Differences in fetal bovine serum affect the responsiveness of cells to mechanical loads

Citation for published version (APA):

Document status and date:
Published: 01/09/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
applications in refilling drug depots in cancer therapy, wound healing, and drug-eluting vascular grafts and stents.

Glycocalyx Integrity Influences Nanoparticle Uptake by Endothelial Cells

M. J. Cheng, R. Kumar, S. Sridhar, T. J. Webster, E. E. Ebong; Northeastern University, Boston, MA.

Atherosclerosis is a precursor of cardiovascular disease, a leading cause of global mortality. Mechanisms of endothelial cell (EC) dependent atherosclerosis are not fully understood. The EC surface sugar coat—the glycocalyx (GCX)—may play an important role, since it is shed in atherosclerosis. GCX may be a possible therapeutic target if it can be regenerated. Nanoparticle-based regeneration to treat cardiovascular disease is becoming very popular, and we wish to study how GCX alterations may impair or amplify the effect of regenerative agents delivered to sites of atherosclerosis via nanoparticles. To demonstrate how nanoparticle-based drug delivery is impacted by GCX conditions, we expose rat fat pad EC (RFPEC) with intact GCX to ultra-small PEGylated gold nanoparticles. The RFPEC with intact GCX do not exhibit any nanoparticle uptake. In contrast, RFPEC with protein deficient and collapsed GCX retain some nanoparticles. RFPEC with enzymatically degraded GCX heparan sulfate, the most abundant component of the GCX, retain a more substantial number of nanoparticles. In another case, after enzymatic heparan sulfate degradation, we induce GCX regeneration by adding heparan sulfate to the culture media for its incorporation into the GCX. HS regeneration results in restoring blockage of nanoparticle entry into RFPEC. This work indicates that the GCX integrity and composition does influence nanoparticle uptake by EC. We look forward to further elucidating how glycocalyx mediates the action of nanoparticle drug carriers, especially those that are under development for targeting and composition does influence nanoparticle uptake by EC. We look forward to further elucidating how glycocalyx mediates the action of nanoparticle drug carriers, especially those that are under development for targeting and composition does influence nanoparticle uptake by EC.

3D Reconstitution of Brain Stromal Microenvironment

Y. Shin1, K. Yang2, S. Han1, H. Jeong1, H. Kim1, S. Cho2, S. Chung1;
1Korea University, Seoul, KOREA, REPUBLIC OF, 2Yonsei University, Seoul, KOREA, REPUBLIC OF, 3University of Pennsylvania, Philadelphia, PA.

Neural stem cells (NSCs) reside in a specialized microenvironment termed the “Neural stem cell niche”, which maintains the capacity of both self-renewal and differentiation of NSCs through various microenvironmental cues involving growth factors, small molecules, extracellular matrix (ECM), cell-cell and cell-ECM interactions, and brain vasculature. To increase our knowledge of the mechanisms governing the behaviors of NSCs, it should be required to comprehensively understand their instructive stromal microenvironment.

To investigate microenvironmental regulation on NSCs’ behavior and homeostasis, vascular niche on ECM was formed in 3D. The 3D reconstitution dramatically presents NSC behavior under various microenvironments. For example, brain vasculature enhanced NSCs’ self-renewal and at the same time, also regulated their differentiation fate. The micromodified study enabled various types of interactions, on spatial proximity, chemical/physical interactions and interstitial molecular transport.

Multiscale and Multidisciplinary Analysis of Rat Bone Health Following In Utero Vitamin D Deficiency

T. Li1, T. Jenkins1, S. A. Lanham1, D. Sreenivasan1, P. J. Thurner1, J. Fernandez1, R. O. Orefo1;
1Bone & Joint Research Group, University of Southampton, Southampton, UNITED KINGDOM, 2University of Southampton, Southampton, UNITED KINGDOM, 3University of Auckland, Auckland, NEW ZEALAND, 4Vienne University of Technology, Vienna, AUSTRIA.

Bone mechanical competence is derived from a number of size, material and structural components, which are directed by the bone biology environment. Previously we have described an integrated approach to interrogate these components within a bone sample to predict strength. In this investigation, we utilise this approach together with computational modelling to analyse a rat model of in utero vitamin D deficiency (VDD). Femora from 21 day old male rats were analysed for osteogenic gene expression by RT-qPCR, microarchitecture and bone mineral density by µCT scanning, fracture toughness by notched bend testing and overall bone strength by three-point bend testing. µCT scans were used to generate FE models to predict bone strength computationally. Femora from VDD background rats were found to have reduced midshaft area when compared to controls (p<0.04). No differences were found within osteogenic gene expression, BMD, fracture toughness or cortical thickness. These results show how in utero VDD causes reduced bone health in male rats at 21 days of age and indicates how mechanical function of bone can be predicted. These data and approach can be used to inform and target bone regenerative therapy and scaffold tissue formation to key components of bone health.

Micro-RNA Plasmid Loaded Nanoparticles Efficiently Modulate Transforming Growth Factor-beta1 Expression in Healing Intrasynovial Flexor Tendons: An In Vitro and In Vivo Study

Y. Zhou1, L. Zhang2, Q. Chen1, Y. Wu1, X. Wang1, P. Liu1, J. Tang1;
1Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, CHINA, 2Neuroregeneration Laboratory, Nantong University, Nantong, Jiangsu, CHINA, 3Rhode Island Hospital, Providence, RI.