation approaches

System identification deals with building mathematical models of dynamical systems

from observed input-output data, see e.g., Ljung [1999]. In Van Essen et al. [2013],

a two-level approach has been used. The lower level contains a black-box multi-input

multi-output linear model with an MPC controller to track an economically optimal

trajectory originating from the upper DRTO layer. System identification also offers

useful tools to optimize the excitation signal to increase the information contents of

data, known as Experiment design, see Mehra [1974], Gevers [2005], Hjalmarsson [2005],

Gevers et al. [2011].
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1.8 Solution directions

Two distinct solution trajectories are being followed in this thesis. These directions lead

to four principle themes or research sub-questions of this thesis:

D1 O�ine approaches: Explicitly taking account of uncertainty in NPV optimization

and minimizing the negative effect of uncertainty on the achieved NPV without

considering data.

Theme 1 Handling uncertainties in balancing short-term and long-term objec-

tives. [Chapter 2]

Theme 2 Asymmetric risk measures for optimizing the probability distribution

of economic performance of oil reservoirs. [Chapter 3]

D2 Online approaches: To make use of data to reduce uncertainty and to minimize

the computational complexity of optimization and control.

Theme 3 An online (closed-loop) robust approach to reduce geological uncer-

tainty using residual analysis. [Chapter 4]

Theme 4 Data-driven sparse estimation techniques to quantify inter-well connec-

tivity in oil reservoirs. [Chapter 5]

Theme 1: Handling uncertainties in balancing short-term and long-term

objectives

Theme 1 of the thesis aims at devising optimal solutions to the life-cycle optimization

problem that balance short-term and long-term gains and at the same time provide ro-

bustness to the predicted NPV under both economic and geological uncertainty. The

main subproblem is: can a robust framework with long-term and short-term objectives

be formulated under economic uncertainty? And more importantly, do these robust

multi-objective optimization (MOO) formulations provide better uncertainty handling?

A secondary subproblem is to analyze whether, by explicit handling of uncertainty in

model-based economic optimization, e.g., by using a single objective mean-variance opti-

mization, the balance between short-term and long-term gains can be naturally obtained.

This question is addressed in Chapter 2 and it is based on the following publications:

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2015). Handling risk of un-

certainty in model-based production optimization: a robust hierarchical approach.
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Proc. 2nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Produc-

tion, (Oilfield 2015), May 27-29, 2015, Florianopolis, Brazil. IFAC-PapersOnLine,

48-6 (2015), pp. 248-253. DOI: 10.1016/j.ifacol.2015.08.039

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2015). Model and economic

uncertainties in balancing short-term and long-term objectives in water-flooding

optimization. Proc. 2015 SPE Reservoir Simulation Symposium, 23-25 February

2015, Houston, TX, USA. SPE 173285-MS.

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2017). Handling geological

and economic uncertainties in balancing short-term and long-term objectives in

water-flooding optimization, Accepted for publication in SPE journal.

Theme 2: Asymmetric risk measures for optimizing the probability dis-

tribution of economic performance of oil reservoirs

The research question for this theme is: how can the well-defined risk and deviation

measures in the theory of risk be beneficial in reducing the effect of uncertainty in

the achieved NPV and in particularly increasing the worst-case NPV values without

heavily penalizing the best-cases values? Both geological and economic uncertainty are

considered. This question is addressed in Chapter 3 which is based on the following

publications:

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2015). Risk management in oil

reservoir water-flooding under economic uncertainty. Proc. 54th IEEE Conference

on Decision and Control, 15-18 December 2015, Osaka, Japan, pp. 7542-7547.

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2016). Robust optimiza-

tion of water-flooding in oil reservoirs using risk management tools. Proc. 11th

IFAC Symp. Dynamics and Control of Process Systems, including Biosystems

(DYCOPS-CAB 2016), 6-8 June 2016, Trondheim, Norway, pp. 133-138.

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2017). Asymmetric risk measures

for optimizing economic performance of oil reservoirs. In preparation to submit.

Theme 3: An online (closed-loop) robust approach to reduce geological

uncertainty using residual analysis

The research question for this theme is: how can the available information (data) be

used to shrink the uncertainty space, or in other words, how to reduce the ensemble
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size representing uncertainty? Then the key issue is to analyze how the new adapted

ensemble helps to improve robust optimization of the water-flooding process. The con-

cept of residual analysis is used, where the models in an ensemble are confronted with

data and they are invalidated if they do not sufficiently agree with the observed data.

An online scheme is introduced which has the following steps: data collection, residual

analysis and robust optimization with the adapted ensemble. This question is addressed

in Chapter 4 and it is based on the following publication:

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2017). An adaptive robust

optimization scheme for water-flooding optimization in oil reservoirs using residual

analysis. Accepted for publication in Proc. of the 2017 IFAC World Congress, 9-14

July 2017, Toulouse, France.

� M.M. Siraj, P.M.J. Van den Hof and J.D. Jansen (2017). An online (closed-loop)

robust optimization scheme for water-flooding optimization using residual analysis.

In preparation to submit.

Theme 4: Data-driven sparse estimation techniques to quantify inter-

well connectivity in oil reservoirs

In case of large-scale reservoirs with hundreds of injection and production wells (inputs

and outputs), the complexity of optimization and control is drastically increased. The

complexity reduction of a multivariable control problem by identifying the dominant in-

puts that matter the most and removing the non-dominant inputs from control synthesis

is the main focus of Theme 4. The main research question is: can we use sparse esti-

mation techniques to quantify inter-well connectivity and find dominant I/O pairs from

available production data? This question is addressed in Chapter 5. Experiment design

from the theory of system identification can be used to construct an informative exper-

iment for improving the estimation of model parameters. An example of experiment

design with a black-box linear model is presented in Appendix B.
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2
Handling uncertainties in balancing short-term

and long-term objectives

Essentially, all models are wrong, but some are useful.

– George E. P. Box

The Net Present Value (NPV) objective in model-based economic optimization, because

of its nature, focuses on long-term gains while short-term production is not explicitly

addressed. At the same time, the achievable NPV is highly uncertain due to strongly

varying economic conditions and limited knowledge of the reservoir model parameters.

The prime focus of this work is to develop optimization strategies that balance both

long-term and short-term economic objectives and also offer robustness to the long-term

NPV. Earlier, a robust hierarchical optimization method has been introduced honor-

ing geological uncertainty with robust long-term and short-term NPV objectives, which

serves as a starting base of this work. We address the issue of extending this approach

to include economic uncertainty and aim to analyze how the optimal solution reduces

the uncertainty in the achieved average NPV. An ensemble of varying oil prices is used

to model economic uncertainty with average NPVs as robust objectives in the hierar-

chical approach. A weighted-sum approach is used with the same objectives to quantify

the effect of uncertainty. In order to reduce uncertainty, a mean-variance optimization
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(MVO) objective is then considered. MVO maximizes the mean and also minimizes the

variance. A reduced effect of uncertainty on the long-term NPV is obtained compared

to the averaging objectives. Lastly, it is investigated whether, due to the better han-

dling of uncertainty in MVO, a balance between short-term and long-term gains can be

naturally obtained by solving a single-objective MVO. Simulation examples show that

a faster NPV build-up is naturally achieved by choosing appropriate weighting in the

variance term in the MVO objective.

2.1 Introduction

NPV is defined as the cumulative discounted cash flow over the life-cycle of an oil

reservoir. Due to the long life-cycle, the model-based optimization problem focuses on

long-term gains while short-term production is generally neglected. This typically results

in low short-term gains compared to those resulting from a reactive strategy. Further-

more, due to the high levels of uncertainty in this model-based economic optimization

the resulting optimal strategy is highly uncertain. This uncertainty mainly arises from

strongly varying economic conditions and from the geological uncertainties in modeling

process of water flooding.

As a result, the potential advantages of such optimization are not fully realized and the

risk of not reaching the predicted NPV becomes very high. High short-term gains are

often important, to maximize cash flow or meet short-term goals such as production

contracts, etc. An (ad-hoc) way to increase the momentary rate of oil production, and

hence the short-term gains while maintaining a long-term objective, has been proposed in

Van Essen et al. [2011] where a lexicographic or hierarchical multi-objective optimization

approach has been used. NPV with a high discount factor has been maximized as a

secondary objective to improve short-term gains under the condition that the primary

objective, i.e., an un-discounted NPV, stays close to its optimal value. In Chen et al.

[2012], first steps to add robustness while balancing both objectives have been made

where a constrained robust optimization problem under geological uncertainty has been

proposed. An average short-term NPV over an ensemble of reservoir models has been

maximized while explicitly enforcing, using an augmented Langrangian method, the

optimality condition of average long-term NPV as a constraint. The average objectives

have been inspired by Van Essen et al. [2009a]. In Fonseca et al. [2014], the hierarchical

approach of Van Essen et al. [2011] has been extended in a similar fashion but using a

different optimization method.
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The main focus of this work is to devise optimal solutions to the life-cycle optimization

problem that balance short-term and long-term gains and at the same time provide ro-

bustness to the predicted NPV under both economic and geological uncertainty. Starting

with a base example from the work of Van Essen et al. [2011] and Fonseca et al. [2014],

we address the question: can a similar robust framework with primary (long-term) and

secondary (short-term) objectives be formulated under economic uncertainty? And,

more importantly, do these robust multi-objective optimization (MOO) formulations

provide better uncertainty handling? An ensemble of varying oil prices is considered to

model economic uncertainty and an average of long-term and short-term NPV over the

ensemble is optimized using the hierarchical approach. A redundant-degrees-of-freedom

analysis for the robust long-term NPV solution is explicitly performed and it is shown

that the solution is non-unique, allowing a short-term objective to be optimized.

To answer the question of uncertainty handling of MOO, a more generic weighted-

sum MOO approach with the same objectives is used to characterize and quantify the

effect of the uncertainty on the objective functions. With varying weights, it leads to

a so-called robust Pareto-curve which quantitatively gives the bounds of the effect of

uncertainty on the primary and secondary objective functions. The definition or selection

of the robust objectives in MOO is an important consideration, as it defines how the

uncertainty is treated in an optimization problem. These average or mean optimization

(MO) objectives are classified as risk-neutral approaches, see e.g., Rockafellar [2007]. MO

includes uncertainty in the optimization framework but the optimized solution does not

lead to a reduced uncertainty in the achieved NPV. For better uncertainty handling of

these MOOs, inspired by Markowitz’s seminal work of ’risk-return’ portfolio management

(see Markowitz [1952]), a risk-averse mean-variance optimization (MVO) objective is

considered. MVO is later used for robust water-flooding optimization under geological

uncertainty by Capolei et al. [2015b]. In MVO, the risk is quantified by the variance

of the NPV distribution. MVO with maximization of the average NPV minimizes the

variance of the NPV distribution. The robust weighted-sum approach is then used with

long-term and short-term MVO objectives. The proposed approach provides a more

robust solution for the long-term NPV compared to the MO objectives. Note that these

robust MOO approaches can easily be extended to consider other risk-averse objectives,

e.g., mean-conditional value-at-risk (CVaR), mean-worst case etc., see, e.g., Rockafellar

[2007], Liu and Reynolds [2015a] and Capolei et al. [2015a].

By changing the NPV objective, these optimization frameworks provide an indirect or

ad-hoc way of balancing the short-term and the long-term economic objectives. In

Capolei et al. [2015b] a bi-criterion mean-variance objective function has been opti-

mized and key economic indicators have been given. We consider a single objective,

mean-variance optimization, to investigate whether, by explicit handling of uncertainty
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in model-based economic optimization, the balance between short-term and long-term

gains can be naturally obtained. This essentially means moving from MOO to a single-

objective MVO in order to study the relationship between uncertainty handling and

obtaining a natural balance between short-term and long-term gains. MVO is imple-

mented and also extended to explicitly consider economic uncertainty. A similar MVO

approach for a well-placement problem has been described in Yeten et al. [2003].

The chapter is organized as follows: In the next section, a short recapitulation is given

of robust optimization of the water-flooding process. A base example using the robust

hierarchical approach is given in section 2.3. In section 2.4, the approach is extended to

include economic uncertainty. The robust weighted-sum approach with MO is presented

in section 2.5. The concept of mean-variance optimization is given in section 2.6. In

section 2.7, the implementation of a single-objective MVO is presented, followed by the

simulation examples. Conclusions are drawn in section 2.8.

2.2 Robust optimization in water-flooding

2.2.1 Water flooding

In water-flooding, water is injected to maintain reservoir pressure and displace oil to-

wards the producing wells. The dynamics of the water-flooding process can be described

by conservation of mass and degenerated momentum equations (Darcy’s law); for details

see, e.g., Aziz and Settari [1979] and for a description in systems and control notation,

Jansen et al. [2008]. A state-space form results after discretization of the governing

equations in both space and time

gk(uk;xk;xk�1; � p) = 0; k = 1; : : : ;K; (2.1)

yk = hk(uk;xk); (2.2)

where subscripts refer to discrete instants k of time, with K the total number of time

steps, and where g and h are non-linear vector-valued functions. In isothermal reservoir

simulation, the state variables, which form the elements of vector xk 2 Rn, are typically

pressures and water saturations in each grid cell with initial conditions x0 = x̄0. Note

that xk is a shortcut notation to represent xk = x(tk), i.e., the value of x at time

t = tk. The control vector uk 2 Rm can represent a combination of prescribed well

flow rates, well bore pressures or valve settings. The parameter vector � p 2 Θ � Rn� p

typically contains physical parameters such as porosities and permeabilities in each grid

cell, and other uncertain parameters such as fault transmissibility multipliers, initial

fluid contacts, etc. Measured output variables are denoted by yk.
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Chapter 2. Handling uncertainties in balancing short-term and long-term objectives

For a given well configuration, the injection flow rates and/or production valves settings

can be dynamically operated over the production life-cycle, and therefore serve as control

inputs for optimization. The objective is to maximize a financial measure, i.e., Net

Present Value (NPV), over a fixed time horizon which can be represented in the usual

fashion as:

J =

KX

k=1

2

4 ro � qo;k � rw � qw;k � rinj � qinj;k

(1 + b)
t k
� t

�∆tk

3

5 ; (2.3)

where ro; rw and rinj are the oil price, the water production cost and the water injection

cost in $
m3 respectively and ∆tk the time interval of time step k in days. The term b is

the discount rate for a certain reference time �t. The terms qo;k; qw;k and qinj;k represent

the total flow rate of produced oil, produced water and injected water at time step k in
m3

day .

The optimization problem with an input sequence U = fukgKk=1 and with the objective

function defined in eq. (2.3) can be formulated as follows:

max
U

J

s.t. gk(uk;xk;xk�1; � p) = 0; yk = h(uk;xk); x0 = x̄0;

c(uk;yk) = 0; d(uk;yk) � 0; k = 1; 2; � � �K:

(2.4)

where c(uk;yk) and d(uk;yk) are equality and inequality constraints respectively. In

this thesis, a gradient-based optimization approach is used where the gradients
� dJ
dU

� >

are obtained by solving a system of adjoint equations, see e.g., Sarma et al. [2005a],

Jansen [2011]. The gradient information is then used in the steepest ascent algorithm

to iteratively converge to the (possibly local) optimum as

U i+1 = U i + �
�
dJ
dU

� >
; k = 1; � � � ;K (2.5)

where � is the step size of the algorithm and i is the iteration counter; see Wright and

Nocedal [1999].

2.2.2 Robust hierarchical optimization

In Haimes and Li [1988] a hierarchical or lexicographic method has been described

allowing to prioritize multiple objectives. In Van Essen et al. [2011] this hierarchical

approach has been used to balance long-term and short-term gains by distinguishing the

long term NPV (J1) and a secondary (short-term) objective NPV (J2). Both objectives,

i.e., J1 and J2 are given in eq. (2.3), with a difference that J2 focuses on the short-term
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2.2. Robust optimization in water-ooding

gains and it is highly discounted, i.e., the discount factor b is a high value compared to

the discount factor in J1. The optimization of the secondary objective is constrained by

the condition that the primary (long-term) objective should remain close to its optimal

value J�1 . It can be formulated as:

max
U

J2

s.t. gk(uk;xk;xk�1; � p) = 0; yk = h(uk;xk); x0 = x̄0;

c(uk;yk) = 0; d(uk;yk) � 0; k = 1; 2; � � �K;

J�1 � J1 � �;

(2.6)

where � > 0 shows the allowed deviation of primary objective from its optimal value J�1 .

In Van Essen et al. [2011], it has been shown that this procedure can lead to substantially

higher revenues on a short-term with only very minor compromises for the long-term

gains. This potential to increase the short-term gains originates from the fact that the

original long-term optimization problem (2.6) has redundant degrees of freedom (DOFs).

In Van Essen et al. [2011], an alternative switching method to solve the hierarchical

optimization problem without explicitly calculating the redundant DOF has also been

introduced. It uses a balanced objective function as follows:

Jbal = Ω1(J1)J1 + Ω2(J1)J2 (2.7)

where Ω1 and Ω2 are switching function of J1 and J�1 that take on values of 1 and 0 as

follows:

Ω1(J1) =

(
1 if J1 � J�1 > �

0 if J1 � J�1 � �
(2.8a)

Ω2(J1) =

(
0 if J1 � J�1 > �

1 if J1 � J�1 � �
(2.8b)

where � > 0 represents the deviation from the optimal value of the primary objective

function. Execution of the optimization problem using balanced objective function (2.3)

sequentially gives improving directions for either J1 or J2. With each iteration, the

value of J2 either increases while the value of J1 decreases or vice versa. The idea of the

switching method is also illustrated in Fig. 2.1.

In Fonseca et al. [2014] this hierarchical approach has been extended to a robust setting,

taking account of geological model uncertainty, according to the robust optimization

formulation of Van Essen et al. [2009a]. In this latter work an ensemble of possible
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Chapter 2. Handling uncertainties in balancing short-term and long-term objectives

Figure 2.1: Switching method for hierarchical multi-objective optimization with-
out explicitly calculating redundant degrees of freedom (taken from Van Essen et al.

[2009b]).

geological realizations is used to determine an average NPV over that set, leading to the

mean optimization (MO) approach, determined by the objective function

JMO =
1

Ngeo

NgeoX

i=1

J i; (2.9)

where Ngeo is the number of realizations. This same principle can now be used in the

hierarchical setting by considering the long-term mean revenue JMO;1 and the short-term

mean revenue JMO;2, defined in accordance with (2.9).

2.3 Base case example

The simulation example that we consider as a base case, is the same as the one presented

in Van Essen et al. [2009a] (in the nominal case) and Fonseca et al. [2014]. We have used

an ensemble of 100 geological realizations of the standard egg model, see appendix A

and Jansen et al. [2014]. Each model is a three-dimensional realization of a channelized

reservoir produced under water flooding conditions with eight water injectors and four

producers. The production life-cycle of each reservoir model is 3600 days. The absolute-

permeability field of the first realization in the set is shown in Fig. 2.2. For all other

reservoir and fluid parameters we refer to appendix A and Jansen et al. [2014].

All the simulation experiments in this work are performed using the MATLAB Reser-

voir Simulation Toolbox (MRST), see Lie et al. [2012]. All economic parameters are

considered as fixed. For the primary objective, an un-discounted NPV is used. Other

economic parameters, i.e., oil price ro, water injection rinj and production cost rw are

chosen as 126 $
m3 , 6 $

m3 and 19 $
m3 respectively. We note that the oil price is much lower
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2.3. Base case example

Figure 2.2: Permeability field of realization 1 of a set of 100 realizations.

than the typical present day value. However, we have chosen to use the same value as

applied in Van Essen et al. [2009a] to allow for a comparison of results.

The control input uk involves injection flow rate trajectories for each of the eight injection

wells. The minimum and the maximum rate for each injection well are set as 0:2m
3

day and

79:5m
3

day respectively. The production wells operate at a constant bottom-hole pressure

of 395bar. The control input uk is reparameterized in control time intervals (piece-wise

constant). In this example, uk is reparameterized into ten time periods of t’ of 360 days

during which the injection rate is held constant at value ’i. Thus the input parameter

vector ' consists of Nu = 8 � 10 = 80 elements, where there are 8 injection wells with

10 control time intervals. In a more general settings, ' can be viewed as ' (t) := uk, if

t 2 [tk�1; tk] with T = [0;K]; 0 = t0 < t1 < � � � < tK = K.

As an optimization procedure to solve for the robust version of problem (2.6) a switching

method as given in eq. and as presented in Van Essen et al. [2011] is applied , while

� is chosen at a level of 0:3% from the optimal value of the primary objective function

JMO;1. The obtained optimal inputs are applied to each member of the ensemble and

the corresponding distribution of the resulting NPVs is shown in Fig. 2.3a indicated

by ”Robust hierarchical”. This distribution is compared with the distribution resulting

from applying optimal inputs resulting from the mean optimization (MO) of JMO;1 only,

and a reactive strategy (RC) applied to each ensemble member separately. It can be

observed that due to the availability of redundant DOFs the primary long-term objective

is almost the same as with the robust hierarchical optimization.

The time evolutions of the NPV for all the three strategies are compared in Fig. 2.3b.

The maximum and the minimum values of the time evolutions of NPV form a band.

The width of the band shows the variability of a strategy over the ensemble of the model
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Chapter 2. Handling uncertainties in balancing short-term and long-term objectives

(a) PDF (long-term NPV) by applying
optimal inputs from MO, robust

hierarchical and RC to each ensemble
member

(b) Max and min (band) for
time-evolutions of NPV

Figure 2.3: Results comparison for the three control strategies, i.e., MO and robust
hierarchical under geological uncertainty with RC

realizations. As the secondary objective is aimed at maximizing the oil production rate,

the short-term gains are heavily weighted, which can be observed in the figure. These

improved short-term gains are achieved with almost no compromise to the long-term

NPV. Hence, for this example, the robust hierarchical approach gives a good balance

between long-term and short-term objectives. The reactive strategy leads to high short-

term gains but at the cost of compromising long-term revenues.

For comparison with the non-hierarchical approach, the results are recomputed with a

nominal and robust optimization of the long-term gains JMO;1 only. In nominal opti-

mization (NO), a single realization of Standard Egg model is used for optimization. The

optimization is repeated for each model in the ensemble resulting in 100 NO strategies.

A different number of control time steps, i.e., 20, is used as the optimization runs into

numerical problems with 10 control steps. Thus, in this case, the input parameter vec-

tor ' consists of Nu = 8 � 20 = 160 elements. The results are displayed in Fig. 2.4.

Fig. 2.4a (which is similar to the one shown in Van Essen et al. [2009a]) shows the

PDF (Probability density function) of NPV resulting from 100 nominal optimizations

(NO), robust mean optimization (MO) and reactive control (RC) strategies (applied to

all 100 ensemble members). It shows that MO, on average, performs better than all NO

strategies, but the key point to note is that it does not aim to minimize the effect of

uncertainty, e.g., by reducing the variance of NPV distribution.

The effect of uncertainty on the time evolutions of NPV is shown in Fig. 2.4b. Each NO

strategy is applied to the respective model which is used for optimization while optimal

inputs from MO and RC are applied to all ensemble members. It can also be observed
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2.4. Robust hierarchical optimization under economic uncertainty

(a) PDF (long-term NPV) by applying
optimal inputs from NO, RC and MO

to each ensemble member

(b) Max and min (band) for
time-evolutions of NPV

Figure 2.4: Results comparison for the three control strategies, i.e., MO under geo-
logical uncertainty with NO and RC

that the short-term gains of the MO approach are very low compared to those of the

RC approach.

The advantages of the hierarchical approach, also in its robust form, suggest that the

corresponding robust optimization problem has redundant degrees of freedom. This is

illustrated by evaluating the singular value decomposition of the (approximate) Hessian,

which is obtained through a forward-difference scheme. The resulting singular values

of this Hessian for the robust optimization objective JMO;1 are shown in Fig. 2.5. By

using a threshold level through which singular values �i are considered to be 0 when

�i=�1 < 0:02, where �1 is the first and largest singular value, it appears that in the

optimized input 121 degrees of freedom are redundant. This freedom is employed in the

hierarchical approach to improve the short-term revenues without heavily compromising

the optimality of the considered robust primary objective.

2.4 Robust hierarchical optimization under economic un-

certainty

The NPV objective function contains economic variables such as interest rate, oil price

etc., which fluctuate with time and can not be predicted very accurately. Oil reservoirs

typically have a long life cycle of 10 to 100 years. The unknown variations of these vari-

ables become another prime source of uncertainty. Specially the oil price can drastically

vary over the time, as is also evident by the recent abrupt downfall. Therefore in this

work, only varying oil prices are used to characterize economic uncertainty. They can
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Figure 2.5: Singular Values of Hessian with primary objective JMO; 1

be represented by a finite number of scenarios �i; i = 1; � � � ; Neco. They have a time-

varying dynamic nature and their negative effect on the control strategy increases with

the time horizon. In the petroleum engineering literature, the robust approaches have

mainly focused on the inclusion of geological uncertainty. Economic uncertainty has not

been explicitly addressed in these robust approaches. In Wen et al. [2014], the value

of information associated with an uncertain oil price has been analyzed. We explicitly

include the economic uncertainty in the optimization framework.

For economic uncertainty in the form of varying oil prices, one important point to

consider here is that due to the linearity of the oil price in the NPV objective, the average

of NPV over scenarios is equal to an NPV with average scenarios. Let � represents an

ensemble of oil price scenarios in a vector form, i.e.,

�i := [�(1)
k
>
; �(2)
k
>
; � � � ; �(Neco )

k
>

]>; k = 1; 2; � � � ;K;

In case when ro(�) is linear and ro has a linear effect on NPV, the following statement

holds true:

1

Neco

NecoX

i=1

J(U;�i) = J(U;
1

Neco

NecoX

i=1

�i); 8U (2.10)

It simplifies the mean optimization problem with oil price scenarios to a single optimiza-

tion as in eq. (2.4) with the average value of all oil price realizations.
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2.4. Robust hierarchical optimization under economic uncertainty

2.4.1 Reservoir models and economic data for NPV

As the purpose of this simulation example is to show the effect of economic uncertainty

on the optimal strategy, a single model realization of the standard egg model, (Jansen

et al. [2014]), as shown in Fig. 2.2 is used.

As primary objective, an un-discounted NPV is used. Other economic parameters,

i.e., water injection cost rinj and production cost rw are kept fixed at 23 $
m3 and 71 $

m3

respectively. There are various ways to predict the future values of changing oil prices.

Different models, e.g., Prospective Outlook on Long-term Energy Systems (POLES)

used by European Union and the French government, National Energy Modeling System

(NEMS) of United States energy markets created at the U.S. Department of Energy,

Energy Information Administration (EIA) etc., are used for energy prices prediction, for

details see Criqui [2001], Lapillonne et al. [2007], Bhattacharyya and Timilsina [2010],

Birol [2010]. However, for this example a simplified Auto-Regressive-Moving-Average

model (ARMA) model, see Ljung [1999], is used to generate oil price time-series. This

simplified approach can still show the effect of varying oil prices. The ARMA model is

shown below:

rok = a0 +

6X

i=1

airok � i +

6X

i=1

biek�i; (2.11)

where ek is a white-noise sequence and ai; bi are the coefficients selected in an ad-hoc

way. A total of 10 scenarios, i.e., Neco = 10 with a base oil price of 471 $
m3 are generated

as shown in Fig. 2.6.

Figure 2.6: Oil price according to scenarios for uncertainty characterization
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2.4.2 Control input and control strategies

The control input and the bounds on these inputs are the same as used in the previous

examples except that, for this case, the control input uk is reparameterized into ten time

periods of t’ of 360 days during which the injection rate is held constant at a value ’i.

Thus the input parameter vector ’ consists of Nu = 8�10 = 80 elements. The MO and

the RC strategies are also considered.

2.4.3 Results for the primary objective

The JMO;1 for the case of economic uncertainty is optimized using a gradient-based line

search optimization procedure. The MO objective, i.e., JMO is as defined in eq. (2.9)

except that, in this case of economic uncertainty, the average is taken over the oil price

scenarios for a single reservoir model. Therefore only one uncertainty is considered at a

time. The optimal strategy is applied to the reservoir model with all oil price realizations.

RC is also used. The time evolutions of NPV for both strategies are compared in Fig.

2.7. The maximum and the minimum values of the time evolutions of NPV will form a

band. The first observation is the large width of these bands which reflects a dominant

effect of economic uncertainty on the strategies. MO provides a higher long-term average

NPV compared to RC and performs better than RC. Intuitively, optimization should

lead to increased oil production when the oil prices are higher and vice versa. Because

the mean oil price, as shown in Fig. 2.6, tends to increase over time, MO delays the

production until the end phase of the life-cycle. The NPV distributions are not shown

Figure 2.7: Time evolutions of NPV with respect to economic uncertainty for JMO; 1

in this case, but it is still clear that MO does not lead to a reduced uncertainty in the

achieved long-term NPV gains and offers poor uncertainty handling.
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2.4.4 Redundant degrees of freedom

Like in the previous example, the condition to check the redundant DOF is set to

�i=�1 < 0:02. 52 input redundant degrees of freedom are found as shown in Fig. 2.8.

Figure 2.8: Singular Values of Hessian with primary objective JMO; 1

2.4.5 Results for the switching method

The optimal solution of the primary objective optimization u�k serves as an initial input

guess for the switching hierarchical optimization. The values of the primary and the

secondary objectives are given in Fig. 2.9. For most of the iterations, the value of

Figure 2.9: Primary JMO; 1 and secondary JMO; 2 objectives with optimization itera-
tion numbers using switching method for robust hierarchical optimization

the primary objective decreases as the value of the secondary objective increases and

36



Chapter 2. Handling uncertainties in balancing short-term and long-term objectives

vice versa. In this example the chosen � shows a decrease of 0:3%. In this case, the

optimization routine seems to converge after 34 iterations.

The time evolutions of NPV for all three strategies, i.e., MO, RC and robust hierarchical

optimization, are compared in Fig. 2.10. Because the secondary objective is a highly

discounted NPV, we expect to see an increase in short-term gains compared to MO.

With the chosen ensemble, we don’t see a plausible improvement in the short-term

gains. A very small increase can be observed with hardly any decrease in the long-term

gain. These results are highly dependent on the chosen ensemble of varying oil prices.

Figure 2.10: Time evolutions of NPV with respect to economic uncertainty for robust
hierarchical optimization

Different ensembles may result in a higher improvement in short-term gains.

2.5 Quantifying impact of uncertainty: a robust weighted-

sum approach

The robust hierarchical approach provides a balance of short-term and long-term ob-

jectives. The switching method for a particular � can be viewed as one point in the

two-dimensional objective functions space determined by J1 and J2. From an uncer-

tainty handling viewpoint, it can explain how uncertainty effects both objectives for a

chosen value of �. In order to completely characterize and quantify the effect of un-

certainty on the objective functions space while balancing both objectives, the classical

weighted-sum approach is used as discussed next.
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2.5.1 Robust weighted-sum approach

The weighted-sum approach can easily be extended to a robust scheme by considering

the robust primary and secondary objectives as defined in the previous section. It will

take the following form:

max
u k

w1JMO;1 + (1� w1)JMO;2;

s.t. 0 � w1 � 1:
(2.12)

Note that in the MO case, with geological uncertainty, JMO;1 and JMO;2 are given as:

JMO;1 =
1

Ngeo

NgeoX

i=1

J i1; JMO;2 =
1

Ngeo

NgeoX

i=1

J i2; (2.13)

where J i1 and J i2 are long-term and short-term objectives respectively for realization

i = 1; 2; � � �Ngeo. The total number of Ngeo values of J i1 and J i2 can be calculated

with the optimal solutions obtained by solving (2.12) for different choices of w1 2W1 :=

fw1
1; w2

1; � � � ; ww1 g. An empirical covariance matrix P of ji = [J i1; J i2]>, i = 1; 2; � � � ; Ngeo,

is estimated for each w1. Confidence ellipses are drawn with the help of these covariance

matrices to quantify the effect of the uncertainty. Confidence ellipses can be represented

as:

(j� ĵ � 1)>P�1(j� ĵ � 1) � �2
� (2.14)

where ĵ is the mean of j, 1 is a vector of ones and �2
� is the Chi-square distribution

with � degrees of freedom and where we have dropped the superscript i for clarity of

notation. In the simulation examples, only geological uncertainty is considered for the

robust weighted-sum approach. The given approach can easily be extended to consider

economic uncertainty as well.

2.5.2 Simulation results

The robust weighted-sum approach is implemented for different weights, i.e., w1 2W1 =

f0; 0:3; 0:5; 0:7; 0:9; 1g. The resulting solutions are applied to the ensemble of Ngeo = 100

models and in each case both J i1 and J i2 objectives for i = 1; 2; 3; � � � ; 100 are evaluated.

This results in 100 points for JMO;1 and JMO;2 each. A 95% confidence ellipse is then

used on these NPV data points to quantify the impact of uncertainty on the objective

functions space for chosen combinations of w1 and w2. This confidence ellipse defines

the region that contains 95% of all samples that can be drawn from the pre-assumed
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gaussian distribution of NPV points. The confidence ellipse for w1 = 0:7 with the 100

data points from both objectives is shown in Fig. 2.11.

Figure 2.11: The 95% confidence ellipse with 100 data points(JMO; 1,JMO; 2) for w1 =
0:7

In the classical MOO framework, a Pareto-optimal curve results if none of the objective

functions can be improved in value without degrading some of the other objective values.

In this robust weighted-sum approach, the confidence ellipses for each w1 in eq. (2.12)

will form a robust Pareto-curve as shown in Fig. 2.12.

Figure 2.12: The robust-Pareto curve formed by the confidence ellipses

The uncertainty quantification bounds can be observed in Fig. 2.12, but they do not give

a complete robust Pareto-curve. Due to the non-convexity and the high complexity of

the problem, it is difficult to construct a complete robust-Pareto curve like in a nominal

case. In Liu and Reynolds [2015b], alternative algorithms, i.e., a constrained weighted
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sum method or a constrained normal boundary intersection (NBI) method using an

augmented-Lagrange algorithm, have been proposed to develop a Pareto-curve but they

have not been implemented in this work. Fig. 2.13 gives the NPV time-evolution bands

and the NPV distributions. As expected, the short-term gains increase with increasing

weight on the secondary term, i.e., with decreasing w1. The NPV distributions show

a slight compromise on long-term gains with increasing short-term values. Hence the

robust weighted-sum approach also provides a balance between short-term and long-term

objectives. With different weights, the desired level of balance can be achieved.

(a) PDF (long-term NPV) by applying
optimal inputs from robust

weighted-sum using MO objectives for
different w1 and RC to each ensemble

member

(b) Max and min (band) for time
evolutions of NPV

Figure 2.13: Results comparison in terms of long-term and time-evolutions of NPV
for the robust weighted-sum approach using MO objectives for different w1 and RC

These robust MO schemes, i.e., the robust hierarchical and robust weighted-sum ap-

proaches, with averaged objectives, incorporate uncertainty in the optimization frame-

work. However, they do not aim at reducing the effect of uncertainty in the resulting

NPV e.g., by reducing the width (variance) of the NPV distribution. MO uses a so-called

risk neutral objective. A larger uncertainty will result in a bigger spread (or variance)

of the NPV distribution and vice versa. From an economic perspective, this seriously

limits the performance of MO to handle uncertainty, hence also the performance of the

proposed robust MOO approaches. In the next section, a risk-averse mean-variance

objective is presented.
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2.6 The mean-variance optimization (MVO) approach

2.6.1 Introduction

Markowitz has introduced a risk-return portfolio selection approach, where a ’return’ is

maximized while minimizing the ’risk’ associated with it, see Markowitz [1952]. This

approach leads to a quantitative characterization of risk in terms of the variance of the

returns. Based upon the investor’s attitude towards risk, a risk-return profile is se-

lected. Later-on, various ways have been introduced to characterize risk, e.g., percentile

based risk measures like Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR),

see Rockafellar [2007], Yasari et al. [2013], Capolei et al. [2015b], Capolei et al. [2015a]

and Siraj et al. [2015]. In this work, the return is considered as the average NPV while

the risk is characterized with the spread or the variance of the NPV distribution. MVO

enables a reduction of the variance of the NPV distribution which results in a reduction

of the sensitivity of the optimal solution to uncertainties or, in other words, it minimizes

the negative effect of uncertainty. The sample variance of the NPV is given as follows:

JV =
1

Ngeo � 1

NgeoX

i=1

(J i � JMO)2:

Using this variance objective JV , the mean-variance objective function JMVO for an

ensemble of Ngeo models can be defined as:

JMVO = JMO � JV ; (2.15)

where JMO is the mean NPV while  > 0 is the weighting on the variance term. As

mean and variance have different units,  plays a dual role of scaling as well, i.e.,

weighting � scaling = . JMO is the same as given in eq. (2.9).

This approach can be extended to consider economic uncertainty by replacing averaging

over the ensemble of model realizations Ngeo to averaging over the oil price scenarios

Neco.

The MO objective in the robust weighted-sum approach is replaced by the MVO objec-

tive for better uncertainty handling. The details of this scheme are given in the next

sections. The results for both MO and MVO objectives in the robust-weighted sum

approach are also compared.
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2.6.2 Robust weighted sum approach with MVO under geological un-

certainty

By replacing the objectives in eq. (2.12) by the mean-variance objectives for the geo-

logical uncertainty, the robust weighted-sum approach can be written as follows:

max
U

w1JMVO;1 + (1� w1)JMVO;2;

s.t. 0 � w1 � 1;
(2.16)

where JMVO is the mean-variance objective as defined in eq. (2.15). JMVO;1 repre-

sents the un-discounted primary (long-term) MVO and JMVO;2 is the highly discounted

secondary (short-term) MVO as given below:

JMVO;1 = JMO;1 �


Ngeo � 1

NgeoX

i=1

(J i1 � JMO;1)2; (2.17)

JMVO;2 = JMO;2 �


Ngeo � 1

NgeoX

i=1

(J i2 � JMO;2)2: (2.18)

2.6.3 Results of the robust weighted-sum approach with MVO

The proposed approach is implemented for a fixed value of , i.e.,  = 2 � 10�6. The

weights are chosen as w1 2 W1 = f0; 0:3; 0:5; 0:7; 0:9; 1g. The resulting solutions are

applied to the ensemble of 100 models and in each case both J i1 and J i2 objectives for

i = 1; 2; 3; � � � ; 100 are evaluated. This results in 100 points for JMVO;1 and JMVO;2

each. A 95% confidence ellipse is then used on these data points to quantify the impact

of uncertainty on the objectives. The confidence ellipse for w1 = 0:7 with the data points

for both objectives is shown in Fig. 2.14.

Similar to the previous case, the confidence ellipses for each w1 in eq. (2.16) will form a

robust Pareto-curve as shown in Fig. 2.15 with the mean value of each ellipse indicated

by diamonds.

For the sake of comparison with MO, the figure axes scales are chosen to be the same. It

can easily be seen that due to the reduction of variance, these ellipses are small compared

to the MO objective as shown in Fig. 2.12. Hence, in this example, the robust weighted

sum approach with MVO reduces the negative effect of uncertainty and provides better

uncertainty handling. Fig. 2.16 gives the NPV time-evolution bands and the NPV

distributions. As expected, the short-term gains increase with increasing weight on the

secondary objective, i.e., with decreasing w1. The NPV distributions show a very slight

compromise on long-term gains with increasing short-term values.
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Figure 2.14: 95% percent confidence ellipse with 100 data points (JMV O; 1; JMV O; 2)
for w1 = 0:7

Figure 2.15: The robust-Pareto curve formed by confidence ellipses

A comparison between the two approaches is made by comparing the areas of all ellipses

resulting from each w1. The area can be calculated as:

A = 5:991�ab; (2.19)

where a and b are the major and the minor axis of the ellipse and the factor 5:991

corresponds to a 95% confidence interval. It can be seen in Fig. 2.17 that, due to

the better handling of uncertainty of MVO, the ellipses corresponding to MVO have a

smaller area compared to those corresponding to MO.

The results of the robust weighted-sum approach show the better uncertainty handling

of the MVO approach. In the next section, a single objective mean-variance optimization
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(a) PDF (long-term NPV) by applying
optimal inputs from robust

weighted-sum using MVO objectives for
different w1 and RC to each ensemble

member

(b) Max and min (band) for time
evolutions of NPV

Figure 2.16: Results comparison in terms of long-term and time-evolutions of NPV
for the robust weighted-sum approach with MVO objectives

Figure 2.17: Comparison of MO and MVO in terms of area of ellipses for each w1

is formulated. It is investigated whether, by explicit handling of uncertainty in model-

based economic optimization, the balance between short-term and long-term gains can

be naturally obtained. Economy uncertainty is explicitly taken into account together

with geological uncertainty.
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2.7 Mean-variance optimization (MVO) as a single objec-

tive

The single objective mean-variance optimization (MVO) approach as discussed in sec-

tion 2.6 is implemented with the same ensemble of model realizations, economic data

and control inputs (with 20 control time intervals). First we focus on the geolog-

ical uncertainty. An un-discounted NPV is used. Different values of , i.e.,  2

f1 � 10�6; 3 � 10�6; 7 � 10�6g are used. The obtained MVO optimal strategies are

applied to each member of the geological ensemble, resulting in 100 NPV values for

each . The corresponding PDFs of these NPV values and the PDFs obtained from

the MO and the RC approaches are shown in Fig. 2.18a. Nominal strategies are not

compared for the sake of clarity. The first observation is that the variance is reduced

with increasing : the higher the value of , the lower the variance. The lower variance

is achieved at the cost of compromising the average NPV. As the effect of uncertainty is

visible by the spread of the NPV distribution, the reduction of the variance reflects the

reduction of sensitivity of the strategy to the uncertainty. Hence MVO aims to mitigate

the negative effect of the uncertainty on the NPV distribution.

(a) PDF (long-term NPV) by applying
optimal inputs from MO and MVO

under geological uncertainty and RC to
each ensemble member

(b) Max and min (band) for time
evolutions of NPV

Figure 2.18: Results comparison for the three control strategies i.e., MVO and MO
under geological uncertainty with RC

The time evolutions of NPV for all three strategies i.e., MVO, MO and RC are compared

in Fig. 2.18b. It can be observed that, compared to the MO strategy, all MVO strategies

provide a faster build-up of NPV over time (high short-term gains) at the cost of slightly

compromising the long-term gains. It can also be observed that the value of  affects

the rate of NPV build-up with a respective reduction of the average long-term gain. In

portfolio optimization, the selection of  provides a way to choose a risk-return profile
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as per the investors’ interest. But in this example, it also plays a role of an explicit

parameter to balance short-term and long-term economic objectives according to the

investors’ choice.

The results show that the single objective MVO naturally provides higher short-term

gains without (artificially) changing the economic criteria, i.e., NPV with high discount

factor, as in the robust MOO schemes. For the clarity of representing results, the average

values for the time evolutions of NPV bands for all three strategies are compared in Fig.

2.19.

Figure 2.19: Average values for the time evolutions (bands) of NPV with respect to
geological uncertainty

The numerical results of the behavior of average NPV are summarized in Table 2.1.

The table shows the average NPV obtained for all the control strategies at 720 days of

oil production and the average NPV obtained at the end of the simulation period, i.e.,

3600 days. An increase of the average NPV at day 720 and a decrease at the end of the

simulation period compared to the MO are shown. The first observation is that the MO

has the lowest average NPV at day 720, while it results in the maximum average NPV

at the end of the simulation period compared to other strategies. RC has a maximum

increase in the short-term gains but with a decrease of 6:31% compared to the MO.

For the MVO strategies, as discussed before,  provides an explicit way of balancing

the short-term and the long-term objectives and hence becomes a tuning parameter for

balancing both objectives. A higher value of  will result in a faster build-up of NPV

at the cost of compromising the final NPV.

As the simulation with robust hierarchical optimization with geological uncertainty runs

into numerical problems with 20 control steps, a different step size, i.e., 10 is used. The

results are slightly different for MO and RC with 10 control steps and compared with
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Table 2.1: Results for geological uncertainty (Single-objective MVO)

Control Average NPV % increase Average NPV % decrease
strategies at day= 720 from MO at day= 3600 from MO

in million USD in million USD

MO 9:2 - 45:5 -

 = 1� 10�6 10:8 18:35% 44:7 1:71%

 = 3� 10�6 13:9 51:92% 44:4 2:42%

 = 7� 10�6 16:9 84:39% 43:7 3:78%

RC 41:3 350:09% 42:8 6:31%

the robust hierarchical optimization in Table 2.2. The robust hierarchical approach

outperforms all MVO strategies because of higher short-term gains of 119:19% with

almost no decrease from MO at the end of life-cycle time. One of the major advantages

of the robust hierarchical optimization is the ability to allow a pre-determined maximal

decrease, indicated by �, on the primary objective to improve the secondary objective.

Table 2.2: Results for geological uncertainty (Robust hierarchical)

Control Average NPV % increase Average NPV % decrease
strategies at day= 720 from MO at day= 3600 from MO

in million USD in million USD

MO 9:9 - 45:3 -

Robust hierarchical 21:7 119:19% 45:3 0%

RC 36:1 264:64% 38:6 14:7%

2.7.1 Results for MVO with economic uncertainty

In this case, we only consider economic uncertainty and a single realization of the egg

model is used. The mean-variance optimization with economic uncertainty is imple-

mented with 10 different oil price scenarios as shown in Fig. 2.6. Different values of ,

i.e.,  2 f1�10�7; 2�10�7; 3�10�7g are used. MO and RC strategies are applied to the

single model realization with each oil price realization resulting in 10 different NPVs.

The time evolutions of NPV for these strategies are compared in Fig. 2.20b. The width

of the bands clearly shows that the economic uncertainty, i.e., varying oil prices have a

very profound effect on the obtained NPV. The large uncertainty in the oil price scenar-

ios is mapped to a large spread of the NPV bands. All three MVO strategies, i.e., with

 2 [1�10�7; 2�10�7; 3�10�7] are also applied to the single model realizations with 10

different oil price realizations. It results in three different bands for each MVO strategy,

but for the sake of clarity only one time evolutions band of NPV for  = 1 � 10�7 is

shown in Fig. 2.20b.
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(a) Average values for the time
evolutions (bands) of NPV

(b) Max and min (band) for time
evolutions of NPV

Figure 2.20: Results comparison for the three control strategies i.e., MVO and MO
under economic uncertainty with RC

Fig. 2.20a shows the average NPV values of the bands. The results for the MVO strategy

for three different values of  are also shown in Fig. 2.20a. With the MVO approaches,

an improvement in the short-term gains compared to the MO case can be observed.

Similar to the case with geological uncertainty,  becomes an explicit parameter to

balance short-term and long-term gains.

The numerical results are summarized in Table 2.3. Similar to Table 2.1, the table shows

the average NPV obtained for all the control strategies at 720 days of oil production

and the average NPV obtained at the end of the simulation period of the reservoir

model, i.e., 3600 days, with percentage increase and decrease compared to the MO. As

with the geological uncertainty, the MO has a lowest average NPV at day 720 with

a maximum average NPV at the end of the simulation period compared to the other

strategies. RC has a maximum increase in the short-term gains, but with a decrease

of 17:6% compared to the MO: RC reaches its maximum NPV, i.e., 161:2 million USD

after approximately 2 years of production. Economic uncertainty has a profound effect

on NPV optimization compared to the geological uncertainty, as with the MVO strategy

with  = 3�10�8 an increase of 318:5% on short-term gains can be achieved at the cost

of a 7:1% decrease on final NPV, compared to a reactive strategy with an increase of

467:6% on the short-term and with a significant drop of 17:6% on long-term gains. Here

again,  provides an explicit way of balancing short-term and long-term objectives and

hence provides decision makers a tuning parameters for balancing both objectives. The

robust hierarchical multi-objective approach gives an improvement in short-term gains

by 30:85% at the cost of reducing 0:3% of long-term gains.
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Table 2.3: Results for economic uncertainty

Control Average NPV % increase Average NPV % decrease
strategies at day= 720 from MO at day= 3600 from MO

in million USD in million USD

MO 26:9 - 195:8 -

 = 1� 10�8 67:6 151:3% 189:9 3:0%

 = 2� 10�8 96:2 257:6% 185:8 5:1%

 = 3� 10�8 112:6 318:5% 181:9 7:1%

Robust hierarchical 35:2 30:85% 195:2 0:3%

RC 152:7 467:6% 161:2 17:6%

2.8 Conclusions

Model-based NPV optimization suffers from high-levels of uncertainty and also typically

results in low short-term gains. It is desirable to explicitly include uncertainty, and hence

add robustness to the predicted long-term NPV, while also offering a good balance

between the short-term and long-term gains. From this work, the following conclusions

can be drawn:

� The question how to obtain a robust solution which also provides a good balance

of short and long-term objectives is addressed by using multi-objective optimiza-

tion approaches. It has been shown by simulation examples that, because of the

availability of redundant degrees of freedom in robust optimization, the short-term

gains can be greatly improved without compromising long-term gains. In the sit-

uation of geological uncertainty, a plausible increase is observed while for the case

of economic uncertainty the improvement is less than expected. These results may

vary with different characterizations of uncertainty (with different ensembles).

� The classic weighted-sum approach is extended to a robust setting by including

robust MO objectives. It has been shown that MO does not reduce the effect of

uncertainty on the achieved NPV and thus provides poor uncertainty handling.

Therefore, a risk-return strategy with a mean-variance objective MVO is consid-

ered. The weighted-sum approach is implemented with the MVO objectives and

a reduced effect of uncertainty compared to MO is obtained.

� It has been shown that a robust MVO approach, although not specifically focused

on short-term gains, has a natural effect of increasing the short-term gains. This

effect has been shown to be more dominant in the situation of economic uncertainty

than in the case of geological uncertainty.
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3
Asymmetric risk measures for optimizing

economic performance of oil reservoirs

If you do not actively attack the risks, the risks will actively attack you.

– Tom Gilb

The theory of risk provides a systematic approach to handling uncertainty with well-

defined risk and deviation measures. As model-based economic optimization of the

water-flooding process in oil reservoirs suffers from high levels of uncertainty, the con-

cepts from the theory of risk are highly relevant. For improving robustness, different

approaches, e.g., mean and mean-variance optimization (MVO) have been introduced

in literature. Due to the symmetric nature of variance, MVO equally penalizes both

the worst and the best cases. The main focus of this work is to provide a method-

ology for asymmetric risk management, i.e., a way to maximize the worst-case values

of the economic objective function distribution without heavily compromising the best-

case values. Worst-case robust optimization and Conditional Value-at-Risk (CVaR) are

considered with both geological and economic uncertainty to improve the worst-case

values. Furthermore, a deviation measure, semi-variance, is also used to improve the
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worst case economic performance. A scenario-based approach is used, where the geolog-

ical uncertainty is characterized by an ensemble of model realizations and the economic

uncertainty is defined by an ensemble of varying oil prices.

3.1 Introduction

Among various approaches to decision making under uncertainty, the theory of risk pro-

vides a systematic approach to handling uncertainty. It helps in modeling (or defining)

risk of uncertainty, measuring it, and also provides tools to minimize or manage the

effect of it, see e.g., Artzner et al. [1999], Krokhmal et al. [2011]. Risk is a broad con-

cept being applied in different social sciences and humanities, e.g., ethics, psychology,

medicine, economics etc. As a general definition, risk is an unexpected result or the

probability of a failure. From a financial viewpoint, risk can be defined as the unpre-

dicted variability or a potential loss of the expected economic objective. In the early 50’s,

Markowitz Markowitz [1952] has proposed a ’risk-return’ portfolio selection approach,

where the risk is characterized as the variance of the returns. In Artzner et al. [1999],

an axiomatic approach to define risk measures has been introduced. In Rockafellar et al.

[2006] and Rockafellar [2007], the relevant properties of risk and deviation measures have

been presented.

In the petroleum engineering literature, decision making under uncertainty has been dis-

cussed from various perspectives. In Van Essen et al. [2009a], a so-called robust optimiza-

tion approach has been introduced, which maximizes an average NPV over an ensemble

of geological model realizations. It does not aim at reducing the effect of uncertainty.

In Capolei et al. [2015b], a symmetric mean-variance optimization (MVO) approach has

been implemented honoring geological uncertainty. Similar MVO approaches, e.g., for a

well-placement problem have been described in Yeten et al. [2003], Bailey et al. [2005],

Yasari et al. [2013]. MVO maximizes the average NPV and minimizes the variance of

the NPV distribution. With variance reduction, MVO minimizes the effect of uncer-

tainty in the achieved NPV. One of the drawbacks of mean-variance optimization is the

symmetric nature of the objective which equally penalizes both the best and the worst

cases. The decision maker, in a maximization problem, is mainly concerned with the

objective function values below the average value, i.e., the lower tail of the objective

function distribution. In Xin and Albert [2015] a multi-objective optimization has been

implemented that maximizes the average of the objective function and the worst-case

value with respect to geological uncertainty. As an early work of using the theory of
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risk in the water-flooding optimization, different risk measures with their pros and cons

have been reviewed in Capolei et al. [2015a].

The main contribution of this work is to address the question: how can well-defined

risk and deviation measures in the theory of risk be beneficial in reducing the effect of

uncertainty in the achieved NPV and in particular in improving the worst-case values

without heavily penalizing the best-case values? We consider asymmetric or downside

risk measures such as the worst-case max-min approach Bertsimas et al. [2011] and

the Conditional Value-at-Risk (CVaR) Rockafellar and Uryasev [2000] with both geo-

logical and economic uncertainty. Worst-case robust optimization, by maximizing the

worst-case value in the given uncertainty set, provides an asymmetric way of shaping

an objective function distribution. Conditional Value-at-Risk (CVaR), defined as the

average of some percentage of the worst-case scenarios, also allows an improvement of

the worst-case values without heavily affecting the best-case values. Furthermore the

asymmetric deviation measure semi-variance, originally proposed in Markowitz [1952],

is also considered and implemented with both kind of uncertainties. It is a measure

of dispersion of only those values which are less than the expected value. Geological

and economic uncertainties are characterized by an ensemble of reservoir models and oil

price scenarios respectively. One form of uncertainty, i.e., either geological or economic

uncertainty is considered; both forms are not considered at the same time.

The chapter is organized as follows: In Section 3.2, risk measures for handling uncertain-

ties are introduced. Later on, asymmetric risk measures with their simulation examples

are given. Section 3.3 discusses the worst-case optimization. In section 3.4, CVaR opti-

mization with simulation results are presented. Semi-variance optimization is discussed

in Section 3.5, followed by conclusions in Section 3.6.

3.2 Handling uncertainty using risk and deviation mea-

sures

Nominal water-flooding optimization without uncertainty is a deterministic optimization

problem given as:

max
u

J(u; �); (3.1)

where u is the decision variable, J is the economic objective, e.g., NPV and � represents

model and/or economic parameters. In the presence of uncertainty, the parameter vector

� belongs to an uncertainty space Θ and it may be represented by a random variable

with some probability distribution. Consequently, the objective J becomes a random

53



3.2. Handling uncertainty using risk and deviation measures

variable. A risk measure is defined as functional R : J ! R and it can be quantified as

a surrogate for the overall cost. Risk management aims at minimizing the risk measure

given as follows (Rockafellar [2007], Capolei et al. [2015a]):

min
u
R(J(u; � 2 Θ)): (3.2)

The pioneering work of Artzner et al. [1997, 1999] and Delbaen [2002] has provided ax-

iomatic properties that the functional R should have to be a good quantifier of the risk

of loss and has framed the concept of coherency of the risk measures. Coherency implies

that if the nominal optimization problem e.g., eq. (3.1) is convex, minimization of the

coherent risk measure as in (3.2) is also convex. The NPV water-flooding optimization

is a non-convex problem therefore, irrespective of coherency of the risk measures, the

overall problem stays non-convex. One of the first steps in handling uncertainty is the

modeling (quantification) of the uncertainty space. Geological and economic uncertain-

ties are considered in this work.

3.2.1 Model uncertainty

Model uncertainty has a dominant effect on the model-based optimization of the water-

flooding process. An ensemble of 100 geological realizations of the standard egg model,

for details see Appendix A), is used to characterize geological uncertainty. The absolute-

permeability field of the first realization in the set is shown in Fig. 3.1. Fig. 3.2 shows

Figure 3.1: Permeability field of realization 1 of a set of 100 realizations

the permeability fields of six randomly chosen realizations of the standard egg model in

an ensemble of 100 realizations. Each realization in the set is considered as equiprobable.
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Figure 3.2: Permeability fields of 6 randomly chosen realizations with different chan-
nels of permeability

3.2.2 Economic uncertainty

Two different oil price scenarios with the same base oil price of 471
�
$=m3�

and an

ensemble size, Neco, of 10 and 100 respectively are generated as shown in Fig. 3.3.

In the optimization framework, one form of uncertainty is considered at a time, i.e.,

(a) Neco = 10 with mean value as
indicated by red dotted line

(b) Neco = 100

Figure 3.3: Oil price according to scenarios for uncertainty characterization

when an ensemble of model realizations (geological uncertainty) is used, the economic

parameters are considered as fixed. Similarly, with varying oil price scenarios (economic

uncertainty), a single realization is used.

In the next sections, the focus will be on the asymmetric shaping, i.e., on improving the

worst-case value(s) without penalizing the best-case value(s) of the NPV distribution.

Downside or asymmetric risk/deviation measures such as worst-case robust optimization

(Sec. 3.3), CVaR optimization (Sec. 3.4) and semi-variance optimization (Sec. 3.5)

are considered. For the sake of comparison, mean and mean-variance optimization as

discussed in Chapter 2 are also considered. The selection of a ’preferred’ risk measure

depends heavily upon the decision maker’s risk-return attitude, i.e., how much he is

willing to compromise on returns for a given level of risk.
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3.3 Worst-case robust optimization

Worst-case optimization (WCO) is a deterministic approach and assumes that the un-

certain parameter is known only within certain bounds, i.e., it is assumed to belong to

an uncertainty set Θ. It optimizes the worst possible case of the considered problem

and solves a max-min (or min-max) problem which can be written as:

max
u

min
�
J(u; �); (3.3)

where � 2 Θ is the uncertain parameter. The worst-case approach obtains an optimal

solution u� by maximizing the objective J for the worst-case value of the uncertain

parameter �. It can be seen that the above max-min problem can not be differenti-

ated, therefore it can not be directly optimized using a gradient-based scheme. For a

scenario-based approach with an ensemble of model realizations, a common approach to

reformulate the above max-min problem is by adding a slack variable z with additional

constraints as follows Ben-Tal et al. [2009]:

max
u ;z

z;

s.t. z � J(u; �i) 8i; i = 1; 2; � � � ; Ngeo:
(3.4)

Therefore, for a total number of ensemble members Ngeo, there will be Ngeo additional

constraints, which also increase the computational complexity. As the worst-case opti-

mization only focuses on the lowest value of the NPV distribution, it does not penalize

the best cases and provides an asymmetric shaping.

The WCO formulation as in eq. (3.4) may result in an undesired reduction of the average

objective function value. Therefore, in order to give the decision maker a preference to

choose a worst-case improvement for a given level of average NPV, a mean-worst case

optimization problem can be formulated as follows:

JMWCO = JMO + �JWCO; (3.5)

where � > 0 is a weighting parameter which balances both the average and the worst-

case objectives. One of the main limitations of the worst-case approach is that in cases

where the uncertain parameters have a large range of variability, it may provide a very

conservative solution, see e.g., Ben-Tal et al. [2009], Bertsimas et al. [2011].

For the case of economic uncertainty (varying oil prices) it can be observed that due to

the scalar nature of economic uncertainty with linearity in the NPV objective function,

the worst-case formulation in (3.4) is simply equivalent to a single optimization with the

worst oil price scenario in the ensemble, provided it can be identified in the ensemble. In
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the case of oil price scenarios as shown in Fig. 3.3(A), it is easy to identify the worst-case

oil price scenario which has the lowest value over all time which is not the case for oil

price scenarios as shown in Fig. 3.3(B).

In order to investigate whether the worst-case optimization leads to attractive results

for the water-flooding process, the following two examples with geological and economic

uncertainties are considered respectively. The concepts of mean-CVaR and mean-semi

variance optimization are discussed afterwards.

3.3.1 Simulation example under geological uncertainty

In all the simulation examples under geological uncertainty, the only source of uncer-

tainty is assumed to be the unknown model parameters. An ensemble of the standard egg

model is used to characterize geological model uncertainty. The economic parameters

are considered as fixed and certain.

Simulation tools

All the simulation experiments in this work are performed using MATLAB Reservoir

Simulation Toolbox (MRST) Lie et al. [2012]. A gradient-based optimization approach

is used where the gradients are obtained by solving a system of adjoint equations, see

e.g., Jansen [2011]. An optimization solver KNITRO Byrd et al. [2006] is then used with

an interior point method to iteratively converge to a (possibly local) optimum. As it is

a computationally extremely demanding problem, global optimization routines are not

considered.

Economic data for NPV

In this example, all economic parameters are fixed. An un-discounted NPV, i.e., with

discount factor b = 0, is used. Other economic parameters, e.g., oil price ro, water

injection rinj and production cost rw are chosen as 126 $
m3 , 6 $

m3 and 19 $
m3 respectively.

Control input

The control input u involves injection flow rate trajectories for each of the eight injection

wells. The minimum and the maximum rate for each injection well are set as 0:2m
3

day and

79:5m
3

day respectively. The production wells operate at a constant bottom-hole pressure

of 395bar. The control input u is reparameterized in control time intervals with input
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parameter vector ' . For each of the eight injection wells, the control input u is reparam-

eterized into ten time periods of t’ of 360 days during which the injection rate is held

constant at value ’i. Thus the input parameter vector ' consists of Nu = 8� 10 = 80

elements.

Results

The results for the WCO approach are compared with MO and MVO with the same

control and economic parameters. MVO is performed for different values of , i.e.,  2

[1�10�6; 3�10�6; 7�10�6]. All the optimal strategies are applied to the ensemble of 100

reservoir model realizations, resulting in 100 different NPVs. The corresponding PDFs

are obtained by approximating a non-parametric Kernel Density Estimation (KDE) with

MATLAB routine ’ksdensity ’ on these NPV data values as shown in Fig. 3.4. In this

Figure 3.4: NPV distribution comparison of MO, MVO(with different ) and WCO
under geological uncertainty

case, MO shows the highest achieved average NPV with a longer lower tail. It does not

attempt to reduce/shape the NPV distribution. All MVO solutions (as also shown in

Chapter 2) the worst-case values are reduced compared to both MO and WCO and hence

do not offer an attractive solution. With WCO, as expected, the worst-case performance

is improved at the cost of reducing the mean performance. The increase in the worst-

case value also affects the achievable best-case value in this situation. The numerical

results are summarized in Table 3.1.

WCO provides an attractive option to improve the worst-case NPV value compared to

MVO under geological uncertainty. Uncertain model parameters have a large range of

variability which is also indicated by the long tail of the NPV distribution in Fig. 3.4.
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Table 3.1: % change of the worst case and the average NPV values with WCO under
geological uncertainty

MO WCO % change

Average NPV in million USD 45.3 44.6 1.54% decrease

Worst-case NPV in million USD 41.6 43.1 3.60% increase

Therefore in this case, WCO may provide a conservative solution to improve the worst-

case value. WCO is computationally complex as it involves a constrained optimization

problem as in eq. (3.4), therefore with geological uncertainty, the mean-worst case

approach JMWCO as in eq. (3.5) is not considered.

3.3.2 Simulation example under economic uncertainty

In all the simulation examples under economic uncertainty, the only source of uncertainty

is assumed to be the varying oil prices. A single realization of the standard egg model as

shown in Fig. 3.1 is used. An oil price ensemble with a base oil price of 471
�
$=m3�

and

an ensemble size, Neco, of 10 as shown in Fig. 3.3(A) is considered for this example. The

remaining economic parameters and the control inputs are the same as in the previous

example.

Results

The MO and the WCO strategies are applied to the model with 10 oil price realizations,

resulting in 10 different NPVs. The corresponding histogram is shown in Fig. 3.5. It can

be seen that the worst-case value of the NPV distribution is improved at the cost of a

decrease in the mean value. Table 3.2 summarizes the percentage increase and decrease

of the worst-case NPV and the average NPV respectively. The MVO strategy (as also

Table 3.2: % change of the worst-case and the average NPV values with WCO under
economic uncertainty

MO WCO % change

Average NPV in million USD 194 182 6.18% decrease

Worst-case NPV in million USD 136 142 4.41% increase

shown in Chapter 2) is implemented for various values of weighting parameter, i.e.,

 2 f1� 10�8; 2� 10�8; 3� 10�8g. The results for the MVO and the WCO approaches

are compared in Fig. 3.6. It can be observed that the WCO improves the worst-case
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Figure 3.5: NPV comparison of WCO and MO under economic uncertainty

value without heavily compromising the best-case value compared to the MVO approach.

Figure 3.6: NPV distribution comparison of MO, MVO (with different ) and WCO
optimization under economic uncertainty

The mean-worst case approach, JMWCO as in eq. (3.5) has also been implemented. Fig.

3.7 shows the variation of the mean and the worst-case NPV values with respect to

�, also known as an efficient frontier Markowitz [1952]. As � increases, the worst-case

value is improved at the cost of reducing the mean value. MO has the highest mean

with the lowest worst-case value. As it is a non-convex problem, at � = 5, optimization

has probably gotten stuck in a local optimum and results in lower worst-case NPV value

compared to the one resulting from � = 2. The numerical results of the efficient frontier

are summarized in Table 3.3.
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Figure 3.7: Change in the average and the worst-case NPV values as a function of �

Table 3.3: Results for the mean-worst case approach under economic uncertainty

� Mean Worst-case % decrease of % increase of
in million in million mean w.r.t worst-case

USD USD MO w.r.t MO

MO 194.68 136.97 - -

0.2 194.54 137.22 0.07% 0.18%

1 194.47 137.23 0.10% 0.19%

2 194.38 137.65 0.15% 0.49%

5 194.25 137.23 0.22% 0.18%

10 194.00 138.04 0.34% 0.78%

As WCO with economic uncertainty can be simplified to a single optimization with the

worst-case oil price value over time and specially in the case of oil price scenarios as

shown in Fig. 3.3(A), it is easy to identify the worst-case oil price scenario. A single

optimization with the worst-case oil price is performed. Fig. 3.8 shows a comparison

of the histogram of NPV values resulting from the worst-case formulation as in eq.

(3.4) and a single optimization with the worst oil price scenario. As expected both

optimizations gives the same results.

In conclusion, WCO provides an attractive option of asymmetrically shaping the NPV

distribution under both geological and economic uncertainty, specifically when the de-

cision maker is mainly concerned with the worst-case performance. WCO performance

also depends upon uncertainty modeling, i.e., in the presence of a large variability in

uncertainty, it may result in a solution which is very conservative. In order to avoid the

conservative solution, the mean-WCO approach is a preferred formulation as it gives

a good balance between the worst-case performance and the improvement in the mean

value. Another way to avoid the conservative solution is to use conditional Value-at-Risk

(CVaR) as a risk measure, which is motivated in the next section.
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Figure 3.8: Comparison of the WCO and the optimization with the worst oil price
realization

3.4 Conditional Value-at-Risk (CVaR) optimization

Conditional Value-at-Risk (CVaR), introduced in Rockafellar and Uryasev [2002], is

a popular tool for managing risk in finance. It addresses the often overly conservative

solution of the worst-case optimization by considering a class of worst cases and improves

them without penalizing the best cases.

For a random variable Ψ with cumulative distribution function F	(z) = PfΨ � zg, the

Value-at-Risk (VaR) (��) and CVaR (��) of Ψ with confidence level � 2]0; 1[ are given

as:

��(Ψ) = maxfzjF	(z) � �g;

��(Ψ) = E[ΨjΨ � ��];

where VaR (��) or chance constrained optimization Schwarm and Nikolaou [1999] is

a ��percentile of a objective function/constraints distribution. CVaR (��) is the ex-

pected value of all those points in the distribution which fall below the VaR value. Fig.

3.9 illustrates the concepts of the worst case, VaR and CVaR for a given cumulative

distribution function.

For a function f(u; �) that represents a loss distribution, where u 2 U � Rm is the deci-

sion vector and � 2 Rn is a random vector representing uncertainties, a simple auxiliary

function F� on U �R for the computation of �� has been introduced in Rockafellar and

Uryasev [2002], defined as follows:

F�(u; �) = �+
1

1� �

Z

�2Rn
[f(u; �)� �]+p(�)d�; (3.6)
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Figure 3.9: Worst case, VaR and CVaR for a given CDF F	 (z)

where [t]+ := maxft; 0g. It has also been shown in Rockafellar and Uryasev [2002] that

the �� of the loss associated with any u 2 U can be determined as follows:

��(u) = min
�2R

F�(u; �): (3.7)

Furthermore, minimizing the �� of the loss associated with u is equivalent to minimizing

F�(u; �) over all (u; �) 2 U � R, in the sense that

min
u2U

��(u) = min
(u;�)2U�R

F�(u; �): (3.8)

For the water-flooding optimization, we can write the mean-CVaR approach as:

JMCV aR = JMO � !J�� ; (3.9)

where J�� represents the CVaR objective and ! 2 R is a weighting parameter. This

approach aims to maximize the mean value and minimize CVaR. As the sampling of

the uncertainty space generates a collection of scenarios �1; � � � ; �Ngeo , the integral in the

CVaR optimization formula in eq. (3.6) has to be approximated by a sum. For the NPV

distribution, the CVaR is then given by:

J�� (u; �) = ���
1

Ngeo(1� �)

NgeoX

i=1

minfJi(u; �i)� �; 0g:
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J�� is non-differentiable and it can not be directly used with a gradient-based optimiza-

tion. A common approach to solve this problem, like in the max-min problem considered

before, is to reformulate the problem using slack variables ti and additional constraints

as follows:

J�� (u; �) = f���
1

Ngeo(1� �)

NgeoX

i=1

tig;

s.t.

(
ti � Ji(u; �i)� �

ti � 0
8i:

Therefore, the optimization problem in eq. (3.9) (excluding the system dynamics, initial

conditions and input bound constraints) can be re-written as:

max
u;�;t
f

1

Ngeo

NgeoX

i=1

Ji(u; �i) + !�+ !
1

Ngeo(1� �)

NgeoX

i=1

tig;

s.t.

(
ti � Ji(u; �i)� �

ti � 0
8i:

3.4.1 Simulation example under geological uncertainty

The geological model uncertainty ensemble (standard egg model), economic parameters

and the control inputs are the same as used in the previous simulation example. The

confidence interval � is chosen as 80%. Hence the CVaR equals the negative of an

average of the 20% of the worst-case values. In the case of an ensemble size of 100, it is

the average of the worst 20 NPV values. The CVaR problem is optimized for different

values of ! 2 f0:5; 2; 2:5g. As there are no well-defined rules on how to choose !, these

values are chosen in an ad-hoc way. In case of a non-convex optimization such as NPV

optimization where many local optima can be attained, the selection of ! requires some

trials to see the effect of CVaR reduction. The obtained CVaR-optimal strategies with

different ! are applied to the ensemble of 100 reservoir model realizations, resulting in

100 different NPVs. The corresponding PDFs are obtained by approximating KDE with

MATLAB routine ’ksdensity ’ on these NPV data values as shown in Fig. 3.10. It can

be observed that the NPV distribution resulting from MO has a long lower tail. All

CVaR strategies provide an improvement in the worst-case values but this improvement

is achieved at the expense of compromising the best-case values. The results also depend

on the weighting parameter !. In this case, ! = 0:5 provides better results in terms

of improving the worst-case values with a minimum decrease of best-case values. The

average value is also decreased with increasing !. MVO solutions as shown in Fig. 3.4
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Figure 3.10: NPV distribution comparison of MO and CVaR for different ! under
geological uncertainty

(also shown in Chapter 2) do not offer an attractive solution as the worst case NPVs

are reduced compared to both MO and mean-CVaR.

The CVaR optimization problem is non-convex and computationally very demanding.

A server computer having 20 physical cores has been used with the MATLAB parallel

computing toolbox to reduce the time of computation. Due to the non-convexity of

the optimization problem, many local optima are attained with different values of !.

Furthermore, the approximation of the CVaR measure of eq. (3.6) provides a numerically

stable estimate of CVaR for the situation of a high number of uncertainty samples

Rockafellar and Uryasev [2002]. In water-flooding optimization, increasing the number

of geological realizations will give a better CVaR approximation but at the cost of

increasing the computational complexity.

3.4.2 Simulation example under economic uncertainty

In order to investigate CVaR optimization with economic uncertainty, an ensemble of

100 scenarios of oil prices, as shown in Fig. 3.3(B), is chosen. The confidence interval

� is chosen as 80%. The penalty parameter ! is chosen as ! 2 f1; 2; 5g. These values

are chosen in an ad-hoc way. MO and mean-CVaR optimal strategies are applied to

the reservoir model realization with each oil price scenario resulting in 100 different

NPVs. As in the previous simulation examples, the corresponding PDFs are obtained

by approximating a non-parametric KDE on these NPV data values as shown in Fig.

3.11. It can be observed that economic uncertainty does not have a profound effect on

the optimized strategies compared to geological uncertainty. The improvement in the

worst-case values under economic uncertainty is less than expected. The CVaR risk

measure, depending upon the confidence interval �, offers an asymmetric shaping of the
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NPV distribution by focusing only on the worst cases. The increase in the 20% worst-

case values can be observed in the figure. Fig. 3.12 shows the change in the CVaR values

Figure 3.11: NPV distribution comparison of MO and CVaR for different ! under
economic uncertainty

(the average of the 20% worst-case values) and the corresponding change in the average

NPV as a function of !. MO has the highest return with the lowest CVaR value. With

increasing value of !, as the CVaR risk measure is the negative of CVaR value, risk is

reduced at the cost of compromising return. At ! = 10, an ’outlier’ is observed because

probably the optimization has gotten stuck in a local optimum. The numerical results

are summarized in Table 3.4.

Figure 3.12: Change in average and CVaR NPV values as a function of !

To compare the introduced mean-CVaR and the MVO approach in terms of improv-

ing the worst-case value without heavily penalizing the best-case value, MVO is also
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Table 3.4: Results for mean-CVaR approach under economic uncertainty

! Mean CVaR value % decrease of % increase of
in million in million mean w.r.t CVaR value

USD USD MO w.r.t MO

MO 188.51 156.34 - -

1 187.40 156.97 0.58% 0.40%

2 186.92 157.10 0.84% 0.48%

5 186.29 157.28 1.17% 0.60%

10 185.34 156.95 1.68% 0.39%

implemented for the oil price scenarios as shown in Fig. 3.3(B) for different values of

weighting parameter, i.e.,  2 f1�10�8; 0:5�10�8; 1�10�7g. The results for the MVO

in comparison with the MO optimal strategies are shown in Fig. 3.13. It can easily

be seen that due to the reduction of variance, the best cases are heavily penalized with

a small improvement in the worst-case values compared to a mean-CVaR approach as

shown in Fig. 3.11.

Figure 3.13: NPV distribution comparison of MO and MVO for different  under
economic uncertainty

3.5 Semi-variance optimization

Standard semi-deviation or semi-variance has been originally proposed in Markowitz

[1952]. Semi-variance is a measure of dispersion, i.e., expected squared deviation from

the mean, for only those points that fall below or above the mean. Therefore, it measures

the downside risk of an objective function distribution and provides an asymmetric

treatment of the NPV distribution. For the random variable Ψ, the semi variance is

defined as:
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Var+(Ψ) = E[maxfΨ� EΨ; 0g]2; (3.10)

Var�(Ψ) = E[maxfEΨ�Ψ; 0g]2; (3.11)

where Var+ defines the spread of the values of Ψ greater than the mean EΨ, and Var�

characterizes the spread of the lower tail. With an NPV objective the worst cases are

represented by the lower tail and the maximization of these worst-case values is the

main concern. Therefore, Var� is minimized in a weighted mean-semi-variance (MSV)

optimization given as follows:

JMSV = JMO � JVar� ; (3.12)

where JMO is the average objective, JVar� represents the semi variance objective and

 2 R is the weighting parameter.

Consider the case of geological uncertainty with an ensemble of Ngeo model realizations.

The sample semi-variance is given as:

JVar� =
1

(Ngeo � 1)

NgeoX

i=1

maxfJMO � Ji; 0g2: (3.13)

Therefore, eq. (3.12) becomes:

JMSV = JMO � 
1

(Ngeo � 1)

NgeoX

i=1

maxfJMO � Ji; 0g2:

The above JMSV is non-differentable due to the ’max’ operator. To use a gradient-

based optimization routine, a common approach, as seen in the previous worst-case and

CVaR cases, is to replace the ’max’ operator by introducing slack variables ti and addi-

tional constraints. The mean-semi variance optimization problem can then be written

as follows:

max
u;t

JMSV = JMO � 
1

(Ngeo � 1)

NgeoX

i=1

t2i ;

s:t:

(
ti � JMO � Ji
ti � 0

8i:

(3.14)
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3.5.1 Simulation example under geological uncertainty

The geological model ensemble (the standard egg model), economic parameters and the

control inputs are the same as used in the previous simulation examples. The mean-semi

variance problem is optimized for different values of  2 f2� 10�8; 3� 10�8; 5� 10�8g.

As discussed before, the selection of these values is a difficult problem and requires

some trials to see the effect of semi-variance optimization. The corresponding PDFs are

obtained by approximating KDE with MATLAB routine ’ksdensity ’ and are displayed

in Fig. 3.14. In this case, MSV results in a undesirable decrease of both worst-case

Figure 3.14: NPV distribution comparison of MO and mean-semi variance for differ-
ent  under geological uncertainty

values and mean values. Hence this does not provide an attractive solution with the

given geological uncertainty.

3.5.2 Simulation example under economic uncertainty

The oil price scenarios as shown in Fig. 3.3(B) are used. The remaining economic

parameters and the control inputs are the same as in the previous examples under

economic uncertainty. A single realization of the standard egg model as shown in Fig.

3.1 is used. The mean-semi variance problem with economic uncertainty is optimized

for different values of  2 f5 � 10�8; 8 � 10�8; 1 � 10�7g. The obtained strategies are

applied to the single reservoir model with 100 oil price scenarios, resulting in 100 NPV

values. The corresponding PDFs are shown in Fig. 3.15. In this case, it improves the

worst-case values unlike the case in geological uncertainty. The improvement is achieved

at the cost of compromising the mean and the best-case values.
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Figure 3.15: NPV distribution comparison of MO and mean-semivariance for different


3.6 Conclusion

Concepts from the theory of risk are investigated for improving robustness to the water-

flooding optimization. From this work, the following conclusions can be drawn:

� Downside risk measures are used to provide an asymmetric shaping of the NPV

distribution. These measures with geological uncertainty lead to attractive results

of improving worst-case performance without heavily compromising the best-case

values. For the case of economic uncertainty, the improvement is less than ex-

pected.

� Different risk measures are considered and the selection of a preferred risk measure

depends on the risk-return attitude of the decision maker, i.e., how much he is

willing to compromise the returns for a given level of risk.

� The reduction of semi-variance may not improve the worst-case value, therefore a

constraint on the minimal worst-case value (which is achieved by MO solution) can

be added with MSV optimization. Similarly, if the decision maker is not willing

to compromise the best-case or mean value, additional constraints on these values

can also be added with these risk measures.

� The potential advantages of these robust approaches can only be realized if the

uncertainty modeling (ensemble in our case) is a good representation of the true

system.
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4
An online (closed-loop) robust optimization

scheme using residual analysis

No amount of experimentation can ever prove me right; a single experiment

can prove me wrong.

– Albert Einstein

Model-based dynamic optimization of the water-flooding process suffers from high lev-

els of uncertainty. Among different sources of uncertainties, model uncertainty has a

dominant effect on this optimization. A traditional way of quantifying uncertainty in

robust water-flooding optimization is by considering an ensemble of uncertain model re-

alizations. These models are generally not validated with data and the resulting robust

optimization strategies are mostly offline or open-loop, i.e., they do not take account

of information revealed over time. The main focus of this work is to develop an on-

line or closed-loop robust optimization scheme that allows the strategy to be updated

whenever information (production data in this case) becomes available. The introduced

scheme uses the concept of residual analysis as a major ingredient, where the models

in an ensemble are confronted with data and an adapted ensemble is formed with only

those models that are not invalidated. As a next step, the robust optimization is again
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performed (i.e., updated/adjusted) with this adapted ensemble. The steps of the in-

troduced online (closed-loop) scheme, i.e., data collection, residual analysis and robust

optimization can be repeated at each time step. Simulation examples show that an

increase in the objective function value with a reduction of uncertainty on these values

is obtained with the closed-loop online robust scheme compared to an open-loop offline

robust scheme with the full ensemble. The adapted ensemble gives a less conservative de-

scription of uncertainty and also reduces the high computational cost involved in robust

optimization. For the sake of comparison, one of the most common history matching

methods, Ensemble Kalman Filter is also implemented in the robust closed-loop fashion

and the results are compared with the introduced approach.

4.1 Introduction

Different approaches to decision making under uncertainty can be broadly divided into

two categories, see e.g., Bertsimas and Thiele [2006],Bertsimas et al. [2011]. In the first

set of approaches, also known as open-loop or offline schemes, a decision maker selects

a strategy without knowing the exact values taken by the uncertain parameters and the

exact values are assumed to belong to an uncertainty space. In the second category,

also known as online data-based approaches, the strategy is allowed to update/adjust

to information that is revealed over time. These online approaches are referred to as

closed-loop schemes in the petroleum engineering literature while from the control the-

ory viewpoint, they are generally regarded as adaptive control. Uncertainty modeling

(quantification) of the uncertainty space Θ is one of the essential steps in these robust

approaches. A general practice of quantifying uncertainty in water-flooding optimiza-

tion is a scenario-based approach where an ensemble of uncertain parameters (models),

see e.g., Van Essen et al. [2009a], Capolei et al. [2013] is considered. These models

are usually generated with geostatistical tools, see e.g., Mariethoz and Caers [2014] or,

occasionally, hand drawn, and are typically not (in)validated by the production data.

Hence they may provide a (very) conservative description of uncertainty. The state of

the art in the oil industry is to use a large number of realizations which are considered

to be a good representation of the uncertainty space Θ.

In the petroleum engineering literature, offline (open-loop) scenario(ensemble)-based ro-

bust approaches have been studied from various perspectives. In Chapter 2 and Chapter

3, offline (open-loop) approaches such as MO, MVO and asymmetric risk measures have

been discussed. The application of online (closed-loop) data-based robust approaches
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is limited by the complexity of the reservoir models. A closed-loop reservoir manage-

ment approach has been introduced in Jansen et al. [2005], where the reservoir model

variables (states and/or parameters) are frequently updated using data assimilation or

Computer Assisted History Matching (CAHM) techniques such as Ensemble Kalman

filtering (EnKF), variational approaches, streamline-based approaches, etc., see e.g.,

Tarantola [2005],Oliver et al. [2008], Sarma and Chen [2009], Evensen [2009], Aanonsen

et al. [2009], Oliver and Chen [2011], Kaleta et al. [2011]. Model dynamic optimization,

see e.g., Sarma et al. [2005a],Nævdal et al. [2006], Sarma et al. [2008a], Jansen et al.

[2008], Van den Hof et al. [2009], Ciaurri et al. [2011], Foss [2012] is performed with

updated model(s) at each history matching time step. In the robust settings, because

robust optimization uses an ensemble of model realizations, the posterior ensemble, e.g.,

estimated by EnKF, can be directly used in an online fashion. In Chen et al. [2009], a

closed-loop online optimization method has been introduced that combines adjoint-free

ensemble-based optimization (EnOpt) with EnKF. In Chen and Oliver [2010], ensemble-

based closed-loop optimization has been applied to the Brugge field which is a large-scale

SPE benchmark model. In the same line of reasoning of adapting an ensemble online

and using it with robust optimization, a closed-loop robust water-flooding optimization

using EnKF for updating a model ensemble has been implemented in Capolei et al.

[2013].

The purpose of this work is to devise an online (closed-loop) robust scheme that can

be updated with given production data. The main focus is to address the question:

how can the available information (data) with time be used to shrink the uncertainty

space by finding fewer representative models in an ensemble (i.e. how to reduce the

ensemble size)? Then the key issue is to analyze how the new adapted ensemble can

help in improving the robust optimization of the water-flooding process? The concept

of residual analysis is used, where the models in an ensemble are confronted with data

and are invalidated if they do not sufficiently agree with the observed data. A deter-

ministic metric, i.e., the Best-Fit Ratio (BFR) is used to define the invalidation test.

An adapted ensemble is formed with only those models that are not invalidated thus

providing a less conservative description of uncertainty with a reduced number of mod-

els in an ensemble. The adapted ensemble is used in a robust optimization exercise

in an online fashion. This online (closed-loop) robust scheme with its steps, i.e., data

collection, residual analysis and robust optimization with the adapted ensembles can

be repeated at each time step till the end of the production life of the reservoir. This

adapted ensemble provides a better description of uncertainty and it is also beneficial

in reducing the computational complexity of robust optimization of the water-flooding

process. The reduced complexity can be very beneficial for the applications such as value

of information assessment in closed-loop reservoir management, see e.g., Barros et al.
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[2016]. In Popper [1959], an interesting discussion on model verification and falsification

has been presented. According to the philosophy presented in Popper [1959], physical

processes are laws that are only abstract in nature and can never be proven. Instead,

they can only be disproven (falsified) with facts or data. Rejection sampling, as discussed

in Caers [2011], also provides a mechanism for rejecting models based on available data.

It starts from generating prior models and rejecting them if either the response of a

model does not exactly match with the data or, in a more realistic situation, i.e., in the

presence of measurement errors, if the ’likelihood probability’ (which is the conditional

probability of the data given the model) is below some threshold. It is a probabilistic

approach and requires the knowledge of the likelihood probability. Rejection sampling

is not considered in this work. In Tarantola [2006], it has been stressed that the ob-

servation should only be used to falsify possible solutions (e.g., rejecting models), and

not to deduce any particular solution (e.g., estimating parameters). For a simulation

example of the introduced online (closed-loop) scheme with residual analysis, at first a

single model in the model ensemble is considered as a synthetic truth. The output of the

synthetic truth is compared with the simulation output of other members and residual

analysis is performed. An adapted ensemble is formed with only those models that are

not invalidated. Robust optimization is again performed using the adapted ensemble.

An improvement in the objective function value with a reduction in uncertainty of this

value, compared to the open-loop offline optimization with the full ensemble, is obtained.

EnKF is also implemented with the same prior ensemble and the posterior ensemble is

used in robust optimization to compare results with the introduced online (closed-loop)

scheme. To provide evidence for the suitability of the introduced approach and to avoid

an impression that the results are merely a coincidence, each member of the ensem-

ble is subsequently considered as plausible truth. The same analysis is performed for

each adapted ensemble and the uncertainty reduction is analyzed. Finally it is analyzed

whether the new adapted ensembles, at later time steps, contain only those models that

have been retained in the previous selected ensemble or also include realizations that

have already been rejected.

The chapter is organized as follows: In the next section, a short recapitulation is given

of model-based optimization and uncertainty quantification in a waterflooding setting.

The concept of residual analysis with performance measures to define the invalidation

test is discussed in section 4.3. In section 4.4, the online (closed-loop) robust scheme

is introduced. Simulation examples with this online (closed-loop) scheme are given in

4.5 and the results of offline (open-loop) and online (closed-loop) robust schemes with

EnKF and residual analysis are compared followed by conclusions in section 4.6.
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4.2 Uncertainty in water-flooding optimization

Model uncertainty is the prime source of uncertainty in model-based optimization of

the water-flooding process. Traditionally in water-flooding optimization, an ensemble

of uncertain model realizations is considered to quantify the uncertainty space Θ. It

is equivalent to descretizing the uncertainty space, i.e., fM(�1);M(�2); � � � ;M(�Ngeo )g,

whereM is a model with �i 2 Θ; i = 1; 2; � � � ; Ngeo a realization of a vector of uncertain

parameters.

This ensemble-based uncertainty set can be used with various robust schemes. One of the

simplest scenario-based robust approaches with adjoint-based well control optimization

is to maximize the average of the NPV objective over the model uncertainty ensemble,

as introduced in Van Essen et al. [2009a]. Robust optimization (or mean optimization

(MO)) can be formulated as:

JMO =
1

Ngeo

NgeoX

i=1

Ji(u; � i); (4.1)

where Ji is the NPV objective and u is the input decision variable. Other robust

approaches in water-flooding optimization, e.g., mean-variance and mean-CVaR have

been discussed in Chapters 2 and 3. The optimal solution is devised for the complete

production life of the reservoir and the uncertainty set and the optimization results are

not updated/adapted to the information, e.g., production data, which becomes available

over time. These offline (open-loop) approaches aim only at minimizing the negative

effect of uncertainty on the achieved NPV. In other words, the sensitivity of the optimized

strategy and hence the optimal NPV to uncertainty is reduced. The offline approaches

do not focus on the problem of reducing uncertainty, i.e., shrinking the uncertainty space

Θ and on minimizing the mismatch between the model and the true system.

The uncertainty reduction can be achieved with the help of available information. The

estimation of physical parameters with the available production data is one of the ways to

reduce uncertainty. Data assimilation or CAHM algorithms such Ensemble Kalman Fil-

ter (EnKF), variational methods, etc., are typically used in reservoir simulation offering

a joint state and parameter estimation. The variational methods minimize the mismatch

between the model output and data by using a gradient-based approach where the gra-

dients are obtained by solving adjoint equations, see e.g. Lee and Seinfeld [1987],Oliver

et al. [2008],Kaleta et al. [2011]. This parameter estimation problem, due to a large

number of to-be-estimated parameters, is ill-posed, i.e., many combinations of parame-

ter values will result in the same minimum value of the cost function. Therefore, CAHM

typically uses a Bayesian framework with a prior distribution of the parameters reflected
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by a prior ensemble. Hence the estimation of physical parameters is highly influenced by

the selection of this prior ensemble of parameters. These estimated parameters and the

resulting adapted ensemble with CAHM can be used in an online (closed-loop) fashion to

update the robust strategies as presented in Capolei et al. [2013], Chen et al. [2009]. The

application of CAHM with nominal optimization has been presented in Brouwer et al.

[2004], Jansen et al. [2005],Sarma et al. [2005b],Nævdal et al. [2006],Jansen et al. [2009].

As the number of realizations in the adapted ensemble with CAHM are not reduced, the

computational complexity of the online (closed-loop) robust optimization steps is not

decreased. Another way to adapt the ensemble is by using clustering techniques. The

number of realizations in an ensemble is reduced by clustering the models with the simi-

lar (static or dynamic) behavior and few representative models are used, see e.g., Sarma

et al. [2013], Yeh et al. [2014]. However, the clustering techniques are not data driven

and the ensemble size reduction will normally not result in uncertainty reduction, hence

it will only minimize the computational complexity of the robust optimization problem.

4.3 Residual analysis

Model validation is usually performed by confronting the model with available informa-

tion, e.g., production data, time-lapse seismic, etc. Validation is important to assess

the quality of a model. It is a common practice in regression analysis, where tests are

typically defined by computing the model residuals and giving statistics about it, see

e.g., Draper and Smith [2014]. For a given ensemble of models, residual analysis follows

an ’exclusion approach’ to uncertainty, which focuses on starting from all possibilities

(models) and then excluding those possibilities (models) that can be ’rejected’ by any

information available to us. Therefore, it does not only reduce the size of the ensemble

but it also aims at minimizing the uncertainty space Θ. A principle difference between

residual analysis and other data assimilation techniques is that residual analysis is per-

formed on the model space which is smaller in size compared to the large parameter

space used in data assimilation methods. Hence residual analysis does not suffer from

the problem of ill-posedness and the subsequent effect of the selection of a poor prior

ensemble. Fig. 4.1 illustrates a detailed overview of techniques which can be used to up-

date the ensemble of realizations either by using production data or by using clustering

techniques. Variational methods, EnKF and clustering techniques have been discussed

in the previous section. Rejection sampling, as discussed in Caers [2011], is a probabilis-

tic approach for rejecting models based on available data and it requires the knowledge

of the likelihood probability, which is the conditional probability of the data given the

model. These techniques can be used in a closed-loop online robust optimization setting

where the robust optimization is defined over the posterior (adapted) ensemble. For a
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Figure 4.1: A comparison of methods for updating an ensemble of models to be used
with robust optimization

linear regression problem, first order statistics provide a complete characterization of

the validation problem, e.g., in the correlation analysis, the residual should be asymp-

totically uncorrelated with past input samples. For a nonlinear regression problem, the

first order moments are not sufficient to draw any conclusions about the validity of the

models. Becaue the reservoir models are strongly nonlinear in nature, in this work a

deterministic metric, i.e., the Best-Fit-Ratio (BFR), is used to define an invalidation

test. The available production data is used for invalidation.

The residual � is defined as the difference between the observed (measured) output y

and the simulation output ŷ .

Residual = measured output� simulation output;

� = y� ŷ:

The BFR or the fit ratio is defined as:

BFR = 100%�max

�
1�

jjy� ŷjj2
jjy� ȳ � 1jj2

; 0
�
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where ȳ is the mean value of the measured output y, i.e., ȳ = E[y]. In our case, it is the

average of the measured output y and 1 is a vector of ones. The BFR percentage is a

relative measure often used in system identification and a low value of BFR indicates a

poor fit to data, see Ljung [1999]. BFR is a unit-less quantity and gives an indication

of fit in a percentage. Generally, as the reservoir models contain multiple outputs, an

average BFR over each individual output channel is considered. The selection of the

BFR is not unique and other metrics, e.g., Mean Squared Error (MSE) or Variance

Accounted For (VAF), see Ljung [1999], Verhaegen and Verdult [2007] can also be used

for defining the invalidation test. VAF measures how much variation in data (variance)

is captured by the model output and disregards the mismatch (bias) of data with model

output; therefore it is not considered in this work. The MSE measure is dependent on

the units of the physical quantity being measured; hence BFR will be a used for residual

analysis.

The test for invalidating models is given as:

M(� i;u) is not invalidated if E[BFR(M(� i;u))] > 30%; for a given u;

where E[:] is the expected value operator and in our case, it is the average of BFR

values of each output channel. It implies that all those models with an average BFR of

above the 30% threshold are retained in the adapted ensemble. The selection of 30%

is chosen in an ad-hoc way. One of the risks with this selection criterion is that all the

models in an ensemble can be rejected. An alternative choice for the invalidation test is

by considering, e.g., 10% of the models who score the highest average BFR within the

ensemble. This criterion is not used in this work. A flow chart explaining the concept of

rejecting models by residual analysis and adapting the model ensemble to be used with

robust optimization in a closed-loop online fashion is shown in Fig. 4.2.

4.4 An online (closed-loop) robust approach

The key elements of the introduced closed-loop online robust strategy using residual

analysis are displayed in Fig. 4.3. The top of the figure represents the physical system

consisting of reservoirs, wells and facilities with inputs and outputs. The center of the

figure displays the residual analysis step, which starts from considering a prior ensemble.

The sensors on the right side of the figure are used for measurements which are used

to invalidate models with residual analysis resulting in an adapted ensemble. A robust

optimization workflow is defined using the adapted ensemble as shown at the left side of

the figure. Throughout this work, the MO approach of Van Essen et al. [2009a] is used

for robust optimization. Other robust measures such as mean-variance, mean-CVaR, as
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Figure 4.2: Adapting the model ensemble using residual analysis and robust opti-
mization based on the adapted ensemble

discussed in Chapters 2 and 3 can also be used. An implementation of the online (closed-

Figure 4.3: An online (closed-loop) robust approach by updating the ensemble with
residual analysis at each time step

loop) robust strategy is presented in the next section to investigate if model invalidation

by residual analysis can be an appropriate tool for improving robust optimization of

economic performance of oil reservoirs in an online setting.
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4.5 Simulation examples

4.5.1 Ensemble of reservoir models

An ensemble of 100 geological realizations of the standard egg model is considered.

The complete list of parameters and the details about the model set are presented in

Appendix A, which is based on Jansen et al. [2014]. The true permeability field is

considered to be the unknown parameter. The number of 100 realizations is assumed to

be large enough to be a good representation of this parametric uncertainty space. The

absolute-permeability field of the first realization in the set is shown in Fig. 4.4. Fig.

Figure 4.4: Permeability field of realization 1 of a set of 100 realizations.

4.5 shows the permeability fields of six randomly chosen realizations of the standard

egg model in an ensemble of 100 realizations. Each realization in the set is considered

equiprobable.

Figure 4.5: Permeability fields of 6 randomly chosen realizations with different chan-
nels of permeability. (Van Essen et al. [2009a])

4.5.2 An offline (open-loop) MO approach with complete ensemble

All the simulation experiments in this work are performed using MATLAB Reservoir

Simulation Toolbox (MRST), see Lie et al. [2012].
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Economic data for NPV

An un-discounted NPV is used. Other economic parameters, i.e., oil price ro, water

injection rinj and production cost rw are chosen as 126 $
m3 , 6 $

m3 and 19 $
m3 respectively.

Control input

The control input u involves injection flow rate trajectories for each of the eight injection

wells. The minimum and the maximum rates for each injection well are set as 0:2m
3

day and

79:5m
3

day respectively. The production wells operate at a constant bottom-hole pressure

of 395bar. The control input u is reparameterized in control time intervals with input

parameter vector ' . For each of the eight injection wells, the control input u is reparam-

eterized into twenty time periods of t’ of 180 days during which the injection rate is held

constant at value ’i. Thus the input parameter vector ' consists of Nu = 8� 20 = 160

elements. The initial input value for the optimization is the maximum possible injection

rate, i.e.,79:5m
3

day for each injection well.

The optimal input, uo�, obtained by maximizing average NPV as in eq. (4.1) with the

complete ensemble is shown in Fig. 4.6.

Figure 4.6: Optimal input uo� for robust open-loop offline MO based on the complete
ensemble
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4.5.3 The online (closed-loop) robust approach for a synthetic truth

Residual analysis with synthetic truth

One of the models, i.e., model 10, in the ensemble is considered as the synthetic truth to

generate data y. The optimal solution from the offline (open-loop) approach, i.e., uo� is

applied to the truth to collect data y. The output y is defined as the total production

rate from each production well. The data is collected at time t = 360 days. The input

uo� is also applied to each member of the ensemble to collect simulation data ŷ. An

average BFR is calculated for each model simulation output ŷ and subsequently the

invalidation test is performed. The average BFR values for each model in the ensemble

are shown in Fig. 4.7.

Figure 4.7: Average BFR values for each model in the ensemble and the models
retained in the adapted ensemble

The following models are not invalidated and therefore retained for the adapted ensem-

ble:

f3; 5; 10; 11; 18; 21; 22; 24; 43; 44; 47; 48; 56; 59; 63; 67; 76; 82; 86; 90; 94; 97g

The above adapted ensemble contains only those models that are not invalidated with

data and hence it provides a less conservative description of uncertainty. The adapted

ensemble contains 22 models.
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Data assimilation with EnKF

For the sake of comparison, EnKF is also implemented with the standard egg model

ensemble to estimate the permeability field based on production data measurements.

The production data is generated by the synthetic truth. We used a straightforward

implementation using the EnKF module of MRST without localization or inflation.

The output variable y and the time of measurement are the same as used in the residual

analysis case. In EnKF, all ensemble members are updated, and so this also leads to

an adapted (posterior) ensemble which can be directly used in robust optimization.

However, unlike residual analysis, it has the same number of realizations as the original

ensemble. Hence the complexity of robust optimization is not reduced. The production

rates are shown in Fig. 4.8. As the input changes at day 180, a change in the output

Figure 4.8: Total rates from production wells (Red = truth, Grey = ensemble outputs,
Blue = ensemble outputs average)

production rates can be observed. The adapted (posterior) ensemble captures the change

in the output with good accuracy.

MO with the adapted ensemble

Robust optimization results are updated/adjusted with information revealed, i.e., MO is

again performed with the adapted ensembles generated by residual analysis and EnKF.

The economic parameters are kept the same. The initial input value for the optimization

is uo�. As the first sample of uo�, i.e., from time 0 to 360 days is already applied to the

system, the remaining part of the input from 360 days to 3600 days (end of simulation
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time) is used. The time horizon for MO is reduced to 3600� 360 = 3240 days. Optimal

inputs are obtained as a result of robust optimization using adapted ensembles from

both residual analysis uon,RA and EnKF uon,EnKF and they are applied to the synthetic

truth. Fig. 4.9 shows the comparison of time evolutions of NPV with the offline approach

(open-loop with complete ensemble) and the online approach (closed-loop with adapted

ensemble). The introduced online (closed-loop) approach using residual analysis gives

an increase of 0:62% in the NPV value compared to the offline (open-loop) approach

and hence provides better optimization results. MO with the adapted ensemble with

EnKF gives poor results and a decrease of 1:2% in NPV value compared to the offline

(open-loop) approach is observed. The results for EnKF can be improved with a better

choice of prior ensemble and/or by keeping the channelized structure in the posterior

ensemble. Residual analysis offers a drastic reduction in the computational complexity

of robust optimization as adapted ensemble from residual analysis contains only 22

members compared to the robust optimization using posterior ensemble by EnKF. The

number of model realizations in posterior ensemble by EnKF is not reduced.

Figure 4.9: NPV comparison of online (adapted ensembles by residual analysis and
EnKF) and offline (complete ensemble) strategies for the synthetic truth. At t = 360

days a new optimization has started in the online (closed-loop) case.

To analyze the uncertainty reduction, the optimal solutions, i.e., uo�;uon,RA and uon,EnKF

are applied to the complete and the adapted/posterior ensembles respectively. NPV

points are collected and the corresponding PDFs are obtained by approximating a non-

parametric KDE with MATLAB routine ’ksdensity ’ on these NPV data values as shown

in Fig. 4.10a. It can be observed that the standard deviation of NPV points with the

adapted ensemble by residual analysis is reduced compared to the standard deviation re-

sulted from the complete ensemble. A drastic reduction in standard deviation of 27:62%

is observed. Another indicator for the effect of uncertainty is the worst-case value. As

the adapted ensemble by residual analysis provides a less conservative description of un-

certainty, the worst-case value has also improved. An increase of 7:91% in the worst-case

NPV value is obtained. MO with EnKF ensemble results in the lowest worst-case NPV
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value with the lowest mean value while it results in the highest value for the best-case

NPV.

The effect of uncertainty on the time evolutions of NPV is shown in Fig. 4.10b. The

maximum and the minimum values of the time evolutions of NPV from both ensembles

will form a band. The width of the band shows the variability of the strategy over the

ensemble of the model realizations. A smaller width for the adapted ensemble shows the

effect of the uncertainty reduction.

(a) PDF (long-term NPV) based on
online and offline approaches

(b) Max and min (band) for time
evolutions of NPV

Figure 4.10: Results comparison for offline and online robust strategies with complete
and adapted ensembles by residual analysis and EnKF respectively.

4.5.4 Considering each model in the ensemble as a plausible truth

In order to avoid the possibility that the results for the considered truth, i.e., model

number 10, can be a mere coincidence and to provide evidence that the introduced ap-

proach leads to attractive results, all models in the ensemble are subsequently considered

as synthetic truth. As a first step, each plausible truth generates data in response to the

optimal input uo�, then the residual analysis is performed on each plausible truth and

the adapted ensembles are formed. In this way 100 adapted ensembles are formed. Fig.

4.11 shows the number of models appearing in the ensemble adapted after day 360 for

each choice of synthetic truth realization. It can be observed that the biggest adapted

ensemble has 35 members for the truth realization number 76 while the smallest set has

9 members for truth realization numbers: 29; 30 and 48.

To use the adapted ensembles in an online (closed-loop) setting and to explore how these

adapted ensembles help in improving robust optimization of the economic performance of

the oil reservoir, as a next step of the developed robust online (closed-loop) scheme, MO
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Figure 4.11: Number of models in the adapted ensembles after t = 360 day as a
function of the choice of synthetic truth realization number

is performed with each of the adapted ensembles, resulting in 100 optimal solutions uon.

EnKF is not considered here and thus the notation for the optimal solution is simplified,

i.e., uon,RA = uon. In each MO, the economic and the control parameters are the same

as used before. The optimal inputs are applied to the respective truth realizations and

the NPV values are collected. They are then compared to the NPV obtained by applying

uo� to each truth realization. A percentage change of NPV for all plausible truths is

shown in Fig. 4.12. A maximum increase of 6% in NPV is observed for the truth

realization number 97. Most of the realizations experience an increase of over 1% in

NPV. A decrease in the NPV value is observed for a few truth realizations. A maximum

decrease of 0:9% is observed for truth realization number 44. There can be different

reasons for this decrease. The selection of MO as the robust optimization may not be

the best choice as MO does not attempt to minimize the negative effect of uncertainty on

the achieved NPV. A better choice of the robust objective, e.g., worst-case optimization

or mean-variance optimization may provide improved results. On average, NPV values

for the online approach (closed-loop with adapted ensembles) are improved compared to

the offline approach (open-loop with complete ensemble). For truth realization numbers

39 and 75, the optimization routines run into numerical problems and do not converge.

4.5.5 Uncertainty reduction with the online (closed-loop) approach

To assess uncertainty reduction of the introduced online (closed-loop) approach, the

optimal solutions uon, for all truth realizations are applied to the respective adapted
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Figure 4.12: Percentage change in NPV as a function of the choice of synthetic truth
realization number. At t = 360 days new optimizations have started in the online case.

ensembles, leading to a distribution of NPV values of each of the truth realizations. Fig.

4.13 shows the standard deviation of NPV points for all adapted ensembles. It also shows

the standard deviation of the complete ensemble as a result of uo�. Standard deviations

for most of the adapted ensembles are smaller compared to the standard deviation of

the complete ensemble. A maximum decrease of 41:87% in standard deviation from the

Figure 4.13: Standard deviation comparison of the adapted ensembles for each truth
realization and the complete ensemble

complete ensemble is observed for the truth realization 21. On average, for all models a
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decrease of 17:61% in standard deviation is observed.

Another measure for the effect of uncertainty is the worst-case NPV value. Fig. 4.14

shows the worst-case values for the adapted ensembles for each truth realization and for

the complete ensemble. It can be observed that the complete ensemble gives the lowest

worst-case value of NPV in comparison to all the adapted ensembles.

Figure 4.14: Worst-case value comparison of the adapted ensembles for each truth
realization and the complete ensemble

The developed online (closed-loop) optimization workflow, i.e., data collection, residual

analysis and re-optimization with the adapted ensemble, can be repeated at each time

step of the simulation till the end of the simulation time. But in this work, the online

(closed-loop) approach is performed at only one time step, i.e., at t = 360 days.

4.5.6 If a model is rejected once, is it rejected for all times?

One of the interesting questions with invalidating models in an ensemble is whether the

new adapted ensembles, at the later time steps, contain only those models that have been

retained in the previously selected adapted ensembles, or also include realizations that

have already been rejected. The data is collected from time t1 = 360 days to t2 = 720

days. The optimal inputs obtained from each plausible truth uon are applied to the

complete ensemble to collect data. Fig. 4.15 shows the number of models retained

in the adapted ensemble of each plausible truth for time duration, t1 = 360 days to

t2 = 720 days. For this example and at this particular time instant, it is observed that

all the new adapted ensembles are subsets of the previously selected adapted ensembles
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from time t0 = 0 day to t1 = 360 day. An interesting observation is that for some truth

realizations the adapted ensembles only contain the synthetic truth. It clearly shows

the inadequate modeling of the true system that no such realization in the ensemble

is a representative model of reality. One of the remedies to avoid this situation is to

generate more models with the dominant features of models that are not invalidated,

e.g. by using Kernel PCA techniques, see e.g., Sahni and Horne [2004],Sarma et al.

[2008b]. The highest number of models in an ensemble is 5 for truth realization number

Figure 4.15: Number of models in the adapted ensembles after t = 720 day as a
function of the choice of synthetic truth realization number

27. The step of robust optimization is not repeated here.

4.6 Conclusions

An online (closed-loop) robust scheme has been presented where robust optimization is

updated with adapted ensembles generated by residual analysis.The following conclu-

sions can be drawn from the work:

� The question of reducing uncertainty is addressed by residual analysis. The

adapted ensembles consist of fewer number of representative model realizations

which provide a less conservative description of uncertainty as also shown in the

simulation examples. The adapted ensembles also substantially reduce the com-

putational complexity of robust optimization.

� The developed online (closed-loop) approach with these adapted ensembles, on

average improves the economic performance of the oil reservoir and reduces the
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effect of uncertainty on the achieved NPV. Reduction of uncertainty is evident by a

reduction in variance of NPV distributions and an improvement in the worst-case

performance.

� The selection of the metric BFR and the 30% threshold is not unique and the

threshold is chosen in an ad-hoc way, such that the results highly depend upon

this choice.

� The simulation data (synthetic measurements) is not noise corrupted. With noise-

corrupted data, the threshold can be adjusted.

� Residual analysis is also dependent upon the selection of input u to generate data.

We have chosen input obtained from robust optimization as an optimized strategy

to generate data. Experiment design from the theory of system identification

can be used to design an informative experiment and to improve the information

contents in data which reduces the uncertainty as shown in Appendix B. In order to

maintain the economic performance, the optimized input from experiment design

is superimposed on the optimal input obtained from robust optimization.
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5
Data-driven sparse estimation techniques to

quantify inter-well connectivity in oil reservoirs

The purpose of models is not to �t the data but to sharpen the questions.

– Karlin, Samuel

For economic optimization and control of the water-flooding process in oil reservoirs,

a two-level time-separation approach has been introduced in the petroleum engineer-

ing literature. Life-cycle optimization using a physics-based reservoir model, commonly

known as Dynamic Real-Time Optimization (DRTO), and a local controller, e.g., Model

Predictive Control (MPC), with a linear model are performed at two different levels of

a hierarchical structure. In case of large-scale reservoirs with hundreds of injection and

production wells (inputs and outputs), the complexity of optimization and control is

increased drastically. The primary focus of this work is to analyze how the complexity

of multivariable MPC control problem can be reduced by identifying the dominant in-

puts that matter the most and removing the non-dominant ones from control synthesis.

The identification of dominant inputs or the interaction quantification of input-output

(I/O) pairs is connected to the inter-well connectivity in oil reservoirs. Various solu-

tion trajectories can be followed to reduce the complexity of the MPC problem. We
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introduce a data-based sparsity estimation and system identification approach to quan-

tify I/O interactions. In this approach, a data-driven linear model is identified with a

sparsity constraint on the least-squares estimate of the model parameters. The sparsity

constraint results in identifying inputs that are not effecting particular output(s) (non-

dominant I/O pairs). An Orthonormal Basis Function (OBF) model structure is used

for the linear model with the Group LASSO approach as the sparsity penalty on the

group of parameters.

5.1 Introduction

In order to optimize the economic performance of the water-flooding process under un-

certainty and disturbances due to unforeseen operational events, a multi-level strategy

has been presented in Van Essen et al. [2013], which decomposes the economic optimiza-

tion and control problem into two different levels. The upper level uses a highly complex

physics-based reservoir model for life-cycle economic optimization and generates refer-

ence output trajectories for the complete production life-cycle time. The lower level

tracks these optimal trajectories with a Model Predictive Control (MPC) controller.

A linear model is used at the lower level which is identified using data-based system

identification techniques. The linear model captures the essential localized near-well

bore reservoirs dynamics and is re-identified at different linear operating point. Similar

hierarchical structures have been used in the process industry where the upper level is

known as Real-Time Optimization (RTO) or Dynamic Real-Time Optimization (DRTO)

and the lower level as MPC or Advanced Process Control (APC), see e.g., Luyben et al.

[1999], Marlin [2000].

In case of large-scale oil reservoirs with hundreds of injection and production wells,

corresponding to the presence of a large number of inputs and outputs, the complexity

of the linear model and the corresponding multivariable MPC control problem at the

lower level is drastically increased. Different approaches can be adopted to reduce the

complexity of the MPC problem. Model reduction techniques can be useful in minimizing

the complexity of linear models which will then also reduce the complexity of associated

control problems. Another solution direction to minimize the complexity is by adding

constraints to the MPC problem or using regularization to remove non-dominant control

inputs from the control synthesis.

In this work we follow the regularization approach and aim at identifying a linear model

with dominant inputs, i.e., the ones that play a significant role for control, and remove the
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non-dominant inputs from the multivariable MPC control problem. Adding constraints

to MPC will result in an increased computational complexity and may introduce non-

convexity in the control problem. The main focus is to quantify input-output (I/O)

interactions in the linear model and optimally select I/O pairs. In oil reservoirs, the

I/O interaction quantification is connected to finding the inter-well connectivity. The

developed approach is motivated by the fact that in a situation of handling a high

number of inputs, it becomes attractive to manipulate only those inputs that matter

the most and to remove the non-dominant ones. It can also be regarded as a step

towards using decentralized control at the MPC level, where the local control actions are

computed on specific I/O pairs and do not require any communication or coordination

between the local controllers, see e.g., Siljak [2011]. The I/O selection or inter-well

connectivity problem has been studied from various perspectives in the literature. In

control systems and specifically in the process control literature, different interaction

measures have been introduced, see Jensen et al. [1986], Kinnaert [1995], Skogestad

and Postlethwaite [2007] e.g., Relative Gain Array (RGA) (Bristol [1966]). For oil

reservoirs, streamlines models can be used for predicting the I/O connectivity, see e.g.,

Batycky et al. [2005]. In Albertoni and Lake [2003] and Tiab and Dinh [2008] inter-well

connectivity in a reservoir using flow rate or bottom-hole pressures is analyzed using a

constrained multivariate linear-regression analysis (MLR) to obtain information about

permeability trends, channels and barriers. In Lien et al. [2008], the use of multiscale

regularization methods to achieve grouping of the control settings of wells for life-cycle

optimization at DRTO level in both space and time have been investigated. In multiscale

optimization approaches, the control variable parametrization is progressively modified

as the optimization proceeds, seeking for an appropriate parametrization which leads

to the best estimate of the optimum well controls. In Oliveira and Reynolds [2015], a

new hierarchical multiscale optimization technique for finding optimum well controls has

been introduced and a successful application of this approach to a field case has been

presented in Oliveira et al. [2015].

Among various solution directions, we develop a data-driven estimation approach and

address the question: can we use sparse estimation techniques to quantify inter-well con-

nectivity and find dominant I/O pairs from available production data? The basic idea is

to use system identification and sparse estimation techniques to identify a linear model

where the non-dominant I/O transfers are forced to zero. The resulting model with a

reduced number of inputs minimizes the complexity of the multivariable MPC control

problem at MPC level in the two-level approach. In the petroleum engineering literature,

for a sparse estimation of reservoir physical parameters from well measurements, differ-

ent transform-domain regularization approaches have been presented in Jafarpour et al.

[2009], Jafarpour et al. [2010], Khaninezhad et al. [2012a], Khaninezhad et al. [2012b]
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and Tarrahi and Afra [2016] where the inverse problem is augmented with a sparsity-

promoting penalty function. There have been earlier attempts to apply data-based

modeling techniques to hydrocarbon reservoirs e.g., see Chierici et al. [1981], Rowan and

Clegg [1963], also Ensemble Kalman filters, see Evensen [2009] and capacitor-resistance

modeling, see Cao et al. [2015], De Holanda et al. [2015], Sayarpour et al. [2009] which

involve the estimation of (black-box/physical) parameters. In Markovinović et al. [2002],

Markovinvić et al. [2002] subspace identification has been used for the complexity re-

duction of reservoir models. In this work, we identify a linear black-box series expansion

model with generalized basis functions (Orthonormal Basis Function OBF model, see

Heuberger et al. [2005]) using I/O data with sparsity constraints on the least-square

estimate of the model parameters to find dominant I/O pairs. A Group Least Absolute

Shrinkage and Selection Operator (G-LASSO) (Yuan and Lin [2006]) sparsity penalty

is used which forces the group of parameters representing the non-dominant I/O pair

in the transfer function matrix to zero. System identification with sparse estimation

techniques, compared to other possible solution directions as discussed before, provides

a structured and systematic way of finding the dominant I/O pairs. Group LASSO

also offers an attractive tradeoff between the complexity (fewer I/O transfers) and the

accuracy of the dynamic model. As the knowledge of I/O interactions and the selection

of I/O pairs are based on a linear model, the validity of these results is valid locally in

time and around a linear operating point. A linearized model used at the lower level

can be re-identified at different linear operating points which allows to capture the dy-

namic change of dominant and non-dominant inputs (wells) over time for the complete

production period.

The chapter is organized as follows: In the next section, a short recapitulation is given

of the two-level time-separation approach in oil reservoirs. The concept of using sparse

estimation with system identification tools to quantify inter-well connectivity is discussed

in section 5.3. In section 5.3.2, the mathematical formulation of the Group LASSO

regularization is presented. A simulation experiment to show the quantification of I/O

interactions is given in section 5.4 followed by conclusions in section 5.5.

5.2 Two-level time-separation approach

In order to optimize the decision making for the plant operation and to translate eco-

nomic objectives into control objectives (Morari et al. [1980]), a hierarchical structure

is typically used in process control as depicted in Fig. 5.1. In the figure, planning and

scheduling focus on economic forecasts, provide production goals and the parameters

of the economic objective function with the timing of actions and events necessary to

94



5 Data-driven sparse estimation techniques to quantify inter-well connectivity in oil
reservoirs

Figure 5.1: Decision making and control hierarchy in process industry (Findeisen
et al. [1980], Luyben et al. [1999], Marlin [2000])

execute the chosen plan, see e.g., Findeisen et al. [1980], Luyben et al. [1999], Marlin

[2000]. This hierarchical structure is also motivated by the different time-scales of these

levels, ranging from weeks/month of scheduling and planning to seconds/minutes of field

instrumentation.

In Saputelli et al. [2006], Foss and Jensen [2011] and Foss [2012] the use of the hierar-

chical structure as in Fig. 5.1, in the oil reservoirs, has been motivated. A two-level

time-separation approach focusing on the DRTO and MPC control has been introduced

in Van Essen et al. [2013]. The scheduling and planning level can be regarded as the

field development phase in oil exploitation. The main motivation for decomposing opti-

mization and control in two separate levels is based on the following reasons (Van Essen

et al. [2013]):

� The optimal inputs from the economic optimization, i.e., DRTO level, are often

impractically frequently varying in time and thus not feasible to be directly applied

to the real system.

� The large-scale physics-based reservoir models used in life-cycle optimization are

usually much too coarse to represent near-well bore reservoir dynamics such as gas

or water coning.

� As economic life-cycle optimization aims for the complete production life of oil

reservoirs, unforeseen operational activities such as breakdown maintenance or

well interventions can not be accounted for in the physics-based model.

� The time-scales for both levels are also very different, hence motivating the use of

optimization and control at separate levels.
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Fig. 5.2 shows the two-level DRTO/MPC strategy. The top of the figure shows the sys-

tem, i.e., oil reservoir with wells. In the DRTO level, large-scale physics-based reservoir

models are used to optimize economic performance possibly with Computer-Assisted

History Matching (CAHM) to regularly update model variables as shown in the lower

part of Fig. 5.2. CAHM has not been implemented in the work of Van Essen et al. [2013]

and the life-cycle optimization has not been repeated. The Advance Process Control

(APC) or the MPC level consists of a data-driven linear model with a state observer

and an MPC controller to track the optimal reference trajectories ŷ1:K as shown in Fig.

5.2. In this two-level approach, the optimal output variables have been defined as the

Figure 5.2: Two-level time separation approach in oil reservoirs (taken from Van Essen
et al. [2013])

total flow rates at the production wells while the control input variables are the water

injection rates at the injection wells. As large-scale reservoirs may contain hundreds of

injection and production wells, the complexity of the multivariable MPC control prob-

lem grows with the number of wells and the use of a centralized MPC scheme with all

inputs and outputs becomes computationally very expensive. One of the drawbacks of

the two-level approach is the uncertainty in the reservoir models used at the DRTO

level which makes the reference trajectory suboptimal. Also specifically in the case of

economic uncertainty, i.e., varying oil prices, as the changes in oil prices may occur fast

in time, the time separation principle for optimization and control does not hold. The

variations in oil price may change the economic objective to a better value while the

reference trajectory is unaware of that for a particular time. In these situations, one of
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the possible integrations of the DRTO and MPC levels to a single level control scheme

has been introduced, known as Economic-MPC, for details see e.g., Amrit [2011].

In this work, we use a data-driven sparse estimation approach to find dominant I/O

pairs to reduce the complexity of the MPC level and to move towards a decentralized

MPC approach. In the next sections, the system identification technique using a linear

OBF model structure is discussed together with the sparse estimation of the model to

identify the dominant I/O pairs.

5.3 Sparse estimation for quantifying inter-well connectiv-

ity

5.3.1 Introduction

We motivate to use a sparse estimation technique to quantify the inter-well connectivity,

i.e., which injection wells have a dominant effect on a particular production well at a

given time. In case of large-scale reservoirs with a very high number of inputs and out-

puts, it becomes relevant to identify the dominant I/O pairs or injection-production wells

and manipulate inputs (injection wells) that matter the most for the control problem.

The sparse estimation of a linear model results in a transfer function matrix, which rep-

resents all transfers from inputs to outputs, with zero entries representing non-dominant

I/O pairs. The estimated linear model can be used with an MPC controller at MPC

level which reduces the computational complexity of the MPC level and preserves the

convexity of the controller synthesis problem. The quantification of I/O interactions

is based on a linear model, therefore the validity of these results is limited to a linear

operating point. The developed approach of system identification with sparse estimation

is discussed in the next sub-subsections.

5.3.1.1 Orthonormal basis function (OBF) model structure

System identification provides a systematic approach to modeling problems. In Ljung

[1999], a formal definition of system identification is given as: ’system identification is

the art and science of building mathematical models of dynamical systems from observed

input-output data’. One of the important steps in modeling is the selection of the model

structure M that can be used to represent the dynamics of a system. Different model

structures e.g., FIR, ARX, Output-Error (OE), Box-Jenkins (BJ) are commonly used;

for details see Ljung [1999].
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In this work, we use a series expansion representation with generalized basis, known

as OBF model structure (Heuberger et al. [2005]). The notation used in this and later

sections is adopted from system identification literature. Given a complete orthonormal

basis f�ig1i=1 2 RH2 the series expansion G(z) of any strictly proper asymptotically

multi-input multi-output (MIMO) stable LTI system can be written as:

G(z) =
1X

i=1

�i�i(z); (5.1)

where �i 2 Rny�nu is a matrix of black-box expansion coefficients with ny outputs and nu
inputs. In case of oil reservoirs, inputs can be the injection flow rates and the outputs can

be the total production rates at the production wells. With the first n basis functions,

the series expansion can be written as:

GOBF (z) =
nX

i=1

�i�i(z): (5.2)

A popular choice for �i(z) is z�1, known as the Finite Impulse Response (FIR) repre-

sentation. It has attractive properties, such as linearity of coefficients in the transfer

function G(z) which leads to many computational and analytical advantages. One of

the drawbacks of the FIR representation is that for systems with high sampling rates

and dominant high- and low-frequent dynamics, a large number of coefficients is re-

quired to capture the relevant dynamics. There are more flexible generalizations of the

basis function �i(q), known as OBF model structures. The main driving force to use

an OBF model is that - when chosen appropriately - it requires only a few parameters

(coefficients) to estimate and still provides a good representation of the real system.

5.3.1.2 Construction and realization of OBFs

The Takenaka-Malmquist functions, see Heuberger et al. [2005], are considered as the

basis functions, and are given as follows:

�i(z) =

p
1� j�ij2

z � �i

i�1Y

j=1

1� ��jz
z � �j

; (5.3)

where f�1; � � � ; �ig 2 D are complex numbers inside the unit disc. Basis functions are

induced by the set of complex numbers (poles) �i. The selection of these poles �i can

be regarded as the prior knowledge about the system. The closer the poles of the basis

function are to the poles of the system to be modeled, the faster the convergence of the

series expansion is in eq. (5.1), and the better the approximation as shown in eq. (5.2).
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A detailed description of OBFs and state-space realizations can be found in Chapter 2

and 10 of Heuberger et al. [2005].

To represent a discrete-time transfer function between an input and output, let q be

a forward shift operator, i.e., qu(t) = u(t � 1), and allow an extension to polynomial

function of q that induces signal transformations. Let D(q) and N(q) be polynomial

function in q operator and suppose the behaviour of discrete-time system contains only

those input and output which satisfy:

D(q)y(t) = N(q)u(t): (5.4)

The relationship over the space of input and output sequences can be defined with

elements (fu(t)gt�0; fy(t)gt�0) 2 R(D N) as:

R(D N) := f(fu(t)gt�0; fy(t)gt�0) s.t D(q)y(t) = N(q)u(t); 8t � 0g (5.5)

This mapping, which can be formally denoted as R(D N)(fu(t)gt�0) is typically repre-

sented in the system identification or control engineering literature with rational expres-

sion G(q) = D(q)�1N(q), i.e.,

y(t) = G(q)u(t) (5.6)

and which is referred to as the transfer operator of a linear time invariant system. Later

in the chapter, the input-output transfer and the basis functions are represented in q

operator.

The least-squares cost function for the estimation of the OBF model can be given as:

V (�;DN ) :=
X

(y(t)� ŷ(tjt� 1; �))>(y(t)� ŷ(tjt� 1; �)) (5.7)

:=
1

N
(YN � ΦN�)>(YN � ΦN�); (5.8)

where ŷ(tjt� 1; �) is one-step ahead predictor given as:

ŷ(tjt� 1; �) = H�1(q; �)G(q; �)u(t) + [1�H�1(q; �)]y(t); (5.9)

and DN is a data set with N samples of output vector YN and input vector UN given

as:

UN =

2

6
6
6
6
6
4

u1

u2
...

uN

3

7
7
7
7
7
5
; YN =

2

6
6
6
6
6
4

y1

y2
...

yN

3

7
7
7
7
7
5
:
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The noise is considered as white and Gaussian with the choice of noise model as H(q; �) =

I, where I is the identity matrix of dimension ny�nu, therefore ŷ(tjt�1; �) =
P n

i=1 �i�i(q)u(t)

and ΦN is the regressor matrix given as follows:

ΦN = [ �1(q)u1(t) � � � �n(q)u1(t) �1(q)unu (t) � � � �n(q)unu (t) ]:

Then the least-square estimation problem is given as:

�̂LS
N = arg min

�
V (�;DN ); (5.10)

and the least-square problem allows for an analytical solution:

�̂LS
N = (Φ>NΦN )�1Φ>NYN ; (5.11)

provided that (Φ>NΦN ) is invertible, i.e., the data is sufficiently informative. For the

sake of illustration of basis functions, the frequency response of randomly chosen seven

Takenaka-Malmquist basis functions is given in Fig. 5.3.

Figure 5.3: Frequency response of Takenaka-Malmquist basis functions to be used in
OBF model structure

5.3.2 Sparse estimation with Group LASSO

The idea of quantifying the inter-well connectivity is connected to finding a multi-input

multi-output OBF model where the non-dominant I/O transfers, e.g., from an injection
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well (input) to a production well (output), are zero. This can be achieved by identifying

a sparse vector of parameters which represents a particular I/O transfer. The sparsity

forces the non-dominant transfer to zero. The other possible criteria to determine the

non-dominant transfer of a given model, e.g., using H2�gain, compared to the sparse

estimation, do not provide the flexibility of balancing complexity (fewer I/O transfer)

and accuracy of representation. The least-square estimation in eq. (5.10) for the iden-

tification of the OBF model can be constrained by adding a sparsity condition on the

estimated parameter vector.

A group of parameters, representing a particular ijth I/O transfer, i.e., f�ij1 ; �
ij
2 ; � � � �

ij
n g,

with n coefficients, can be forced to zero by using a Group LASSO approach, see Yuan

and Lin [2006], with OBF model structure. In the Group LASSO approach, for a vector

� 2 Rd; d � 1, and a symmetric d� d positive definite matrix S,

jj�jjS := (�>S�)
1
2 : (5.12)

The selection of S in eq. (5.12) is a design problem and the simplest choice for S can

be an identity matrix. Given positive definite matrices Sk, the group lasso estimate is

defined as the solution to:

V (�;DN ) + �
KX

k=1

jj�kjjSk ; (5.13)

where �k is the group of parameters representing an ijth transfer, i.e., �k = f�ij1 ; �
ij
2 ; � � � �

ij
n g,

K is the total number of groups, i.e., K = nu � ny and � � 0 is the tuning parameter.

The selection of the penalty parameter � is important as it is connected to the tradeoff

between the desired complexity (number of non-zero transfers) and the accuracy of the

estimated model. The solution of eq. (5.13) will result in an OBF transfer matrix with

zero non-dominant I/O transfers.

The Group LASSO approach is an extension of the Least Absolute Shrinkage and Selec-

tion Operator (LASSO) approach, see e.g., Tibshirani [1996], where the L1 norm con-

straint is added to the least square estimation of the single-input single output (SISO)

model parameter vector as follows:

min
�

V (�;DN ) + �jj�jj1: (5.14)

Another way to pose this sparse optimization problem is given as:

min
�

jj�jj1;

s.t. V (�;DN ) � �;
(5.15)
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where the L1 norm can be defined as the sum of the absolute values of the elements of

vector � as given below:

jj�jj1 =
X

i

j�ij: (5.16)

For the LASSO approach with SISO model, in Rojas et al. [2014], an automatic tuning

of � or � based on a validation criterion, known as SPARSEVA (SPARSe Estimation

based on VAlidation), has been introduced. We use the SPARSEVA approach to tune

the penalty parameter with Group LASSO. SPARSEVA consists of the following steps:

� Compute the ordinary least-square estimate �̂LS
N as in eq. (5.11).

� Obtain a sparse estimate by solving:

min
�

jj�jj1;

s.t. V (�;DN ) � V (�̂LS
N ;DN )(1 + �N );

(5.17)

where �N has been chosen based on the AIC validation criterion, Ljung [1999], i.e.,

�N =
2ng
N , where ng is the number of parameters and N is the number of data

points.

� Re-estimate the non-zero elements in �̂N using ordinary least-squares. This can

be achieved by removing the respective columns in the regressors matrix corre-

sponding to the zero parameters. Parameters that are below some threshold are

considered as zero.

When the last step is also included, the developed method is known as SPARSEVA-RE,

for details see Rojas et al. [2014].

5.4 Simulation example

The purpose of this simulation example is to analyze how sparse estimation and system

identification techniques, in particular the OBF model structure with Group LASSO, can

be beneficial in quantifying the inter-well connectivity and hence reducing the complexity

of the MPC level. All the simulation experiments in this work are performed using the

MATLAB Reservoir Simulation Toolbox (MRST), see Lie et al. [2012].
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5.4.1 Reservoir model: The standard egg model

A single realization of the standard egg model is used. The complete list of parameters

and the details about the model set are presented in Appendix A, which is based on

Jansen et al. [2014]. The absolute-permeability field with the injection wells Ii; i =

1; 2; � � � ; 8 and the production wells Pi; i = 1; 2; � � � ; 4 is shown in Fig. 5.4. As the

model in this example is small compared to realistic large-scale reservoirs, a fault (low

permeability region), with values of 0:1 milli darcy, is intentionally introduced in all

three directions to block the flow from input 7 to the outputs. The sparsity estimation

is expected to detect the non-dominance of input 7 to outputs. The permeability field

Figure 5.4: Permeability field of the Egg model realization in x-direction with a low
permeability barrier added

in the x-direction is shown in Fig. 5.4.

5.4.2 Model-based optimization

The reservoir model as shown in Fig. 5.4 is used. The discount factor is zero, i.e., b = 0,

while the other economic parameters, i.e., oil price ro, water injection rinj and production

cost rw are chosen as 126 $
m3 , 6 $

m3 and 19 $
m3 respectively. The control input u involves

injection flow rate trajectories for each of the eight injection wells. The minimum and

the maximum rate for each injection well are set as 0:2m
3

day and 79:5m
3

day respectively.

The production wells operate at a constant bottom-hole pressure of 395bar. The control
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input u is reparameterized in control time intervals with input parameter vector ' . For

each of the eight injection wells, the control input u is reparameterized into twenty time

periods of t’ of 180 days during which the injection rate is held constant at value ’i.

Thus the input parameter vector ' consists of Nu = 8 � 20 = 160 elements. These

control elements are the available degrees of freedom in the optimization. An optimal

input ucomp 2 U results from the dynamic optimization of the model as shown in Fig.

5.4.

5.4.3 Data-driven identification with OBF model structure

The reservoir model is a typical example of a multi-input multi-output (MIMO) system.

For identification of a MIMO model, we define twelve inputs, i.e., 8 injection rates at

the injection wells and the bottom hole pressures (bhp) at the production wells. BHPs

are also considered as free input for black-box model identification while they were fixed

for optimization. The four outputs are considered to be the flow rates at the production

wells. Therefore, it is a MIMO model with 12 inputs and 4 outputs, i.e., nu = 12; ny = 4.

This input-output settings are the same as used in Van Essen et al. [2013]. Step inputs

are typically applied to determine the largest time constant of the system. We perform

these step tests and the duration of the experiment is based on the rule of thumb that the

experiment length N should be at least five times the largest time constant of the system.

Therefore, the total time of simulation is considered to be 180 days, i.e., T = 180 days.

A deliberate excitation is required to obtain informative data for identification. For the

deliberate excitation, a Pseudo Random Binary Signal (PRBS) covers a wide range of

frequencies and it is suitable for generating a persistently exciting signal. Therefore, a

PRBS is used and it is generated by using the MATLAB routine idinput. The amplitude

for the injection rates is chosen as 1m3=day and for the bhps as 0:3bar with clock period

twice of the sample time. This excitation signal is superimposed on the optimal input

signal ucomp to maintain good economic performance. The sampling time of dT = 0:1day

is chosen and with the total time of experiment, i.e., T = 180day, a data set of 1800 I/O

points is generated for system identification. The data set DN is divided into estimation

and validation sets, i.e., 1500 data points are used for estimation and the remaining

300 data points for validation. As the real production data is always noise-corrupted, a

Gaussian white noise is added on top of the measured (simulated in our case) data with

an SNR of 25dB. At first, an ARX model is identified to obtain the poles �i for the basis

function of OBF as shown in eq. (5.3) and with 7 poles a good fit is obtained. Therefore,

7 poles are considered resulting in 7� 12 = 84 black-box coefficients (parameters) to be

estimated for one output channel. As there are four output channels, the total number

of parameters is 84� 4 = 336. A state-space representation of the OBF model structure
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(Heuberger et al. [2005]) is used. A least-square solution as given in eq. (5.11) is

obtained. The results are given as the fit-to-noiseless validation data set (from day 150

to 180) of the four output channels as shown in Fig. 5.5. The output data is scaled

by removing the average value. One measure to assess the quality of the model is by

Figure 5.5: Noiseless output (scaled) data and OBF model output with least-square

solution �̂LS
N

calculating the Best-Fit Ratio (BFR). It is defined as:

BFR = 100%�max(1�
jjy � ŷjj2
jjy � ŷjj2

; 0); (5.18)

where ȳ is the mean value of the measured (simulated, in our case) output y, i.e.,

ȳ = E[y]. In this case, it is the average value of output y. The BFR percentage is a

relative measure often used in system identification and a low value of BFR indicates a

poor fit to data, see Ljung [1999]. The following BFR values for the four output channels

are obtained:

BFR =
h

81:6 76:1 73:5 72:1
i
:

BFR values show that the identified model has a satisfactory accuracy.
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5.4.4 Data-driven identification with OBF model structure and Group

LASSO

In order to identify the dominant I/O pairs and to quantify inter-well connectivity, the

parameters are estimated with the Group LASSO approach as given in eq. (5.13). As

there are 7 parameters representing one transfer function, groups of 7 parameters are

made, i.e., �ij = f�ij1 ; �
ij
2 ; � � � �

ij
7 g with i = 12 and j = 4. The total number of groups

K in this case is K = 12 � 4 = 48. Different values of the penalty parameter �, i.e.,

� 2 f0:1; 1; 3; 5; 10; 12; 15; 50; 100g are used. The selection of penalty term � is important

as it offers a tradeoff between complexity (number of non-zero I/O pairs) and accuracy

of representation of the system. A high value of � forces more I/O pairs to be zero

in the MIMO transfer function matrix G(q). This phenomenon is observed by plotting

H2 and H1 norms of the identified transfer functions. For a stable single-input single-

output (SISO) linear system with transfer function G(q), the H2�norm, in the frequency

domain, is defined as:

jjGjj2 =

�
1

2�

Z 1

�1
jG(ej!)j2d!

� 1=2

It has an interpretation of the energy of the system. The H1�norm is defined as:

jjGjj1 = max
!2[0;�]

jG(ej!)j

For a SISO system, the H1�norm is the maximum gain of the system which is also

represented by the peak value in the bode diagram. Fig. 5.6 shows the H2�norm of

each individual I/O transfer with increasing value of �. It can be observed that when

� is small, most of the individual I/O pairs have high H2�norm value. As � i.e., the

penalty on the sparsity of the identified I/O transfer increases, most of the transfers are

forced to zero. Fig. 5.7 shows the H1�norm of the individual I/O pairs. As expected,

with low values of �, very few transfers are non-dominant and as the value of � increases

most of the transfers are forced to zero. Therefore, the selection of an optimal value of

� is important to define an accurate representation of the system with fewer number of

dominant I/O pairs.

One key observation is that the available data mainly captures the pressure dynamics, as

it changes quickly as a result of changing bottom-hole pressure in the reservoir compared

to the slowly varying saturation in response to the variation in injection rate. Bhp inputs

defined at the production wells (inputs 9�12) are dominant compared to the rate inputs

(inputs 1 � 8). Fig. 5.8 shows the H2�norm of all individual transfer functions for

� = 1. It can be seen that the total production rate output defined at the production

wells depends heavily on the bhp defined at the same well and on the bhp of the other
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Figure 5.6: H2 norms for all output channels as a function of increasing �

Figure 5.7: H1 norms for all output channels as a function of increasing �

production wells compared to the injection rate at the injectors. For example, the energy

of the transfer between total production rate output 1 at production well 1 and the bhp

input defined at the same well, i.e., input 9 is maximum compared to the other inputs.

Similar results can be observed for the remaining output transfers.
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Figure 5.8: H2 norms for all output channels at � = 1

5.4.4.1 SPARSEVA approach

SPARSEVA provides an automatic tuning of the penalty parameter �. It is also im-

plemented with the OBF model structure. Note that SPARSEVA has been originally

proposed with the LASSO method, but here we have used it with group LASSO. There-

fore, the theoretical results, e.g., consistent estimate of �, established in Rojas et al.

[2014], may not hold true for the case of group LASSO. This is not further investigated.

The comparison of the noiseless validation data set with the identified model output

with group lasso penalty using SPARSEVA is shown in Fig. 5.9. The following BFR

values for the four output channels are obtained:

BFR =
h

78:3 75:6 70:9 68:6
i
:

BFR values show that the identified model has a satisfactory accuracy. The fit can

be improved by increasing the number of expansion coefficients Table 5.1 shows the

non-dominant I/O pairs for increasing value of �.

In order to select the transfer (group of parameters) to be zero, a small threshold is

defined. The first observation is that all the bhp inputs (9 � 12) are dominant on all

output transfers as also discussed in the previous section. Hence at 180 days, when the

data is collected the output production primarily depends upon the pressure changes

in the reservoir. We have intentionally disconnected input 7 (i.e., injection flow from
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Figure 5.9: Noiseless validation output (scaled) data and OBF model output with
Group LASSO using SPARSEVA approach to tune the penalty parameter

� Output 01 Output 02 Output 03 Output 04

0.1 5 No input No input No input
1 5,7,8 No input No input No input
3 2,3,4,5,6,7,8 7 6,7,8 1,2,3,7,8
5 1,2,3,4,5,6,7,8 5,6,7 3,6,7,8 1,2,3,5,7,8
10 1,2,3,4,5,6,7,8 1,3,5,6,7 3,4,5,6,7,8 1,2,3,5,7,8
15 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 3,4,5,6,7,8 1,2,3,4,5,6,7,8

SPARSEVA 1,2,3,4,5,6,7,8 1,4,5,6,7 3,5,6,7,8 1,2,3,4,5,6,7,8

Table 5.1: The non-dominant inputs for four output channels as a function of increas-
ing � with Group LASSO and for SPARSEVA

injection well 7) from all outputs by a low permeability region. The results also show

that this injector is non-dominant to all the output channels. It can also be observed

that the flow from injection wells 6 and 8 (i.e., Inputs 6 and 8 respectively) towards

outputs are effected by the low permeability region. Input 8 is only affecting output 2.

Water flow from injection well 5 (i.e., input 5) is also not dominant on all outputs. With

an automatic tuning with SPARSEVA, input 5; 6 and 7 are non-dominant for all the

output channels, so they can be removed from the multivariable MPC control problem,

thereby reducing the computational complexity of control problem.
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5.5 Conclusions

Typical large-scale reservoir fields contain hundreds of wells corresponding to many con-

trol inputs for the multivariable MPC control in the two-level time-separation approach.

For the purpose of control, manipulating all available inputs is neither required nor

beneficial and control can be based on a limited number of I/O pairs. The following

conclusions can be drawn from this work:

� System identification and sparse estimation techniques are used to find non-dominant

I/O pairs and to quantify inter-well connectivity locally in time. Simulation shows

that the sparse estimation provides a quantification of inter-well connectivity. In

our case, the input which has been intentionally disconnected from all outputs is

detected by the developed estimation scheme.

� Sparse estimation with SPARSEVA gives a good balance between the complex-

ity of the model (fewer I/O connections) with the accuracy of representation as

presented by comparing the results of SPARSEVA with the estimation of linear

model without the sparsity penalty.

� Due to the use of a linear model, the validity of the results is limited to a linear

operating point corresponding to a finite time interval.

� The approach of quantifying inter-well connectivity with sparse estimation of a lin-

ear model can be used in the design phase. The linear model can be re-identified at

different linear operating points which may help in visualizing the change in dom-

inant well patterns over time. The inter-well connectivity over time can possibly

be linked to changing saturation patterns.
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6
Conclusions and recommendations

The important thing is to never stop questioning.

– Albert Einstein

6.1 Conclusions

The main research question of our research as raised in the Chapter 1 is: How can the

effect of uncertainties be explicitly reduced in model-based economic optimization for

oil recovery? In this thesis, two distinct solution trajectories have been followed. In the

first set of approaches, the effect of uncertainty on the achieved objective is minimized

using tools from robust dynamic optimization and risk management. The available

information, i.e., production data, is explicitly used in the second research direction to

minimize the uncertainty space and to reduce the complexity of model-based control

and optimization. The conclusions of our research in the chosen solution directions are

given below.
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Offline approaches

� We have stressed the need for an explicit inclusion of uncertainty in the optimiza-

tion framework. The effect of uncertainty on the objective function space can be

characterized by a distribution of NPV values resulting from different (optimized)

depletion strategies. A reduction of the effect of uncertainty is then correlated to

shaping different moments of this distribution, e.g., variance, skewness etc. It has

been demonstrated that the robust approach with average NPV objective does not

reduce the effect of uncertainty as it only aims at maximizing the average value.

� In order to minimize the effect of uncertainty on the achieved NPV, different robust

approaches have been considered. A simple choice is to maximize the average of

the NPV distribution and minimize the variance of it. It has been shown that this

mean-variance optimization reduces the effect of uncertainty with both geological

and economic uncertainty.

� One of the sub-questions of our research has been to provide a robust solution

which also balances short-term and long-term NPV gains. Different multi-objective

optimization approaches are adopted to tackle this question. These approaches

can be made robust by introducing robust objectives, e.g., average objective or

mean-variance objectives. Robust optimization has redundant degrees of free-

dom, therefore short-term gains can be greatly improved without compromising

long-term gains. In the situation of geological uncertainty, a plausible increase

is observed while for the case of economic uncertainty the improvement is less

than expected. The classic weighted-sum approach has also been extended to ro-

bust settings. Both average and mean-variance objectives have been considered

and with mean-variance optimization (MVO) objectives a reduced effect of uncer-

tainty compared to mean-optimization (MO) is obtained. It has also been shown

that a robust single-objective MVO approach, although not specifically focussing

on short-term gains like in the multi-objective case, has a natural effect of increas-

ing the short-term gains. This effect has been shown to be more dominant in the

situation of economic uncertainty than in the case of geological uncertainty.

� Concepts from the theory of risk are investigated for the water-flooding optimiza-

tion process. It has been shown with simulation examples that the risk-averse

risk measures, such as worst-case, CVaR, or semi-variance, are very beneficial for

shaping the NPV distribution, especially in the case when the decision maker is

interested in increasing the worst-case values without largely compromising the

best-case values. The selection of the preferred risk measure depends on the de-

cision maker’s risk-return attitude, i.e., how much he is willing to compromise on

returns for a given level of risk.
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� Economic uncertainty has been explicitly included in these robust approaches.

There are different economic variables such as the discount factor and the oil

price involved in NPV objectives. To show the effect of economic uncertainty, we

have considered the varying oil price as the main source of this uncertainty. The

scenario-based approach has also been chosen for economic uncertainty, where an

ensemble of oil prices characterized economic uncertainty. From a computational

viewpoint, implementing economic uncertainty is definitely less expensive com-

pared to geological uncertainty. As the oil price is a scalar quantity and appears

linearly in the NPV objective function, a larger spread of oil prices will have a

direct consequence on the NPV distribution variance but the effect of it on the

optimized solution is less compared to the effect of geological uncertainty. The

difference is visible by the results of mean-CVaR and mean-worst case approaches

as there are very minor improvements in worst cases under economic uncertainty

compared to geological uncertainty.

� One of the important points to note is the dependence of results on uncertainty

modeling (ensemble of realizations). A better characterization of uncertainty pro-

vides better results for the true system. The offline approaches rely on the given

characterization of uncertainty and do not allow to update the uncertainty de-

scription. Therefore, the question of uncertainty of the uncertainty becomes highly

relevant.

Online approaches

� The application of online strategies is limited due to the complexity of the reser-

voir models. Parameter estimation or data assimilation techniques suffer from the

problem of ill-posedness and typically use a Bayesian regularization. A poor selec-

tion of a prior ensemble in the Bayesian approach severely affects the uncertainty

reduction. Therefore, an online robust scheme using the concept of residual anal-

ysis has been introduced. The residual analysis is performed in the model space

which is very small compared to the parameter space. With residual analysis, the

model realizations in an ensemble are rejected if they do not sufficiently agree with

the available production data. This approach with adapted ensembles provides a

less conservative description of uncertainty, and on average, improves the economic

performance of the oil reservoir. With a reduced number of models in an ensemble,

the computational complexity of robust optimization can be substantially reduced.

For robust optimization in the online setting, MO has been chosen as the robust

113



6 Conclusions and recommendations

objective which is based on the simplicity of the scheme in terms of implementa-

tion and computation time. Other choices of robust optimization may affect the

results.

� Due to different time-scales and also due to unforeseen operational events, the

combined economic optimization and control problem can be decomposed into

two separate problems at two different levels: an economic optimization problem

at the top level with a tracking MPC control problem at a lower level. In case

of large-scale oil reservoirs with hundreds of injection and production wells, the

complexity of the multivariable MPC control problem is drastically increased. One

of the research objectives of our research is to reduce the complexity of local control

problem by identifying the most important inputs and removing the non-dominant

ones. System identification and sparse estimation techniques with a linear model

are used to find non-dominant I/O pairs and to quantify inter-well connectivity

locally in time. Simulation shows that sparse estimation with a linear model

provides a quantification of inter-well connectivity locally in time. In the presented

study, the input which has been intentionally disconnected from all outputs is

detected by the developed estimation scheme. Due to the use of a linear model,

the results from the developed approach are valid only around a linear operating

point corresponding to a finite time interval. As the location of the oil-water front

in the reservoir dictates the dominance of inputs which may vary over time, it may

be beneficial to use a localized model to predict the dominant I/O pairs for that

particular time. With re-identification of the linear model, the change of dominant

I/O pairs over time can also be studied.

6.2 Discussion and Recommendations

Research starts from an open question and often leads to raising even more questions.

Although we have tackled the main research question of our work, still there are many

open issues directly connected to the main theme of this thesis. Some of the open issues

and future recommendations are summarized below:

� Throughout this thesis, ensembles of geological and oil price values have been used

to characterize uncertainties. Uncertainty modeling is a multi-disciplinary field

and requires expert knowledge of the respective field. Some questions regarding

uncertainty modeling and their inclusion in the optimization are still relevant,

e.g., is the uniform distribution of ensemble as used in this thesis a good choice?

Or can we have more information about the distribution of the uncertainty and
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use a weighted approach? Another relevant question is the uncertainty of the

uncertainty description? Though one may get stuck in an infinite loop about

raising questions on the uncertainty of uncertainty of uncertainty... All forms

of available information, e.g., data, a priori system knowledge etc., should be

considered to characterize uncertainty. The true potential of robust optimization

can be realized if the used set of geological data is a good representation of the

true modeling uncertainty.

� Throughout this thesis, Net Present Value (NPV) is used to express the economic

value of oil reservoirs. NPV is defined for the cumulative oil and water production

over a fixed time horizon which is typically very long. Therefore, optimization

focuses only on one number defined at the end of the production life of the oil

reservoir (the long-term gain) while it does not explicitly consider short-term gains.

A relevant question then becomes: is NPV a good measure to express the economic

performance of an oil reservoir?

� A key step is the understanding of the results of optimization. A deeper analysis

from the operational, physical and geological viewpoint is required as to why one

robust strategy will perform better compared to the other. It will also help in

dealing with uncertainty in the real field.

� The standard egg model realizations used in this thesis are of considerable size but

they are synthetic models. It is worthwhile to test the introduced methods on real

large-scale field examples to gain more confidence that these strategies improve

the economic performance under uncertainty. Similarly, the online approaches are

based on simulation data, real reservoir production data should be used to analyze

these approaches. Also only one type of uncertainty is considered at a time, it is

also interesting to consider both economic and geological uncertainty at a time in

the optimization problem.

� It is possible to reduce geological uncertainty with the help of available production

data and to (possibly) converge to the truth. For economic uncertainty, in the

online settings, the oil price should be updated at each time step and a new

forecast of price variations should be considered.

� As it has been shown that robust optimization has redundant DOFs, it is inter-

esting to implement the risk averse optimization, i.e., mean-variance, mean-worst

case, mean-CVaR and mean-semi variance in a multi-objective optimization set-

ting, e.g., using hierarchical switching method as in Chap 2 and to use redundant

DOFs to reduce risk with almost no reduction of average value.
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� To improve the performance of the risk averse approaches, additional constraints

on the best cases and/or average value can also be included in the optimization.

� System identification techniques are used to quantify the inter-well connectivity in

the thesis. The field of experiment design from the theory of system identification

is also highly relevant to be explored. It offers an optimal excitation signal to

increase the information contents of data and to reduce uncertainty. Appendix B

discusses the possibilities of improving the estimation of physical parameters with

available data-driven linear models.
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A
Implementation of Egg Model in MRST

A theory has only the alternative of being right or wrong. A model has a third

possibility: it may be right, but irrelevant.

– Eigen, Manfred

This appendix is based on the following publication:

Jansen, J.D., Fonseca, R.M., Kahrobaei, S., M.M. Siraj, Essen, van, G.M. Van den

Hof, P.M.J. (2014). The egg model - a geological ensemble for reservoir simulation.

Geoscience Data Journal, 1(2), 192-195.

The ”Egg Model” is a synthetic reservoir model consisting of an ensemble of 101 rel-

atively small three-dimensional realizations of a channelized reservoir produced under

water flooding conditions with eight water injectors and four producers. It has been

used in numerous publications to demonstrate a variety of aspects related to computer-

assisted flooding optimization and history matching. We present a ”standard version”

of the Egg Model which is meant to serve as a test case in future publications, and a

data set of 100 permeability realizations in addition to the permeability field used for

the standard model. In Jansen et al. [2014], this model has been implemented and tested

in four reservoir simulators: Dynamo/Mores (Shell), Eclipse (Schlumberger), AD-GPRS

(Stanford University) and MRST (Sintef), which produced near-identical output. In this
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appendix, we present the implementation in MRST. Simulations are performed using

fully-implicit and sequential solvers of MRST and the results are compared with Eclipse

(Schlumberger). MATLAB Reservoir Simulation Toolbox (MRST) is an open source

software to test and simulate new modeling concepts in reservoir engineering.

A.1 The egg model: model description

The Egg Model was developed as part of the PhD thesis work of Maarten Zandvliet

and Gijs van Essen. The first publication that refers to it appears to be reference

Zandvliet et al. [2007] in which only a single, deterministic reservoir model was used.

Thereafter, an ensemble version has been used in several publications; see e.g. Jansen

et al. [2008], Van Essen et al. [2009a] while also the deterministic version has been

used frequently to test algorithms for computer-assisted flooding optimization, history

matching or, in combination, closed-loop reservoir management; see e.g., Jansen et al.

[2009], Astrid et al. [2011], Kaleta et al. [2011], Van Essen et al. [2011] and Kourounis

et al. [2014]. Moreover, another version, with the same reservoir shape but an entirely

different permeability field has been presented in Van Essen et al. [2013]. The original

stochastic model used in Jansen et al. [2008], Van Essen et al. [2009a] consists of an

ensemble of 100 realizations of a channelized reservoir in the form of discrete permeability

fields modeled with 60� 60� 7 = 25:200 grid cells of which 18:553 cells are active. The

non-active cells are all at the outside of the model, leaving an-egg-shaped model of active

cells. Each of the permeability fields in each of the seven layers has been hand-drawn

using a simple computer-assisted drawing program. The realizations display a clear

channel orientation with a typical channel distance and sinuosity. The permeability

values have not been conditioned on the wells, while the porosity is assumed to be

constant. The seven layers have a strong vertical correlation, such that the permeability

fields are almost two-dimensional. A sample of six realizations is displayed in Fig. A.1.

The combination of the deterministic model and the ensemble result in an ensemble of

101 models which together form the ”standard model”.

In all publications the Egg Model has been used to simulate two-phase (oil-water) flow.

Because the model has no aquifer and no gas cap, primary production is almost neg-

ligible, and the production mechanism is water flooding with the aid of eight injection

wells and four production wells, see Fig. A.2.

Unfortunately the details of the parameters settings in the publications listed above are

not always identical. Differences concern fluid parameters, grid cell sizes, well operating
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Figure A.1: Six randomly chosen realizations, displaying the typical structure of
high-permeability meandering channels in a low-permeability background

Figure A.2: Oil reservoir containing 8 injection and 4 production wells. Channels in
the reservoir have larger permeability, which is a measure inversely proportional to the

flowing resistance.

constraints, and production periods. Therefore, in Jansen et al. [2014], a ”standard

version” of the Egg Model has been presented which is meant to serve as a standard test

case in future publications. The parameters of the standard model have been listed in

in Table A.1. Fig. A.3 displays the relative permeabilities and the associated fractional

flow and Buckley-Leverett solution.

A.2 Implementation in MRST

MRST - MATLAB Reservoir Simulation Toolbox is an open-source MATLAB based

software, designed for rapid prototyping and demonstration of new simulation methods

and modeling concepts in reservoir engineering, see Lie et al. [2012]. The implementation

of Egg model in MRST is presented in this appendix. The Egg model is provided in an

Eclipse environment input file. The Eclipse input deck is directly read and simulated
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Figure A.3: Relative permeabilities (top-left), fractional flow (top-right), derivative
of fractional flow (bottom-left) and Buckley-Leverett solution (bottom-right).

in MRST using both sequential solvers and fully-implicit solvers. ’Deck reader ’ module

contains routines to read and manipulate Eclipse input deck.

A.3 Using sequential solution solvers

The two-phase system is solved using a sequential splitting in which the pressure and

fluxes are computed by solving the flow equation and then held fixed as the saturation

is advanced according to the transport equation. This procedure is repeated for a given

number of time steps. The transport equation will be solved by the single-point upstream

method with implicit time discretizations.

A.3.1 Defining model geometry and parameters

Model grid structure and rock properties, i.e., permeability field and porosity values

can be directly defined from the Eclipse input deck using routines ’initEclipseGrid’ and

’initEclipseRock’ respectively from MRST Deck reader toolbox. The grid is defined but
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Table A.1: Reservoir and fluid properties

Symbol Variable Value SI units

h Grid-block height 4 m
∆x;∆y Grid-block length/width 8 m

� Porosity 0:2 �
co Oil compressibility 1:0� 10�10 Pa�1

cr Rock compressibility 0 Pa�1

cw Water compressibility 1:0� 10�10 Pa�1

�0 Oil dynamic viscosity 5:0� 10�3 Pas
�w Water dynamic viscosity 1:0� 10�3 Pas
k0
ro End-point relative permeability, oil 0:8 �
k0
rw End-point relative permeability, water 0:75 �
no Corey exponent, oil 4:0 �
nw Corey exponent, water 3:0 �
Sor Residual-oil saturation 0:1 �
Swc Connate-water saturation 0:2 �
pc Capillary pressure 0:0 Pa
p̌R Initial reservoir pressure (top layer) 40� 106 Pa
Sw;0 Initial water saturation 0:1 �
qwi Water injection rates, per well 79:5 m3=d
pbh Production well bottom hole pressures 39:5� 106 Pa
rwell Well-bore radius 0:1 m
T Simulation time 3600 day

the non-active cells, as indicated by the keyword ACTNUM, are not removed. Therefore,

these inactive cells are removed manually. Injection and production wells are introduced

using routine ’verticalWell’ in all 7 layers of the model. A well can be either defined as

rate-controlled or bhp-controlled. In our case, the injection wells are defined as rate-

controlled and the production wells are bhp-controlled. Fig. A.4 shows the geometry

with injection and production wells of egg model, where Ii; i = 1; 2; � � � ; 8 are injection

wells and Pi; i = 1; 2; � � � ; 4 are the productions wells.

The sequential solvers only support incompressible fluids. As egg model is slightly

compressible with co = cw = 1:0 � 10�10Pa�1, MRST routine, ’initCoreyFluid’ is used

to implement a non-compressible fluid model. The fluid parameters such as viscosity,

phase relatively permeability and corey exponents are given in Table A.1. The initial

reservoir pressure is 400 bar with the initial reservoir water saturation of 0:1.

A.3.2 Results and comparison with Eclipse

The inputs are the injection rate defined at injection wells and they are kept fixed at

the maximum rate, i.e., 75:9m3=day. The bottom-hole pressures are 395bar for each

producers. The total simulation time is 3600 days with a fix step size of 30 days. The
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Figure A.4: Geometry and placement of Injection ’I’ and Production ’P’ wells.

pressure and fluxes are computed by solving the flow equation using routine ’implicit-

Transport’ and then held fixed as the saturation is advanced according to the transport

equation using routine ’solveIncompFlow’. The results are compared in terms of water

and oil production rates from the four production wells. Fig. A.5 shows the water and

oil production in m3=day from the four production wells resulted from MRST simulation

(in red) and compared with the rates resulted from an Eclipse run (in blue).

It can be observed that MRST sequential solvers do not provide a good match with

Eclipse results. It has to do with the fact that Eclipse uses compressible implicit solvers

to solve transport and flow equations. It takes 56 sec to solve standard egg model using

sequential solvers.

A.4 Using fully implicit solvers

MRST is equipped with fully implicit solvers using automatic differentiation. These

solvers are available with ’Ad-fi’ module in MRST and they support compressible flows.

A.4.1 Defining model geometry and parameters

The compressible fluid can be directly defined from Eclipse input file using routine ’init-

DeckADIFluid’ from Ad-fi module. Injection and production are also defined directly

from Eclipse using ’processWells’. Geometry and the rock properties i.e., permeability/-

porosities are defined in a same way as before using routines from Deck reader.
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(a) Production well 1 (b) Production well 2

(c) Production well 3 (d) Production well 3

Figure A.5: Water and oil production in m3=day for production wells with sequential
solvers compared to Eclipse

A.4.2 Results and comparison with Eclipse

The fully implicit solvers give the flexibility of using a variable step size of simulation.

The step size is chosen to be very small in the first 30 days of simulation i.e., 0:25 days,

1 days and 5 days. Later the step size is fixed at 30 days. ’solvefiADI’ is the main solver

available in automatic differentiation toolbox to solve flow and transport equation in a

fully implicit way. The results are compared in terms of water and oil production rates

from the four production wells. Fig. A.6 shows the water and oil production in m3=day

from the four production wells resulted from MRST simulation (in red) and compared

with the rates resulted from an Eclipse run (in blue).

Fully implicit solvers with a compressible fluid model in MRST provide a near-identical

output compared to Eclipse. The major drawback with fully implicit solvers is the long

time of simulation compared to sequential solvers as it takes 834:1 sec = 13:9 minutes

to solve the standard egg model on the same machine as solved with sequential solvers
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(a) Production well 1 (b) Production well 2

(c) Production well 3 (d) Production well 3

Figure A.6: Water and oil production in m3=day for production wells with implicit
solvers compared to Eclipse

in 56 sec, thus making it practically infeasible to be used for different applications e.g.,

robust optimization.
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B
Experiment design using OBF model with an
application to the oil reservoir water-ooding

process

The best time to design an experiment is after you have done it.

– R. A. Fisher

The design of an informative experiment is an important step to construct an accurate

parametric mathematical model. In oil reservoir water-flooding process, the limited

information contents in the production data is a serious concern. The water-flooding

process is represented by first-principle models which are highly complex and strongly

nonlinear in nature, making the direct applicability of experiment design tools very

challenging. Therefore a linear OBF model is identified around an operating point and

used for improving the information density of data by finding the optimal frequencies of

excitation. The identification of OBF model has been presented in chapter 5. The focus

of this work is to optimize the input excitation signal to yield informative experiments,

which will improve the estimation of the OBF model parameters.
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B.1 Introduction

Experiment design aims at optimizing an external excitation signal to increase the in-

formation density of the noise-corrupted measured data used for parameter estimation.

The improved information contents in data lead to lower variances of the estimated pa-

rameters. Input excitation design dates back to early 600s, where Levin [1960] is one

of the earliest contributions. In the early work of experiment design, see e.g., Mehra

[1974], Goodwin and Payne [1977], Zarrop [1979], Mehra [1981], some scalar function of

the asymptotic covariance matrix P� with constraints on input and/or output power is

minimized. The covariance matrix provides a measure of the average difference between

the estimate and the true value. Recent advances in experiment design particularly fo-

cus on the interaction between experiment constraints and performance specifications,

such as least-costly and application oriented frameworks, see e.g., Bombois et al. [2006],

Hjalmarsson [2009] and closed-loop methods, see e.g., Hjalmarsson and Jansson [2008],

Rathouskỳ and Havlena [2013], Marafioti et al. [2014], Hildebrand et al. [2015], Larsson

et al. [2015].

The dynamics of the water-flooding process is represented by first-principle models that

are typically very complex, infinite-dimensional with a strong nonlinear nature. The

information contents in the reservoir production data is very limited thus making these

models and the subsequent model-based optimization highly unreliable. A very large

number of physical parameters (ranging from hundreds to thousands) and the strong

nonlinearity of these models limit the direct applicability of experiment design methods

from system identification. Experiment design is well-developed for small-scale linear

systems and there are limited work on the extension to non-linear models, see e.g.,

Hjalmarsson and Mårtensson [2007], Valenzuela et al. [2013], De Cock et al. [2013],

Forgione et al. [2014].

In chapter 5, a linearized OBF model around an operating point of non-linear first-

principle reservoir model is identified using I/O data. The main focus of this work is to

address the question: how the excitation signal can be designed that yields informative

experiment for the identification of linearized model using using experiment design tools?

Experiment design with linearized model provides an indirect approach to improve the

information contents for the estimation of first-principle non-linear model parameters.

It can be shown, see e.g., Potters [2016], that the covariance matrix is directly affected

by:

� the input signal-to-noise (SNR), and
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� system’s sensitivity to small variation in model parameters and, in particular, its

frequency response.

We use system’s sensitivity with respect to model parameters as a heuristic way of finding

the optimal frequencies for the input excitation signal, where the sensitivity of the OBF

transfer function with respect to the black-box parameters is analyzed. Under the same

input signal amplitude, the frequencies at which this gradient is maximal, or high, leads

to low variances of the parameter estimate. A multi-sine signal is generated with those

frequencies where the gradient is maximal or high. For the sake of comparison, a PRBS

excitation signal is also used.

The appendix is organized as follows: In the next section, experiment design problem in

system identification is discussed. The OBF model structure is presented in section B.3.

In section B.4, the concept of using sensitivities for experiment design is introduced.

Later on, in section B.6 experiment design simulation example is given followed by

conclusions in section B.7.

B.2 Experiment design in system identification

The selection of input signal that can excite the system to obtain informative data is an

essential ingredient for system identification. The inverse of the asymptotic covariance

matrix of parameter estimate P�1
� , also known as the information matrix, is an affine

function of the input spectrum Φu, see, e.g., Potters [2016]. Therefore, in frequency

domain, the spectrum Φu is optimized which can shape the information matrix P�1
� .

Any signal that realizes the optimal spectrum Φ�u is an optimal input u. The early work

of experiment design focuses on some scalar measure of the covariance matrix leading

to different criteria such as:

A-optimality : min TrP�;

E-optimality : �maxP�;

D-optimality : detP�;

L-optimality : TrWP�

where W is a non-negative weighting matrix.

In the Prediction Error Method (PEM) settings, for a detailed explanation, see e.g.,

Ljung [1999], if the true system belongs to the model set, i.e., S 2 M, and if �̂N
N!1����!
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�0, then
p

(N)(�̂N � �0)
N!1����! N (0; P�), with

P� = [I(�)]�1j�=�0 ; (B.1)

I(�) =
1

�2
e

E[ (t; �) (t; �)>]; (B.2)

where the matrix I(�) is called the information matrix, �2
e is the variance of the white

noise innovation process, and  (t; �) is defined as:

 (t; �0) = �
@�(t; �)
@�

j�=�0 =
@ŷ(t; �)
@�

j�=�0

where �(t; �) is the one-step ahead prediction error and ŷ(t; �) is a one-step ahead pre-

dictor.

In chapter 5, an OBF model structure is used for the identification of linearized black-box

model. Experiment design can be used with the OBF model to improve the estimation

of black-box model parameters. Also, following the discussion in chapter 5, the input-

output mapping is represented in q�operator.

B.3 Orthonormal basis function (OBF) model structure

OBF model is a finite series expansion representation with generalized basis function �i
and it can capture system dynamics with few number of coefficients. For more details

on OBF models structure, see Heuberger et al. [2005].

Given a complete orthonormal basis f�ig1i=1 2 RH2 the series expansion G(q) of any

strictly proper asymptotically stable MIMO LTI system can be written as:

G(q) =

1X

i=1

�i�i (B.3)

where �i 2 Rny�nu is a matrix of expansion coefficients with ny outputs and nu inputs.

With the first n basis functions, the series expansion can be written as:

GOBF (q) =

nX

i=1

�i�i (B.4)
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B.4 Experiment design using OBF transfer function sen-

sitivity with respect to parameters

Due to the fact that as the black-box coefficients appear linearly in the transfer function

GOBF (q), OBF models provide an attractive solution to the inherit chicken-and-egg

problem for experiment design, i.e, the design of experiment depends on the to-be-

modeled system dynamics . The sensitivity of the transfer function with respect to the

parameters can be given as:

r�G =
@G
@�
j�=�0 (B.5)

In case of the OBF model structure where � 2 Rnu�ny are the black-box expansion

parameters, from eq. (B.4), the above sensitivity becomes as follows:

r�i GOBF =
@GOBF
@�i

j�i =�0 = �i (B.6)

Therefore, this gradient is the Bode magnitude of the selected OBFs and does not

require the exact knowledge of the dynamics of system (true parameter). The problem

of knowing the true parameter is shifted to knowing the basis functions, or in other

words finding the optimal pole locations for the basis functions �i.

B.5 Experiment design in oil reservoir water-flooding pro-

cess

Experiment design is a well-developed theory for linear systems with small number of

parameters. The nonlinearity and the complexity of reservoir models bring additional

challenge to the experiment design problem. For nonlinear systems, there is no expres-

sion of the covariance matrix that is explicit in the power spectrum of the excitation

signal, thus making experiment design a difficult problem for them. From a practical

viewpoint, currently nonlinear approaches are not directly applicable to the reservoir

models. Therefore, a linearized OBF model structure is identified around an operating

point used for the the experiment design and it is expected to improve the information

contents in the production data. The amplitude of the excitation is kept within a certain

level to ensure that the system remains around the operating point. Experiment design

with OBF model structure can also be included with the analysis presented in chapter

5 to improve the estimatation of black-box parameters.
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For the reservoir models, in Krymskaya [2013], several inputs e.g., PRBS, step signals

have been used to analyze the effect of adding excitation on the information contents

of data but the signal’s data length, amplitude/frequencies have not been optimized.

A sinusoidal excitation has been induced for the well testing under the name of the

project SmartX, Zenith and Foss [2013]. In Moreno and Lake [2014], capacitor-resistor

model has been used to study general prescriptions for the design of input signals that

enhance the information content of injection/production data in the estimation of well-

to-well interactions. Examples of the application of experiment design theory to real life

large-scale problems have been presented in Kool et al. [1987], Potters et al. [2016].

B.6 Simulation study

All the simulation experiments in this work are performed using MATLAB Reservoir

Simulation Toolbox (MRST), see Lie et al. [2012].

B.6.1 Reservoir model: The standard egg model

A single realization of the standard egg model is used. The complete list of parameters

and the details about the model set are presented in Appendix A, which is based on

Jansen et al. [2014]. The absolute-permeability field with the injection wells Ii; i =

1; 2; � � � ; 8 and the production wells Pi; i = 1; 2; � � � ; 4 is shown in Fig. B.1. The reservoir

Figure B.1: Egg model with eight injection wells I and four production wells P
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model has a strong nonlinear nature. A black-box linearized model can be identified for

the limited time frame in the early phase of the reservoir life cycle.

B.6.2 Experiment details

The reservoir model is a typical example of the MIMO system. For identification of

a MIMO model, we define twelve inputs, i.e., 8 injection rates at the injection wells

and the bottom hole pressures (bhp) at the production wells. BHPs are also considered

as free input for black-box model identification while they were fixed for model-based

optimization (as presented in previous chapters). The four outputs are considered to

be the flow rates at the production wells. Therefore, it is a MIMO model with 12 and

4 outputs, i.e., nu = 12; ny = 4. This input-output settings are the same as used in

Van Essen et al. [2013]. Step tests are performed to estimate the largest time constant

of the system. The duration of the experiment is based on the rule of thumb that

the experiment length N should be at least five times the largest time constant of the

system. Therefore, the total time of simulation is considered to be 80 days, i.e., T = 80

days. A Pseudo Random Binary Signal (PRBS) covers a wide range of frequencies and

it is suitable for generating a persistently exciting signal. Therefore a PRBS is used

and it is generated by using the MATLAB routine idinput. The amplitude for the

injection rates is chosen as 1m3=day and for the bhps as 0:3bar with clock period twice

of the sample time. This excitation signal is superimposed on the optimal input signal

u� to maintain good economic performance. The optimal input is obtained from the

model-based optimization as presented in the previous chapters. The sampling time of

dT = 0:1day is chosen and with the total time of experiment, i.e., T = 80days, a data

set of 800 I/O points is generated for system identification. As the real production data

is noise-corrupted, a Gaussian white noise is added on top of the measured (simulated in

our case) data with an SNR of 25dB. At first, an ARX model is identified to obtain the

poles �i for the basis function of OBF and with 7 poles a good fit is obtained. Therefore,

7 poles are considered resulting in 7� 12 = 84 black-box coefficients (parameters) to be

estimated for one output channel. As there are four output channels, the total number

of parameters is 84� 4 = 336. A state-space representation of the OBF model structure

(Heuberger et al. [2005]) is used. A least-square solution is obtained. Validation data

set is not considered and the results are given as the fit-to-noiseless-data of the four

output channels as shown in Fig. B.2. The output data is scaled by removing the mean

value.
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Figure B.2: Noiseless output (scaled) data and OBF model output

B.6.3 Experiment design

There are several choices for the experiment design criteria as discussed in the section

B.2. We select a heuristic way of choosing the optimal spectrum of the inputs by

analyzing the sensitivity of the output with respect to the estimated parameters. This

choice is motivated by the fact that the existing methods are limited to small-scale

problems and the optimization becomes slow and may run into numerical issues with

large number of to-be-estimated parameters. A detailed explanation about this heuristic

approach can be found in Potters [2016]. This approach is particularly suitable when

the linear model has high number of parameters, as in the case of the identified OBF

model. For the OBF model structure, these sensitivities can be given as:

r�i GOBF =
@GOBF
@�i

j�i =�0 = �i (B.7)

Therefore, it is in fact the Bode magnitude plot of the basis functions. For the chosen

basis function �i, these sensitivities are shown in Fig. B.3. The (near-)optimal frequen-

cies are chosen where the response has peaks as shown in the figure. In this case, two

bands of frequencies, i.e., from 2:89� 10�7 to 1� 10�6 and 4:8� 10�5 to 5:5� 10�5 are

used. These bands are randomly sampled and random phase sinusoid are generated.
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Figure B.3: Sensitivities of the output with respect to the parameters

B.6.4 System identification using optimized frequencies

A multi-sine wave with 6 sinusoidal components of the frequency points corresponding

to the peak on sensitivity plots are generated. The number of frequency components

is sufficient to satisfy the persistency of excitation condition of the OBF model. This

multi-sine signal is superimposed on the economically optimal input of normal operation

for collecting data as shown in Fig. B.4 for water injection rate and in Fig. B.5 for the

bhp defined at production wells. The sampling time is dT = 0:1day and the time of

simulation is now from 80 days of oil production to 160days. Hence, a data set of 800

input/output points are generated for system identification. The system behaves linearly

within this time window.

B.6.5 Excitation with multi-sine with optimal frequencies

As the time window for the experiment is small, the validation data set is not considered

and the results are given as the fit-to-noiseless-data of the four output channels as shown

in Fig. B.6. The output data is scaled by removing the mean value. The obtained BFR

for the output channels are given as:

BFR =
h

90:5 89:97 88:17 74:12
i
:
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Figure B.4: Water injection rates at injection wells with optimal frequencies

Figure B.5: Bottom-hole pressures (bhp) at the production wells with optimal fre-
quencies

BFR values show that the identified model has a satisfying accuracy. The co-variance

matrix of the parameter estimate is given as:

P� = (’>N � ’N )�1;
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Figure B.6: Noiseless output (scaled) data and OBF model output with multi-sine
input excitation with optimal frequencies

where ’N is the regressor matrix. The information matrix is the inverse of the covariance

matrix P�. One of the criteria for the experiment design is D�optimal design where the

determinant of the information matrix which represents the inverse of the volume of the

confidence ellipsoid is maximized. In case of the multi-sine excitation, the determinant

is equal to 13:59 � 1058. The trace of the information matrix which is the sum of the

parameter variances, also called the A�optimality, is 64:38� 102.

B.6.6 Comparison with PRBS excitation

A low-frequent PRBS signal with approximately the same power and data length as the

designed multi-sine signal is also used to excite the system. The results for the output

channels are shown in Fig. B.7. The output data is scaled by removing the mean value.

The obtained BFR for the output channels are given as:

BFR =
h

72:29 68:54 69:34 73:40
i
:

In case of the PRBS excitation, the determinant is equal to 62:21 � 1030. The trace of

the information matrix is 96:35�102. Hence the estimation of the black-box parameters

gives better results with only 6 sinusoidal components compared to a PRBS signal.
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Figure B.7: Noiseless output (scaled) data and OBF model output with PRBS input
excitation

B.7 Conclusions

An experiment design problem is formulated with the OBF model structure. The fol-

lowing conclusions can be drawn from this work:

� Designing the optimal excitation signal for the identification of model can improve

the quality of model estimate in terms of small variances. In our case, the estima-

tion of OBF model, e.g., as identified in chapter 5, can be improved by designing

the optimal frequencies of excitation to yield informative experiment.

� For the estimation of first-principle physical parameters of the non-linear model,

the approach presented in Mansoori et al. [2015] can be adopted to determine the

physical parameters with the identified black-box parameters. According the ap-

proach, the first-principle model is linearized having the physical parameters, then

an importance ranking, i.e., sensitivity of the transfer function with respect to the

parameters is performed to obtain substantial parameters. Finally an optimiza-

tion problem is defined to find (important) physical parameters by matching the

frequency response of the black-box transfer function and physics-based linearized

transfer function.
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� The sensitivity of model with respect to parameters can be directly used for de-

signing the experiment for non-linear model. In case of reservoir models, these

sensitivities are expensive to calculate.
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Prékopa, A. (2013). Stochastic programming, volume 324. Springer Science & Business

Media.
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