Towards viable nuclear fusion reactors

A. Mannheim, J. A. W. van Dommelen, M. G. D. Geers

Research goal: Can the heat extractor (divertor) withstand the extreme loads in a future fusion reactor for a sufficient amount of time?

Method

1. **Grain level: neutron damage**

 \[
 \frac{dC}{dt} = \text{Defect Production} + \text{Evolution} - \text{Removal (at sinks)}
 \]

 Method: **Cluster dynamics model** for the concentrations of vacancies (V), self-interstitial atoms (I), and dislocations.

 Scale: \(\Lambda - \mu m \)

 Based on Li (2012), Stoller (1990), Yi (2015), Jourdan (2015)

 - Defect Production
 - Evolution
 - Removal (at sinks)

 Grain size dependence:

 The ease with which defects find the grain boundary sink.

 Results

 Microstructural evolution

 - Stored defect energy
 - Average grain size

 Damage accumulation vs. recovery

 - Defect accumulation / GB mobility / point defect mobility / nucleation rate / individual grain behavior can all be studied with this model.
 - Pace of renewal of the microstructure.

 Conclusions/Outlook

 - The multi-scale model for the microstructural evolution of tungsten under heat and neutrons shows to be a versatile tool to study the temperature dependent stability of the original microstructure and the competition between the various processes for damage and recovery.
 - In future, lifetime of the divertor monoblocks will be studied by combining the (stress-dependent) microstructural model with a mechanical FE analysis.

Figure 1: the divertor in the JET reactor (www.iter.org, left) consists of many tungsten monoblocks (on the right).