

Data structures for Fréchet queries in trajectory data

Citation for published version (APA):
de Berg, M. T., Mehrabi, A. D., & Ophelders, T. A. E. (2017). Data structures for Fréchet queries in trajectory
data. In CCCG 2017 - 29th Canadian Conference on Computational Geometry, Proceedings 2017 (pp. 214-219)

Document status and date:
Published: 01/01/2017

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 30. May. 2023

https://research.tue.nl/en/publications/5398c1ab-32bd-4510-9098-74397a976a61

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Data Structures for Fréchet Queries in Trajectory Data∗

Mark de Berg Ali D. Mehrabi Tim Ophelders

Abstract

Let π be a trajectory in the plane, represented as a poly-
line with n edges. We show how to preprocess π into a
data structure such that for any horizontal query seg-
ment σ in the plane and a subtrajectory between two
vertices of π, one can quickly determine the Fréchet dis-
tance between σ and that subtrajectory. We provide
data structures for these queries that need O(n2 log2 n)
preprocessing time, O(n2 log2 n) space, and O(log2 n)
query time. If we are interested only in the Fréchet
distance between the complete trajectory π and a hor-
izontal query segment σ, we can answer these queries
in O(log2 n) time using only O(n2) space.

1 Introduction

Comparing the shapes of polygonal trajectories—or
time series in general—is an important task that arises
in many contexts and is an active line of research in
computational geometry and several other research ar-
eas [12]. A basic question here is how one can formally
compare two given trajectories and to measure how sim-
ilar they are to each other. To this end, several simi-
larity measures have been developed in the past, and
the Fréchet distance [1] is probably the most popular
one: it has been used in various applications includ-
ing speech recognition [11], signature and handwriting
recognition [13], geographic applications such as map-
matching of vehicle tracking data [5], and moving ob-
ject analysis [6]. The Fréchet distance is commonly de-
scribed using the following “leash” metaphor: a man
walks on one trajectory and has a dog on a leash on
the other trajectory. Both man and dog can vary their
speeds, but they may not walk backwards. The Fréchet
distance between the two trajectories is the length of the
shortest leash with which man and dog can walk from
the beginning to the end of the respective trajectories.

There has been a vast amount of work on algorithmic
aspects of similarity measures and the Fréchet distance
in particular, and a complete review is beyond our pos-
sibilities here. (We refer an interested reader to [12] for
a comprehensive discussion on this topic.)

∗Department of Mathematics and Computer Science, TU
Eindhoven, the Netherlands. The authors are supported by the
Netherlands Organization for Scientific Research (NWO) under
grants 024.002.003, 612.001.118, and 639.023.208, respectively.

Most of the existing works dealing with similarity
measures for trajectories study the following algorith-
mic question: how quickly can one compute or approx-
imate the similarity measure for two given trajectories?
However, in several applications it is helpful to store the
trajectories into a data structure that allows a user to
quickly compute the similarity between trajectories and
a query trajectory. The results in this paper contribute
to this research direction.

Background. There are several papers that study the
problem of designing data structures for querying a tra-
jectory (or a set of trajectories), to find subtrajectories
(or the subset of trajectories) that are similar to a given
query trajectory with respect to Fréchet distance. Due
to space limitations we are able to only highlight a few
of the works.

De Berg et al. [3] showed how to store a trajectory
π into a data structure such that, given a query seg-
ment σ and a threshold δmax, one can count all sub-
trajectories of π whose Fréchet distance to σ is at most
δmax. However, their work has several drawbacks: (i)
in addition to all the correct subtrajectories their data
structure may include additional subtrajectories whose
Fréchet distance to σ can be up to a factor 2+3

√
2 times

larger than δmax, (ii) their data structure is a compli-
cated multi-level structure which is difficult to imple-
ment and unlikely to be efficient in practice, and finally
(iii) it is unclear how to actually report the subtrajec-
tories in an efficient manner. In a closely related work
Gudmundsson and Smid [10] studied a more general ver-
sion of the problem (where the data structure stores a
geometric tree instead of a trajectory and the query is
also a trajectory), but their solution makes several as-
sumptions on the input: the tree must be c-packed and
the edges of the tree and query must be relatively long
compared to δmax. Along the same line of research, De
Berg and Mehrabi [4] presented data structures for pre-
processing a given trajectory π in the plane representing
the movement of a player during a game, such that the
following queries can be answered: given two points s
and t in the plane, report all subtrajectories of π in
which the player has moved in a more or less straight
line from s to t. They consider two measures of straight-
ness, namely dilation and direction deviation, and pre-
sented efficient and easy-to-implement data structures
with fast construction procedures and provable space

214

29th Canadian Conference on Computational Geometry, 2017

and error guarantees. As far as we are aware, the work
by Driemel and Har-Peled [8] is the most related work
to our work. They presented a data structure for pre-
processing a trajectory π such that given a query tra-
jectory σ with k vertices and two vertices p and q of π,
one is able to approximate the Fréchet distance between
σ and the subtrajectory of π from p to q, up to a con-
stant factor. In this paper we study the same problem
as Driemel and Har-Peled, but our goal is to compute
the exact Fréchet distance. To be able to still obtain
fast query times, we restrict our attention to the special
case where σ is a horizontal segment.

Contributions. We study the problem of preprocess-
ing a trajectory π with n edges in the plane into a data
structure that is able to quickly answer the following
type of queries: given a horizontal line segment σ in the
plane and two vertices p, q of π, compute the Fréchet
distance between σ and the subtrajectory of π from p
to q. Our main result states that such a π can be pre-
processed, affordingO(n2 log2 n) time, into a data struc-
ture such that the desired queries can be answered in
O(log2 n) time. The data structure needs O(n2) space if
p, q are the endpoints of π, and needs O(n2 log2 n) space
otherwise.

2 Preliminaries

For a point p in the plane, we denote its coordi-
nates by (p.x, p.y). For two point sets P and Q,
let d−→

H
(P,Q) := supp∈P infq∈Q ‖p−q‖ be the directional

Hausdorff distance from P to Q.
Let p0, p1, . . . , pn be a sequence of n + 1 points in

the plane. We denote the polyline (or trajectory) de-
fined by this sequence by P(p0, . . . , pn). We generally
view a polyline π := P(p0, . . . , pn) as a piecewise-linear
function. Namely, the function π : [0, n] → R2 such
that π(i+ t) := (1− t)pi+ tpi+1 for all i ∈ {0, . . . , n−1}
and all 0 ≤ t ≤ 1. With a slight abuse of notation, we
sometimes also use π to denote the image of this func-
tion, which is a point set in R2; namely, the union over
i of the segments between pi and pi+1.

For two polylines π and σ of n and m edges, respec-
tively, their Fréchet distance is defined as

dF (π, σ) := inf
α : [0,1]→[0,n]
β : [0,1]→[0,m]

sup
t∈[0,1]

‖π(α(t))− σ(β(t))‖,

where α and β range over continuous nondecreasing sur-
jections. Given such α and β, the point π(α(t)) is said
to be matched with σ(β(t)).

Let `y be the horizontal line R×{y}. For two points p
and q in the plane, the point on `y minimizing the max-
imum distance to p or q is the point where `y intersects
the perpendicular bisector of the line segment from p
to q, if the intersection lies inside the vertical strip

`y
q

p

Figure 1: The point (green) on the line `y := R × {y}
minimizing the distance to the farthest of p and q, and
its trajectory (red) as y varies.

[p.x, q.x]; see Figure 1. Otherwise, it is either (p.x, y)
or (q.x, y). Furthermore, we define the distance

B(p,q)(y) = min
x∈R

max{‖p− (x, y)‖, ‖q − (x, y)‖}

as the minimum distance over all points on `y to the
farthest of p and q.

3 Fréchet distance to a segment

In this section, we show that the Fréchet distance be-
tween π and σ can be captured in an alternative ex-
pression Fy(π, σ) in the special case where σ is a single
(horizontal) segment. This alternative expression forms
the basis for our data structures.

Let π := P(p0, . . . , pn) be a polygonal trajectory of n
edges in the plane. Let x0 ≤ x1 and y ∈ R, and
define s0 := (x0, y) and s1 := (x1, y), so that σ :=
P(s0, s1) is a horizontal segment in the plane. We can
now define Fy(π, σ) as follows:

Fy(π, σ) := max{‖p0 − s0‖,
‖pn − s1‖,
d−→
H

(π, σ),

max
i≤j, pi.x≥pj .x

B(pi,pj)(y)}.

(1)

The last term in this equation involves the term
B(pi,pj) between pairs of vertices of π with pj .x ≥ pi.x
even though pj appears later than pi along the trajec-
tory (as i ≤ j). Note that σ is directed to the right,
since we assume that x0 ≤ x1; so in a sense, these
pairs (pi, pj) are those that “go backwards” relative to σ.

To show that dF (π, σ) = Fy(π, σ), we first show
that dF (π, σ) ≥ Fy(π, σ).

215

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Lemma 1 dF (π, σ) ≥ maxi≤j, pi.x≥pj .xB(pi,pj)(y).

Proof. Suppose not, then dF (π, σ) < B(pi,pj)(y) for
some i ≤ j with pi.x ≥ pj .x. Let d = dF (π, σ),
and let e = B(pi,pj)(y) for such i and j. Let x∗ =
arg minx∈R max{‖pi − (x, y)‖, ‖pj − (x, y)‖}. Then e =
max{‖pi− (x∗, y)‖, ‖pj − (x∗, y)‖} > d. We have pi.x ≥
x∗ ≥ pj .x (otherwise one can decrease e by replac-
ing x∗ by pi.x or pj .x). We have ‖pi − (x′, y)‖ > d for
all x′ ≤ x∗ and ‖pj− (x′, y)‖ > d for all x′ ≥ x∗. There-
fore, for any α and β, with ‖π(α(t)) − σ(β(t))‖ ≤ d,
we must have β(t) > β(t′) when α(t) = i and α(t′) = j.
Hence α and β cannot both be monotone nondecreasing
surjections. This contradicts that d < e. �

Lemma 2 dF (π, σ) ≥ Fy(π, σ).

Proof. For all nondecreasing surjections α and β, the
point p0 is matched with s0, and pn is matched with s1.
Therefore dF (π, σ) ≥ ‖p0 − s0‖ and dF (π, σ) ≥ ‖pn −
s1‖. As all points of π are matched with some point
of σ, we have dF (π, σ) ≥ d−→

H
(π, σ). Combining this

with Lemma 1, we get that dF (π, σ) ≥ Fy(π, σ). �

To show that dF (π, σ) ≤ Fy(π, σ) we use free space
diagrams, which are a tool commonly used to com-
pute the Fréchet distance. For a given distance thresh-
old ε, the free space diagram Fε(π, σ) = {(a, b) ∈
[0, n] × [0, 1] | ‖π(a) − σ(b)‖ ≤ ε} indicates the pairs
of points on π and σ that are at most distance ε apart.
The product parameter space [0, n] × [0, 1] consists of
a row of n cells [i, i + 1] × [0, 1], each of which has
a convex intersection with Fε(π, σ). The Fréchet dis-
tance between π and σ is at most ε if and only if
(0, 0) ∈ Fε(π, σ), (n, 1) ∈ Fε(π, σ) and for each i < j,
there exists 0 ≤ b ≤ b′ ≤ 1 such that (i, b) and (j, b′) lie
in Fε(π, σ).

Lemma 3 dF (π, σ) ≤ Fy(π, σ).

Proof. Let d = Fy(π, σ) and let F = Fd(π, σ). It
suffices to show that (0, 0) ∈ F , (n, 1) ∈ F and for
each i < j, there exists 0 ≤ b ≤ b′ ≤ 1 such that (i, b)
and (j, b′) lie in F . Indeed, because d ≥ ‖p0 − s0‖
and d ≥ ‖pn − s1‖, both (0, 0) and (n, 1) lie in F .

We will show that for all i < j, there exist 0 ≤
b ≤ b′ ≤ 1 for which (i, b) and (j, b′) lie in F .
Because d−→

H
(π, σ) ≤ d, we have for each i that

some (i, b) ∈ F . So let b ≥ 0 be the minimum value
for which (i, b) ∈ F and let b′ ≤ 1 be the maximum
value for which (j, b′) ∈ F . We show that b ≤ b′.
Suppose for a contradiction that b′ < b, then pj .x ≤
σ(b′).x < σ(b).x ≤ pi.x. But then since i < j, we
have d ≥ B(pi,pj)(y). However, by convexity of free
space cells, there is no value b′′ for which both (i, b′′)
and (j, b′′) lie in F , so B(pi,pj)(y) > d, which is a con-
tradiction. �

Theorem 4 follows readily from Lemmas 2 and 3.

Theorem 4 Let x0 ≤ x1 and y ∈ R. Let s0 = (x0, y)
and s1 = (x1, y) so that σ = P(s0, s1) is a horizontal
segment in the plane. Let π be an arbitrary polygonal
trajectory in the plane. Then dF (π, σ) = Fy(π, σ).

4 The basic data structure

In this section we describe our data structure for the
case where we want to compute the Fréchet distance
from a horizontal query segment Q to the entire trajec-
tory π. In the next section we then show how to gener-
alize the solution to the case where a query also specifies
two indices q, q′, with 0 ≤ q ≤ q′ ≤ n, and we want to
compute the Fréchet distance between Q and the sub-
trajectory πq,q′ of π. We use πq,q′ , for 0 ≤ q ≤ q′ ≤ n, to
denote the subtrajectory of π from vertex pq to vertex
pq′ .

Our data structure consists of three components each
of which is based on one of the terms in Equation 1.
For the first two terms of Equation 1, we simply store
the endpoints p0 and pn of π, so that we can compute
their distance to respectively s0 and s1 in constant time
during the query procedure. To handle the third term
of Equation 1, we provide the following lemma.

Lemma 5 For a polyline π := P(p0, . . . , pn) and a hor-
izontal segment σ = P(s0, s1) with s0 := (x0, y), s1 :=
(x1, y) and x0 ≤ x1, we have

d−→
H

(π, σ) = max{ max
pi.x∈(−∞,x0]

‖s0 − pi‖,

max
pi.x∈[x1,+∞)

‖s1 − pi‖,

max
i
|y − pi.y|}.

(2)

Proof. Recall that the directed Hausdorff distance
from π to σ is the distance from the point on π far-
thest from σ. This distance is attained at a vertex pi
of π, because one of the endpoints of each edge of π is
at least as far from σ as all points interior to that edge.
If pi.x ≤ x0, then its distance to σ is ‖pi−s0‖. If pi.x ≥
x1, then its distance to σ is ‖pi − s1‖. Otherwise, the
point on σ closest to pi is (pi.x, y), at distance |pi.y−y|.
Since |pi.y − y| ≤ ‖pi − s0‖ and |pi.y − y| ≤ ‖pi − s1‖,
the claim follows. �

Lemma 5 suggests we compute d−→
H

(π, σ) using a data
structure D with the following components. The proof
of Theorem 7 shows how these components are com-
bined to answer a given query.

• We store the vertices of π, ordered by x-coordinate,
in a balanced binary tree T (π). For each node ν
in T (π), we store a farthest-point Voronoi diagram
FVD(ν) on the vertices of π in the subtree rooted
at ν.

216

29th Canadian Conference on Computational Geometry, 2017

• We let top(π) and bottom(π), respectively, store the
topmost and the bottommost vertices of π.

It remains to deal with the last term in Equation 1.
To this end, we first observe that for a fixed pair (pi, pj)
of vertices of π with i ≤ j and pi.x ≥ pj .x, the func-
tion B(pi,pj)(y) consists of two half-lines with slopes −1
and 1, respectively, and possibly a hyperbolic arc con-
necting their endpoints; see Figure 2. The hyperbolic
arc captures the distances from pi to the intersection
of `y with the perpendicular bisector of the line segment
from pi to pj . The two half-lines correspond to the dis-
tance to pi and pj , respectively. The endpoint of such a
half-line lies at the value of y for which the perpendicu-
lar bisector intersects the vertical line through pi, or pj ,
respectively. As a consequence, computing the last term
in Equation 1 for all possible values of y-coordinates
of σ corresponds to computing the upper envelope of
quadratically many hyperbolic arcs (and line segments);
see Figure 3.

We let E(π) denote the upper envelope and we store
it into a list L. The list L represents E(π) as an ordered
list of t pieces, where we next show that t = O(n2).

Lemma 6 The complexity of E(π) is O(n2).

Proof. We show that any two functions B(pi,pj) and
B(pk,pl) intersect at most twice. Then according to

pi

pj

B(pi,pj)(y)

y

0

pj .y

pi.y

Figure 2: Left: the trajectory of the point on `y min-
imizing the distance to the farthest of pi and pj as y
varies. Right: the distance from this point to the far-
thest of pi and pj as a function of y.

Davenport-Schinzel sequences [9, Chapter 21] the com-
plexity of E(π) will be linear in the number of hyperbolic
arcs (and line segments), which is O(n2).

First recall that each function B(p,q) consists of three
pieces: two half-lines of slopes of -1,+1, and one hy-
perbolic arc. The two hyperbolic arcs arc(pi, pj) and
arc(pk, pl) of any two functions B(pi,pj) and B(pk,pl) in-
tersect at most twice as they are quadratic functions. In

p2.y

p0.y

p1.y
p4.y

p5.y

p3.y

p0

p1

p2

p3

p4

p5

B(·,·)(y)

y

maxi≤j, pi.x≥pj .x B(pi,pj)(y)

0

Figure 3: Left: a trajectory and all the perpendicular bisectors for pairs (pi, pj) with i ≤ j and pi.x ≥ pj .x. Right: the
corresponding hyperbolic arcs of the pairs pi, pj with i ≤ j and pi.x ≥ pj .x. The arcs in red form the upper-envelope.

217

CCCG 2017, Ottawa, Ontario, July 26–28, 2017

addition, the half-lines have slopes -1 and +1 and thus
one can easily show that any two functions B(pi,pj) and
B(pk,pl) intersect at most twice. �

Putting everything together we obtain the following
result.

Theorem 7 Given a trajectory π with n edges in the
plane, one can preprocess π into a data structure of size
O(n2) such that queries that ask for the Fréchet distance
between π and a given horizontal query line segment in
the plane, can be answered in O(log2 n) time. The pre-
processing time of the data structure is O(n2 log n).

Proof. The preprocessing time of the data structure
comes from the fact that it takes O(t log t) time to com-
pute the upper envelope of t hyperbolas in the plane [9,
Chapter 21]. The data structure consists of two data
structures D and L. The data structure D is essen-
tially a balanced binary search tree in which each node
ν stores a farthest-point Voronoi diagram on the ver-
tices of π stored in the subtree rooted at ν. Since a
farthest-point Voronoi diagram structure needs O(n)
space [2], for a point set of size O(n), each level of the
binary search tree uses O(n) space and therefore D uses
O(n log n) space in total as the binary search tree has
O(log n) levels. In addition, since the list L uses O(n2)
space, the overall space requirement of our data struc-
ture is O(n2).

A query with a segment σ = [s0, s1] is answered as
follows. First, compute the the distance between corre-
sponding endpoints of π and σ. Second, compute the
Hausdorff distance between π and σ using the different
components of D: (i) Query the FVD(ν)’s with point
s0, for canonical nodes ν in T (π) whose union covers
the range (−∞, s0.x]. Similarly query the FVD(ν)’s
with point s1, for canonical nodes ν in T (π) whose
union covers the range [s1.x,+∞). Maintain the max-
imum distance returned from the O(log n)-many such
queries. And, (ii) compute the maximum distance be-
tween the topmost and the bottommost vertices of π
(stored in top(π) and bottom(π)) and σ. Third, compute
the intersection of `y and E(π) using a binary search on
the quadratically many pieces of E(π) stored in L. As
the answer to the given query, return the maximum of
the three values computed in the three steps mentioned
above.

The correctness of the query procedure follows from
Equation 1 and the query time is dominated by querying
O(log n) farthest-point Voronoi diagrams each of which
takes O(log n) time. �

5 Querying Fréchet distance to subtrajectories

We will now refine our data structure to support queries
for the Fréchet distance dF (πq,q′ , σ) between σ and a

subtrajectory πq,q′ between two vertices pq, pq′ of π.
The query will, in addition to the horizontal segment σ,
take two indices q, q′ with 0 ≤ q ≤ q′ ≤ n.

In order to answer such a query, we build a data struc-
ture that, for each subtrajectory πq,q′ , can compute the
terms of Equation 1 efficiently. The first two terms of
this equation become ‖pq − s0‖ and ‖pq′ − s1‖, respec-
tively, and can, given a query (σ, q, q′), can be answered
in constant time.

For the third term d−→
H

(πq,q′ , σ), we build a balanced
binary tree whose leaves represent the edges of π, or-
dered as they appear on π. Each node of this tree rep-
resents a subtrajectory πi,j of π consisting of the edges
of π in that subtree. We store the indices i and j of the
endpoints of this subtrajectory with the node. In ad-
dition, for each node, reuse the data structure we built
based on Equation 2 for computing the Hausdorff dis-
tance from this subtrajectory to σ.

Given the indices q and q′, one can then compute the
Hausdorff distance from πq,q′ to σ as follows. Search
for the maximal nodes in the tree whose representa-
tive subtrajectory is contained in πq,q′ . Here, a node
is maximal if there is no ancestor whose representa-
tive subtrajectory is contained in πq,q′ . The tree con-
tains O(log n) such maximal nodes, and one can find
them in O(log n) time given q and q′. Now, for each
such node, query the Hausdorff distance from its repre-
sentative subtrajectory to σ in O(log2 n) time, and take
the maximum of all the answers. We claim that this
is the Hausdorff distance from πq,q′ to σ. Indeed, each
term of the maximum is a lower bound on d−→

H
(πq,q′ , σ),

and since the union of the subtrajectories represented
by these nodes is exactly πq,q′ , the maximum is also
an upper bound on d−→

H
(πq,q′ , σ). So d−→

H
(πq,q′ , σ) can

be queried in O(log2 n) time, using O(n log n) space
and O(n log2 n) preprocessing time.

It remains to build a data structure for the last term
of Equation 1. For this we use a 2D range tree on the
set C := {(i, j) | i ≤ j and pi.x ≥ pj .x}. That is,
a balanced tree on the first coordinate of pairs in C,
where for each subtree (say it is rooted at v), we store
an additional tree T ′(v) on the second coordinate for
the pairs of C in that subtree. T ′(v) is a balanced tree
on the second coordinate, whose nodes store the upper
envelope of the functions B(pi,pj) for the pairs (i, j) ∈ C
in their subtree. The upper envelope stored at the root v
of a subtree T ′(v) of size k, requires O(k) space, and it
can be computed in O(k) time by merging the envelopes
of its children.

As |C| = O(n2), the complete data structure for the
last term of Equation 1 uses O(n2 log2 n) space and one
can build it in O(n2 log2 n) time.

Given a query (σ, q, q′), we can now use a range query
that, in O(log2 n) time, reports the upper envelopes
of O(log2 n) nodes, the upper envelope of whose union

218

29th Canadian Conference on Computational Geometry, 2017

is exactly the upper envelope of the functions B(pi,pj)

with q ≤ i ≤ j ≤ q′. Instead of computing this envelope
explicitly, we query each of the envelopes in O(log n)
time at coordinate y, and take the maximum over the
results for a total of O(log3 n) time. The query time can
be improved to O(log2 n) time by applying fractional
cascading [7].

Therefore, using O(n2 log2 n) preprocessing time
and O(n2 log2 n) space, we can compute dF (πq,q′ , σ)
in O(log2 n) time for any query (σ, q, q′).

6 Discussion

In this paper we showed how to preprocess a trajectory
π with n edges in the plane into a data structure that is
able to answer the following type of queries in O(log2 n)
time. Given two vertices p, q of π and a horizontal line
segment σ in the plane, report the Fréchet distance be-
tween σ and the subtrajectory of π from p to q. The
data structure can be constructed in O(n2 log2 n) time,
it needs O(n2) space if p, q are the endpoints of π, and
it needs O(n2 log2 n) space otherwise.

We conclude the paper by stating some interesting
open questions:

• Can the quadratic upper bound of Lemma 6 for
the complexity of the upper envelope be realized?
If this upper bound is not tight, we might be able to
reduce the space complexity of our data structure
in Section 4.

• Can the data structure in Section 5 be extended to
handle the case where p and q indicate a subtrajec-
tory of π whose endpoints can lie in the interior of
some edge of π?

• Can the data structure in Section 4 (or in Sec-
tion 5) be extended to handle arbitrarily-oriented
query segments in the plane?

References

[1] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. International Journal
of Computational Geometry & Applications, 5:75–91,
1995.

[2] M. de Berg and O. Cheong and M.v. Kreveld and M.
Overmars. Computational Geometry: Algorithms and
Applications (3rd edition). Springer-Verlag, 2008.

[3] M. de Berg and A.F. Cook and J. Gudmundsson. Fast
Fréchet queries. Computational Geometry: Theory and
Applications, 46:747–755, 2013.

[4] M. de Berg and A.D. Mehrabi. Straight-path queries
in trajectory data. Journal of Discrete Algorithms, 36:
27–38, 2016.

[5] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In Proc. 31th In-
ternational Conference on Very Large Data Bases, 853–
864, 2005.

[6] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler
and J. Luo. Detecting commuting patterns by clus-
tering subtrajectories. In Proc. 19th Annual Interna-
tional Symposium on Algorithmis and Computations,
644–655, 2008.

[7] B. Chazelle and L. J. Guibas. Fractional Cascading: I.
A data structuring technique. Algorithmica, 1:133–162,
1986.

[8] A. Driemel and S. Har-Peled. Jaywalking your dog:
computing the Fréchet distance with shortcuts. SIAM
Journal on Computing, 42:1830–1866, 2013.

[9] J.E. Goodman and J. O’Rourke. Handbook of Discrete
and Computational Geometry. Second Edition, Chap-
man & Hall/CRC, 2004.

[10] J. Gudmundsson and M.H.M. Smid. Fast algorithms
for approximate Fréchet matching queries in geometric
trees. Computational Geometry: Theory and Applica-
tions, 48:479–494, 2015.

[11] S. Kwong and Q.H. He and K.F. Man and K.S. Tang
and C.W. Chau. Parallel generic-based hybrid pattern
matching algorithm for isolated word recognition. Jour-
nal of Pattern Recognition and Artificial Intelligence,
12:573–594, 1998.

[12] W. Meulemans. Similarity measures and algorithms for
cartographic schematization. PhD Thesis. TU Eind-
hoven, 2014.

[13] E. Sriraghavendra and K. Karthik and C. Bhat-
tacharayya. Fréchet distance based approach for search-
ing online handwriting documents. In Proc. 9th Inter-
national Conference on Document Analysis and Recog-
nition, 461–465, 2007.

219

