On robust performance for lightly damped systems: non-normalized coprime factors and weighting function design

Citation for published version (APA):

Document status and date:
Published: 01/01/2013

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 21. Apr. 2021
On Robust Performance for Lightly Damped Systems: Non-normalized Coprime Factors and Weighting Function Design

Frank Boeren, Tom Oomen, Okko Bosgra, Robbert van Herpen, Maarten Steinbuch
Eindhoven University of Technology
f.a.j.boeren@tue.nl

Introduction

Next-generation high-precision positioning systems are designed to be lightweight, in order to enable an increase of the speed of movement. Lightweight systems tend to have complex dynamical system behavior at frequencies relevant for control. This flexible dynamical behavior should be explicitly addressed during controller design to i) improve robustness with respect to model uncertainty and ii) suppress undesired vibrations of the wafer stage.

Formulation optimization criterion

H_∞-optimization is a powerful tool for control design of complex multivariable systems, since it explicitly takes robustness into account. However, it is well known that the selected uncertainty structure determines to a large extent the distance between plants [1]. As a result, H_∞-optimal controllers can, for certain uncertainty structures, not be guaranteed to stabilize lightweight motion systems with respect to small variations in lightly damped flexible dynamical behavior at frequencies relevant for control, see Fig. 1.

An experimental confrontation with an industrial motion system as shown in Fig. 2 illustrates the performance enhancement resulting from the proposed weighting function design in the non-normalized coprime factor framework.

Ongoing research

Recent developments within the presented framework are aimed at controller synthesis [3] and distance measures [4]. These developments illustrate the potential of non-normalized coprime factors for an improved performance definition for complex multivariable systems.

Robustness with respect to uncertainty is a key aspect for closed-loop performance. As illustrated in [2], the freedom introduced by non-normalized coprime factor uncertainty can be exploited to improve the formulation of performance and robustness requirements in the optimization criterion. The design of weighting functions is of vital importance in the formulation of such a criterion. In this research, a first solution is provided for the formulation of weighting functions that reflect performance and robustness goals for lightly damped resonance phenomena close to the crossover region, as indicated by the dashed rectangle in Fig. 1.

Experimental results

Recent developments within the presented framework are aimed at controller synthesis [3] and distance measures [4]. These developments illustrate the potential of non-normalized coprime factors for an improved performance definition for complex multivariable systems.

References

This research is supported by Philips Innovation Services.