Luminance distribution measurements

Citation for published version (APA):

Document status and date:
Published: 03/05/2017

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
IV. Conclusion

This project aims at developing Models for Human Centric Lighting based on field studies. Luminance distribution is expected to be important for visual aspects, consensus for non-visual metrics is not there (yet).

II. Pilot Field Study

Measurements in small meeting room using practical luminance distribution measurement device.

- Requirements
 - Intuitive controllable lighting system
 - Electrical light + daylight
- Benefits
 - Multiple users
 - New preference for every meeting
 - Multiple light indicators are based on luminance distribution

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Luminance, Luminance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glare</td>
<td>UGR, DGP</td>
</tr>
<tr>
<td>Distribution</td>
<td>Uniformity, Luminance ratios</td>
</tr>
<tr>
<td>Directionality</td>
<td>Vector to Scalar Ratio</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Luminance Variability</td>
</tr>
</tbody>
</table>

Objectives:
- Correlations between indicators
- Normative aspects/indicators
- User preferences lighting quality indicators

III. Implementation

Building management systems tend cause annoyance due to inadequate sensory input (photocell).

- Luminance distribution provides spatially resolved data
- Suitable for open and closed loop systems

The effectiveness of luminance distribution measurement device compared to photocell can be modelled based on field measurements conducted with the practical luminance distribution measurement device. This device is able to conduct both spot and spatially resolved measurements.

IV. Conclusion

- Luminance distribution can be measured in a practical and economical way.
- Luminance distribution measurements provide the opportunity to evaluate multiple light quality aspects simultaneously.
- A luminance distribution measurement device can improve the effectiveness of building management systems.
