Nocturnal polysomnography of 39 patients were sleep staged by an experienced technologist according to standard criteria. The EEG was systematically examined for the presence of non-neurogenic artefact. Experienced technologists manually reviewed each 5 s epoch of EEG and scored epochs contaminated by artefact. A computer-based automated algorithm also identified 5 s epochs of EEG contaminated by artefact. We compared the manual and automated artefact scores and assessed differences in accuracy, sensitivity, specificity, and Cohen’s kappa of the two artefact identification methods. We also compared the absolute spectral power of the EEG from the raw recording (no artefact removal), and following manual and automated artefact removal.

Results: The proportion of 5 s epochs identified as contaminated by artefact were 5.3 ± 3.3% and 6.8 ± 1.2% with the manual and automated methods, respectively (P < 0.05). Compared to the gold-standard manual method, the accuracy of the automated algorithm was 93.3 ± 3.9%, sensitivity 71.9 ± 20.6% and specificity 94.6 ± 4.7%. Cohen’s kappa showed moderate agreement between the two methods (0.47 ± 0.24). Power spectral analysis of the EEG during rapid-eye-movement sleep demonstrated a reduction of delta power (0.5–4.5 Hz) following the exclusion of artefactual epochs (raw: 103.3 ± 60.4 uV2; manual: 71.8 ± 34.8 uV2; automated: 68.6 ± 30.0 uV2; P < 0.05 for raw versus manual and raw versus automated; P = 0.11 for manual versus automated).

Conclusion: The high accuracy, sensitivity and specificity demonstrate the ability of the computer-based automated algorithm to successfully identify non-neurogenic artefact in sleep EEG. The statistical comparison of spectral power between the raw, manual, and automated artefact removal methods further support the importance and practical use of the automated algorithm to identify EEG artefact in sleep studies prior to quantitative analysis.

Screening of obstructive sleep apnoea in awake subjects

P. CASEIRO1, R. FONSECA-PINTO2 and A. ANDRADE3
1Escola Superior de Tecnologia da Saúde de Coimbra, Coimbra, PT, 2Instituto Politécnico de Leiria, Leiria, PT, 3Instituto de Biofísica e Engenharia Biomédica, Lisbon, PT

Background: Polysomnographic signals are usually recorded from patients exhibiting symptoms related to sleep disorders such as Obstructive Sleep Apnea (OSA). OSA has a relatively high prevalence, occurring in 5% of the adult population, but the majority of these cases remain undiagnosed. The usual procedure entails an overnight recording several hours long. Our goal is to present a fast screening method to identify OSA during the awake period, in order to simplify the diagnosis and reduce costs and waiting time for diagnosis and treatment.

Methods: This study presents a methodology to help with the screening of OSA using a 5-min oronasal airway pressure signal emanating from a polysomnographic recording during the awake period, eschewing the need for an overnight recording. The Hilbert-Huang Transform (a recent time-frequency analysis method) was used to extract intrinsic oscillatory modes from the signals. The frequency distribution of both the first mode and the second mode and their sum was shown to differ significantly between non OSA subjects and OSA patients.

Results: The clinical sample consisted of a total of 41 subjects, 20 non OSA individuals and 21 individuals with OSA. An index measure based on the distribution frequencies of the oscillatory modes yielded a sensitivity of 81.0% (for 95% specificity) for the detection of OSA. Two other index measures based on the relation between the area and the maximum of the 1st and 2nd halves of the frequency histogram both yielded a sensitivity of 76.2% (for 95% specificity). The data was mostly composed of severe OSA patients (12), however it also included 4 patients with mild OSA and four patients with moderate OSA. Efficiency of detection was not dependent on disease severity. No significant correlations were found between age, sex and the best correlated indexes.

Conclusions: Although further studies will be needed to test the reproducibility of these results, the proposed measures seem to provide a fast method to screen OSA patients, in awake period, thus reducing the costs and the waiting time for diagnosis.