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Abstract
We study self-approaching paths that are contained in a simple polygon. A self-approaching
path is a directed curve connecting two points such that the Euclidean distance between a point
moving along the path and any future position does not increase, that is, for all points a, b, and
c that appear in that order along the curve, |ac| ≥ |bc|. We analyze the properties, and present
a characterization of shortest self-approaching paths. In particular, we show that a shortest
self-approaching path connecting two points inside a polygon can be forced to follow a general
class of non-algebraic curves. While this makes it difficult to design an exact algorithm, we show
how to find a self-approaching path inside a polygon connecting two points under a model of
computation which assumes that we can calculate involute curves of high order.

Lastly, we provide an algorithm to test if a given simple polygon is self-approaching, that is,
if there exists a self-approaching path for any two points inside the polygon.
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1 Introduction

The problem of finding an optimal obstacle-avoiding path in a polygonal domain is one
of the fundamental problems of computational geometry. Often a desired path has to
conform to certain constraints. For example, a path may be required to be monotone [3],
curvature-constrained [9], have no more than k links [15], etc. A natural requirement to
consider is that a point moving along a desired path must be always getting closer to its
destination. Such radially monotone paths appear, for example, in greedy geographic routing
in a network setting [10], and beacon routing in a geometric setting [5]. A strengthening
of a radially monotone path is a self-approaching path [12, 13, 1]: a point moving along a
self-approaching path is always getting closer not only to its destination, but also to all the
points on the path ahead of it. There are several reasons to prefer self-approaching paths
over radially monotone paths. First, unlike for a radially monotone path, any subpath of a
self-approaching path is self-approaching. Thus, if the destination is not known in advance
and the desired path is required to be radially monotone, one would have to resort to using
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self-approaching paths. Second, the length of a radially monotone path can be arbitrarily
large in comparison with the Euclidean distance between the source and the destination
points, whereas self-approaching paths have a bounded detour [13]. These properties make
self-approaching paths of interest to various applications, including network routing, graph
drawing, and others.

In this paper we study self-approaching paths that are contained in a simple polygon.
We consider the following questions:

Given two points s and t inside a simple polygon P , does there exist a self-approaching
s-t path inside P?
Find the shortest self-approaching s-t path.
Given a point s in a simple polygon P , what is the set of all points reachable from s with
self-approaching paths?
Given a point t, what is the set of all points from which t is reachable with a self-
approaching path?
Given a polygon P , test if it is self-approaching, i.e., if there exists a self-approaching
path between any two points in P .

Related work. Self-approaching curves were first introduced in the context of online search-
ing for the kernel of a polygon [12]. They were further studied in [13] where, among other
results, the authors prove that the length of any self-approaching curve connecting two
points is not greater than 5.3331 times the Euclidean distance between the points. An
equivalent definition of a self-approaching path is that for every point on the path there
has to be a 90◦ angle containing the rest of the path. Aichholzer et al. [1] developed a
generalization of self-approaching paths for an arbitrarily fixed angle α. A relevant class
of paths is increasing-chords paths [17], which are self-approaching in both directions. The
nice properties of self-approaching and increasing-chords paths, and their potential to be
applied in network routing, were recognized by the graph drawing community. As a result, a
number of papers have appeared in recent years on self-approaching and increasing-chords
graphs [2, 8, 16].

This paper is organized in the following way. We introduce a few definitions and concepts
in Section 2. In Section 3, we characterize a shortest self-approaching path between two
points in a simple polygon. In Section 4 we present an algorithm to construct the shortest
self-approaching path between two points if it exists, or to report that it does not exist, by
assuming a model of computation in which we can solve certain transcendental equations.
Finally, in Section 5 we present a linear-time algorithm to decide if a polygon is self-
approaching, that is, if there is a self-approaching path between any two point of the polygon.
Due to space limitations, some proofs are omitted. For the details refer to the full version of
this paper [6].

2 Preliminaries

For two points p1 and p2 on a directed path π that starts at point s, we shall say that
p1 <π p2 if p1 lies between s and p2 along π. For a directed path π and two points p1 <π p2
on it, denote the subpath from p1 to p2 by π(p1, p2).
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c(θ)
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Figure 1 Curve c(θ) and two involutes. The arrows designate the direction of growth of the
parameter θ. The involute on the left is defined by tangents pointing in the negative direction of c,
and the involute on the right is defined by tangents pointing in the positive direction of c.

I Definition 1. A self-approaching path π in a continuous domain is a piece-wise smooth1
oriented curve such that for any three points a, b, and c on it, such that a <π b <π c:
|ac| ≥ |bc|, where |ac| and |bc| are Euclidean distances.

Icking et al. [13] showed the following normal property of a self-approaching path, that we
will be using extensively in this paper,

I Lemma 2 (the normal property [13]). An s-t path π is self-approaching if and only if any
normal to π at any point a ∈ π does not cross π(a, t).

I Definition 3. A normal h to a directed curve π at some point a ∈ π defines two half-planes.
Let the positive half-plane h+ be the open half-plane which is congruent with the direction
of π at point a.

We can rephrase the normal property in the following way.

I Lemma 4 (the half-plane property). An s-t path π is self-approaching if and only if, for
any normal h to π at any point a ∈ π, the subpath π(a, t) lies completely in the positive
half-plane h+.

I Definition 5. A bend of a self-approaching path π is a point of discontinuity of the first
derivative of π.

I Definition 6. A reachable region R(s) ⊆ P , for a given point s in a polygon P , is the set
of all points t ∈ P for which there exists a self-approaching s-t path π ∈ P .

I Definition 7. A reverse-reachable region R−1(t) ⊆ P , for a given point t in a polygon P ,
is a set of all points s ∈ P for which there exists a self-approaching s-t path π ∈ P .

2.1 Involutes
Next we introduce involute curves of kth order that will appear later as parts of shortest
self-approaching paths.

An involute of a convex curve c is a curve traced by the end point of an unwinding
pull-taut string rolled on c. Consider a parameterization ~c(θ) of the curve, and let c be
oriented in the direction of growth of the parameter θ. The involute of c can be computed
by the following formula:

~I(θ) = ~c(θ)− s(θ) ~c
′(θ)
|~c ′(θ)| ,

1 Some previous works do not require the curve to be smooth. However in this paper we will be mostly
considering shortest self-approaching paths, and thus the requirement on smoothness is justified.

SoCG 2017
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p2

p1

p3

t3 t2

I0

I1

I2

I3 t1 θ1

I0(θmax)

I0(θmin)

Figure 2 Circular arc I0(θ), and three involutes I1(θ), I2(θ), and I3(θ): for each i, Ii(θ) is an
involute about Ii−1(θ) that passes through point pi. The arrows designate the direction of growth of
the parameter θ (they are not necessarily consistent with the direction of a self-approaching path).

where s(θ) is the length of the tangent segment |c(θ)I(θ)|,

s(θ) =
θ∫
α

|~c ′(t)|dt .

The constant α defines the point at which the involute I will start unwinding around c (see
Fig. 1). The involute has two branches: the positive branch unwinds starting at point α in
the direction of growth of θ, and the negative branch unwinds in the opposite direction. If
the curve c is defined on the interval [θmin, θmax], then the positive branch of its involute is
defined on the interval [α, θmax], and the negative – on the interval [θmin, α].

We define an involute of order k of a curve c(θ) to be an involute of one branch (that
contains the point corresponding to a parameter αk) of an involute of order k − 1 of c(θ),
with an involute of order 0 being the curve c(θ) itself,

~Ik(θ) = ~Ik−1(θ)− sk(θ)
~I ′k−1(θ)
|~I ′k−1(θ)|

, where sk(θ) =
θ∫

αk

|~I ′k−1(t)|dt ,

~I0(θ) = ~c(θ) .

In the following sections we will show that shortest self-approaching paths consist of
straight-line segments, circular arcs, and involutes of circular arcs of some order. In the full
version of this paper [6] we provide the details of the derivation of the following formula for
an involute of a circle of order k:

Ik(θ) =
b k

2 c∑
0

(−1)ia2i(θ)
(

cos θ
sin θ

)
−
d k

2 e−1∑
0

(−1)ia2i+1(θ)
(
− sin θ
cos θ

)
,

where each involute Ii passes through a point pi(ri, ϕi) for all 1 ≤ i ≤ k,

ai(θ) = r0
θi

i! + c1
θi−1

(i− 1)! + · · ·+ ci ,
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Figure 3 If a self-approaching path has an inflection point (or a segment) interior to P , then
there exists a shortcut.

and the constants ci can be found from the following equations:

ri cos(θi − ϕi) =
b i

2 c∑
0

(−1)ja2j(θi), ri sin(θi − ϕi) =
d i

2 e−1∑
0

(−1)ja2j+1(θi) . (1)

The length |pktk| of the tangent segment equals |ak(θk)|.

3 Properties of a shortest self-approaching path

In this section we will prove the following properties of a shortest self-approaching path from
s to t inside a simple polygon P :

A shortest self-approaching path is unique.
The shortest self-approaching path consists of straight segments, circular arcs and involutes
to the latter pieces of the path.

We begin by proving several lemmas:

I Lemma 8. For any two points p1 <π p2 on a self-approaching s-t path π in R2, the
perpendicular bisector of the straight-line segment p1p2 does not intersect the subpath π(p2, t).

Proof. Let h− be the half-plane defined by the perpendicular bisector of segment p1p2 that
contains p1. Assume there is a point q on the subpath π(p2, t) that is interior to h−. Then
|p1q| < |p2q|, which contradicts the definition of a self-approaching path. J

I Lemma 9. Bends of a shortest self-approaching path in a simple polygon P form a subset
of vertices of P .

Thus, any point of a shortest self-approaching s-t path which is interior to P has a well-
defined tangent. This point is an inflection point, if its tangent separates the self-approaching
path in a small enough ε-neighborhood. We can also introduce a notion of an inflection
segment for a path that contains a straight-line segment as a subpath. A straight-line segment
of a path is an inflection segment if its supporting line separates the path in a small enough
ε-neighborhood around the segment (refer to Fig. 3).

I Lemma 10. A shortest self-approaching s-t path in a simple polygon P cannot have an
inflection point (or an inflection segment) that is interior to P .

Proof. Suppose a shortest self-approaching s-t path π has an inflection point p (or an
inflection segment pq) interior to P . Consider an ε-neighborhood of p (or pq) for some small
ε such that it is also interior to P , and it does not contain other inflection points. Choose a

SoCG 2017
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ts

p2

p3

π2

π1

p1

Figure 4 A geodesic bounded between two self-approaching s-t paths is also self-approaching.

point p1 on subpath π(s, p) close to p and draw a tangent through it to a subpath of π(p, t)
contained in the ε-neighborhood (refer to Fig. 3). Let p2 be the tangent point. We can
always choose p1 such that the segment p1p2 lies inside the ε-neighborhood. Let h2 be the
normal line to π drawn through p2. Because π is self-approaching, the subpath π(p2, t) lies in
the positive half-plane h+

2 . Therefore, none of the normal lines to p1p2 intersects the subpath
π(p2, t). Thus, π(s, p1)⊕ p1p2 ⊕ π(p2, t) is self-approaching and is shorter than π. J

Define the inflection points of a directed geodesic path γ from s to t as the first points of
the inflection segments of γ, i.e., the set of last points in the maximal subchains of γ with
the same direction of turn.

I Lemma 11. A shortest self-approaching path from s to t in a simple polygon P contains
all the inflection points of the geodesic path from s to t.

Proof. Consider an inflection segment pipj of the geodesic path γ from s to t, pi is one of
its inflection points. Any shortest self-approaching path π intersects pipj . If the intersection
point were not pi, then π would contain an inflection point that is interior to P , but this
would contradict Lemma 10. J

Consider two self-approaching paths π1 and π2 in a simple polygon P from s to t that
do not have other points in common. Let γ be a geodesic path from s to t inside the area
bounded by π1 and π2. Then, the following lemma holds.

I Lemma 12. A geodesic path γ between two self-approaching paths π1 and π2 is also
self-approaching.

Proof. We use the fact that the geodesic lies inside of the convex hull of each side of the
boundaries between which it is constrained, i.e., γ ⊂ CH (π1) and γ ⊂ CH (π2).

Any point p ∈ γ either lies on one of the paths π1 and π2 or on a straight line segment
that is bitangent to the boundary (refer to Fig. 4).

Consider the case when p lies on π1 or π2, and is not a bend point (as point p1 in the
figure). Let, w.l.o.g., p ∈ π1. The positive half-plane h+ of the normal to π1 at p contains the
rest of the path π1(p, t). Therefore it contains the convex hull of π1(p, t), and the subpath
γ(p, t) of the geodesic.

When p lies on a path π1 and is a bend point, the two normals to the path at p define
two positive half-planes whose intersection contains the rest of the path from p to t. The
two normals to the geodesic path at this point will lie in between the two normals to the
boundary path (as in the figure for point p3). Thus, the intersection of the two positive
half-planes of the normals to the geodesic contains the convex hull of the subpath from s to
t, and, therefore, the rest of the geodesic path γ(p, t).
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s

t

Figure 5 Shortest self-approaching path from s to t consists of straight-line segments, circular
arcs, and involutes of a circle of some order. Straight segments are shown in green, circular arcs in
purple, involutes of a circle of first order in orange, involutes of a circle of a second order in blue,
and involutes of a circle of third order in brown.

In the case when p lies on a bitangent, consider its end point p2. The normal to γ at
p is parallel to the normal to γ at p2. By one of the cases considered above, the positive
half-plane at p2 (or the intersection of two positive half-planes) will contain γ(p2, t), and,
therefore, the positive half-plane of the normal to γ at p will contain the subpath γ(p, t).

Thus, by the half-plane property, γ is self-approaching. J

As a corollary to this lemma, for two self-approaching paths from s to t, a path, composed of
geodesics in the areas bounded by subpaths of the two paths between each pair of consecutive
intersection points, is also self-approaching. In other words, let s = p0, p1, . . . , pk, pk+1 = t

be all the intersection points of π1 and π2 in the order they appear on π1 and π2. Observe
that the intersection points must appear in the same order along the both paths, otherwise
there would exist three points on one of these paths which would violate the definition of a
self-approaching path. Let γi be the geodesic from pi to pi+1 in the area between the two
subpaths π1(pi, pi+1) and π2(pi, pi+1). Then,

I Lemma 13. The concatenation of the geodesics γ = γ0 ⊕ γ1 ⊕ · · · ⊕ γk is self-approaching.

Proof. By a similar argument as in Lemma 12, for any normal to γi at point p, its positive
half-plane either contains the convex hull of π1(p, t), or it contains the convex hull of π2(p, t).
In both cases, that implies that the subpath γ(p, t) lies in the positive half-plane of the
normal. Therefore, γ is self-approaching. J

The next theorem is a direct corollary of Lemma 13.

I Theorem 14. A shortest self-approaching s-t path is unique.

Figure 5 shows an example of a shortest self-approaching path inside a polygon. In the
following theorem we give its characterization.

I Theorem 15. A shortest self-approaching s-t path in a simple polygon consists of straight-
line segments, circular arcs, and circle involutes of some order.

SoCG 2017
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CH`

p`

q
u

ICH`

t`

Figure 6 Illustration to Theorem 15.

Proof. Let p1, p2, . . . , pk be the points of the shortest self-approaching s-t path π∗ in the
order from s to t, in which the path touches the boundary of P . Consider the last segment
π∗(pk, t). It is a straight-line segment. Otherwise it could be shortened in the following way.
Consider the last segment qt of a geodesic path from s to t, and extend it in the direction
from t to q until intersecting path π∗; denote the intersection point as q′. (Note, that it
exists, as the extension of qt beyond q until intersecting the boundary of P separates s from
t.) Then, π∗ can be shortened by replacing π∗(q′, t) by the segment q′t.

Now, suppose that all the segments π∗(pi, pi+1) consist of straight-line segments, circular
arcs, or involutes of a circle of some order for all i > ` for some `. We will show, that then,
the segment π∗(p`−1, p`) consists of straight-line segments, circular arcs, and/or involutes.

Denote CH` = CH (π∗(p`, t)). Let, w.l.o.g., π∗ touch the boundary of the polygon at
point p` on its left side (refer to Fig. 6). Then construct an involute ICH`

of the convex hull
CH` starting at point p` with the tangent point moving in clockwise direction around CH`
until the first intersection point of the involute with the boundary of P . The area D` on
the concave side of the involute that it cuts off of the polygon P is a “dead” region for any
self-approaching path that ends with the subpath π∗(p`,t) (red area in the Fig. 6). In other
words, for any point u ∈ D`, any path connecting u to p` will have a normal that intersects
CH`, and therefore the subpath π∗(p`, t). To show that, consider any piecewise-smooth
path πu from u to p`. Parameterize πu for some parameter τ ∈ [0, 1], where πu(0) = u and
πu(1) = p`. Consider the distance function du(τ) from a point moving along πu to the involute
ICH`

. This function will be piecewise smooth as both of the paths are piecewise-smooth. As
a point, moving along πu, has to eventually coincide with p`, there exists parameter τ ′ at
which the distance function is decreasing, and therefore, the angle between a tangent vector
to πu at the point u′ = πu(τ ′) and a tangent from u′ to the convex hull CH` is greater than
90◦. Therefore, a positive half-plane of the normal to πu at point u′ does not fully contain
the convex hull CH`, and therefore, the path πu ⊕ π∗(p`, t) is not self-approaching.

Now, consider a geodesic path from s to p` in the region P\D`, and consider its last
segment qp`, where q is the last point before p` that belongs to the boundary of P . This
segment can be a straight-line segment, or a straight-line segment qt` followed by a piece
of the involute ICH`

, where qt` is tangent to ICH`
. If segment qp` is not on π∗, then, by a

similar argument as above, we can show that π∗ can be shortened. Extend the segment
qt` beyond the point q until the intersection q′ with π∗. Then, π∗ can be shortened if the
subpath π∗(q′p`) is replaced by the segment qp` of the geodesic.

The boundary of the convex hull CH` consists of straight-line segments and pieces of
the subpath π∗(p`, t), which we assumed were straight segments, arcs, and circle involutes.
Therefore, the segment qp` of the geodesic path also consists of straight segments, circular
arcs, and circle involutes, possibly, of one order higher than the following subpath. Therefore,
the shortest self-approaching path consists of straight-line segments, circular arcs, and circle
involutes of some order, that is not higher than the number of bends on the path. J
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Figure 7 A subpath of a shortest self-approaching s-t path π∗ (in blue) between two consecutive
inflection points of the geodesic path γ (in purple) from s to t is geodesically convex. The last bend
q of π∗ before the vertex p` does not necessarily belong to γ.

In the last proof, the point q of the last segment qp` of the geodesic path from s to p` in
P\D` does not necessarily belong to the geodesic path from s to t. Consider an example in
Fig. 7. In it, several vertices of the geodesic path γ are in the dead region (on the concave
side of the involute). The tangent line from the last vertex (pi in the left example, and pj in
the right example) of γ before p` that is not in the dead region intersects the boundary of
the polygon. Angle ∠pigt`, where g is the intersection point of γ with the involute, is an
obtuse angle. This follows from the fact that the intersection angle between the straight-line
segment pip` and the tangent to the involute at the intersection point must not be greater
than 90◦, otherwise the point p` would not lie in the positive half-plane of the normal to the
involute at the intersection point. Then, the total turn angle of the self-approaching path
π∗ from pi to t` is less than 90◦, and thus, the subpath π∗(pi, t`) consists of straight-line
segments. Let the previous inflection point of γ before p` be pj , and the next inflection point
of γ on or after p` be pk. It follows then that the subpath π∗(pj , pk) is geodesically convex,
that is, the shortest path between any two points on π∗(pj , pk) lies completely on one (and
the same side) of the path. We obtain the following lemma.

I Lemma 16. A shortest self-approaching s-t path in a simple polygon P consists of geodesic-
ally convex paths between inflection points of the geodesic from s to t.

I Theorem 17. A shortest self-approaching s-t path in a simple polygon P with n vertices
consists of O(n2) segments. There exists a simple polygon P and two points s and t in it,
such that the shortest self-approaching from s to t has Ω(n2) segments.

4 Existence of a self-approaching path

In this section we consider the question of testing whether, for given points s and t in a
polygon P , they can be connected with a self-approaching path. In Theorem 15 we proved
that a shortest self-approaching path can consist of involutes of a circle of high order, and in
Section 2 we showed that such an involute is defined by a system of transcendental equations.
In [14] Laczkovich proved a strengthening of Richardson’s theorem, which states that in
general the statement ∃x : f(x) = 0 is undecidable, where f(x) is an expression generated by
the rational numbers, the variable x, the operations of addition, multiplication, composition,
and the sine function. Equations (1) describing the involutes are a special case of the class
of expressions in Laczkovich’s theorem. Nevertheless, it strongly suggests that an involute of
a circle of order higher than one cannot be computed.

Next, we show an algorithm to test whether there exists a self-approaching path connecting
two points s and t, and if so, to compute the shortest path, under the assumption that we
can solve Equations (1). Subsequently, it is possible to release this assumption, and modify
the algorithm to build an approximate solution, given that the shortest self-approaching path
from s-to-t exists and there is a small leeway around it free of the polygon boundary points.

SoCG 2017
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4.1 Shortest path algorithm
The proof of Theorem 15 is constructive. Assume that we can solve equations of the form
as Equations (1) for an involute of order k in time O(f(k)), and evaluate the formula of
the involute of order k for a given parameter θ in time O(g(k)). Then, we can decide if
two points s and t can be connected by a self-approaching path, and we can construct the
shortest path between the points. The outline of the algorithm is:

Starting at t, move backwards along a geodesic s-t path γ. Maintain the convex hull CH
of the final part of the shortest self-approaching path π∗ to the destination t built so far.
At every bend point p`:

Calculate the appropriate branch of an involute ICH of the convex hull CH . If ICH
intersects the opposite boundary of the polygon, thus separating s from t, report that
a self-approaching path from s to t does not exist and terminate the algorithm.
Otherwise, find a geodesic path γ` from the preceding inflection point of γ to p` in
P\ICH , and add its last segment qp` as a prefix to π∗.
Update the convex hull CH . Repeat for the new bend point q, until s is reached.
Report the found path π∗.

To obtain an algorithm with an optimal running time, there are a few considerations to
take into account when constructing the shortest path. First, instead of unnecessarily
constructing the whole involute ICH until the intersection point with the boundary of P , and
then discarding the part of it under the tangent line from q, its segments can be built one
by one as needed up to the tangent point. Second, to optimally test if ICH intersects the
opposite boundary of the polygon, we can maintain a shortest path tree that will allow us to
build funnels from the opposite sides of the polygon boundary. Third, it is not necessary to
construct the whole geodesic γ` to be able to compute its last segment qp`. Instead, we can
move backwards along γ, vertex by vertex, until we reach a point from which the tangent to
ICH can be constructed (possibly with adding new points along it).

Let the edges of P be oriented in counter-clockwise order. We shall call the two ends of
an edge e, the front-point, and the end-point.

Next, we present the details of the algorithm.

Initialization step. Compute the shortest path tree SPTs with root s [11], and preprocess
it to answer the lowest common ancestor query [4]. Compute the geodesic γ from s to t,
and store γ as a stack of vertices. Let the first and the last segments of γ be sp′ and p′′t
respectively. Extend sp′ beyond s until intersection with ∂P at some point a, and extend
p′′t beyond t until intersection with ∂P at some point b. This can be done in O(logn) time
with a ray-shooting query after linear-time preprocessing of the polygon [7]. Let L be the
chain of the boundary of P from b to a in counter-clockwise order, we shall call it the left
chain. Similarly, let the right chain R be the chain of the boundary of P from a to b in
counter-clockwise order. Initialize π∗ and CH with the last segment p′′t of γ, and pop the
point t from γ.

The main loop. Let p` be the point on top of the stack γ, before the beginning of the
current iteration of the loop. Let π∗ touch ∂P in point p` on its left side (the case when π∗
touches ∂P on its right side is equivalent). Let CH be the convex hull of the already built
subpath π∗(p`, t).

Pop p` from the top of the stack γ. Consider the previous segment pip` of γ (point pi is
currently on top of the stack γ).
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Figure 8 Illustration for Case 2 of the algorithm.

Case 1. If the angle between p`pi and the tangent in the clockwise direction to CH at point
p` form an angle that is not less than 90◦, then pip` lies on the shortest self-approaching
path from s to t; append π∗(p`, t) with pip` in the front, and update the convex hull.

Case 2. If the angle between p`pi and the tangent in the clockwise direction to CH form an
angle that is less than 90◦, we need to calculate the involute ICH of the convex hull for
the tangent point moving clockwise around the boundary of CH starting at p`. We first
will determine until which point to calculate ICH .

First, we check whether the points on the geodesic path γ before p` lie in the dead region
defined by ICH . To do that without explicitly constructing ICH first, for each point g on top
of the stack γ, we construct a tangent line to CH which is leaving it on its right side (refer to
Fig. 8 (left)). Let tg be the tangent point on CH , and let tg ∈ Ig for some involute segment
Ig on the boundary of the convex hull. Let gtg intersect ICH at point p′. We know that
the length of the segment p′tg is equal to the length of the boundary of the convex hull CH
from tg to p`. Thus, to check whether g lies in the dead region we can compare the length of
the segment gtg to the length of the boundary of CH from tg to g. If g does lie in the dead
region, we simply remove it from the top of the stack γ, and proceed. If at some moment γ
becomes empty, i.e., the point s lies in the dead region, we report that a self-approaching
path from s to t does not exist and terminate the algorithm.

Now, let pi be the first point on γ before p` that does not lie in the dead region of ICH .
As in Fig. 7, the tangent segment from pi to the involute may intersect the right chain of the
boundary of P . Moreover, the right chain of the boundary of P may intersect ICH . To test
and account for that case, we do the following. Let ~τ = ~I ′CH (p`) be the tangent vector to
ICH at point p`. Run a ray shooting query from p` in the direction −~τ . Let it intersect an
edge e′ of R, and denote its front-point as pr (refer to Fig. 8 (right)). Then, find a vertex pj
in the shortest path tree SPTs that is the lowest common ancestor of p` and pr. Let γ` and
γr be the two shortest paths from pj to p` and to pr respectively. Paths γ` and γr form two
convex chains. If γr does not intersect ICH , then either a common tangent to γ` and ICH , or
a common tangent to γr and ICH , will belong to π∗. To be able to compute the common
tangents, we now explicitly construct ICH segment by segment until a certain point. Let
p′p′′ be the last segment of ICH constructed so far (with the curve orientation from p′ to p′′).
We stop the construction of ICH when the segment p′pj makes a left turn with respect to
the tangent vector −~τ , where ~τ = ~I ′CH (p′).

Whether γr intersects ICH can be found during the computation of the common tangent.
If it does, report that s and t cannot be connected with a self-approaching path and terminate
the algorithm.

Let q` and qr be the two tangent points on γ` and γr respectively of the common tangent
lines with ICH . One of the points q` and qr, or both, will be equal to pj .
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If pj = q` = qr, then append π∗ with pjtj ⊕ ICH (tj , p`), where tj is the tangent point on
ICH .
If pj = qr 6= q`, then append π∗ with γ(pj , q`)⊕ q`t`⊕ ICH (t`, p`), where t` is the tangent
point on ICH of the common tangent with γ`.
If pj = q` 6= qr, then append π∗ with γ(pj , qr)⊕ qrtr⊕ ICH (tr, p`), where tr is the tangent
point on ICH of the common tangent with γr.

Remove the points from γ until pj is on top of the stack, and update CH . Iterate over the
main loop until γ is empty, and return π∗.

In the full version of this paper [6] we discuss how to compute common tangents between
a chain of involute segments of order ≤ k of size n and a polygonal chain of size m in
O(log(m+n) + g(k) logm+ f(k)) time, and between two chains of involutes of sizes n and m
in O(log(m+ n) + g(k) logm+ f(k)) time. We also show how to test if two chains intersect
in O(log(m+ n) + (g(k) + f(k)) logm) time.

Maintaining CH . At the end of each iteration of the main algorithm, we need to update
the convex hull of the subpath of the shortest self-approaching path built so far. This can
involve finding a tangent from a point to a chain of involutes, or finding a common tangent
of two chains of involutes.

Moreover, we want to be able to optimally calculate the length of a boundary from the
current point p` to some point tg. For that, associate two values distcw(u) and distccw(u) to
each end point of a segment on CH that will contain the distance to p` (up to some constant
that will be equal for all the points) along the boundary in clockwise and counter-clockwise
direction, respectively. Moreover, for two points u and v on CH , the length of the boundary
between them can be calculated by distccw(v) − distccw(u), if the chain of CH between u
and v in counter-clockwise order does not contain p`. This fact will allow us to maintain the
values in the points unchanged when updating the convex hull.

At every iteration of the algorithm, the distance from some tangent point tg on an
involute segment p′p′′ to p` in the clockwise direction can be computed by formula s(tg) =
lengthI(tg, p′′)+distcw(p′′)−distcw(p`), where lengthI(tg, p′′) is the arc length of the involute
from point tg to p′′. Analogously, the distance from tg to p` in the counter-clockwise direction
can be computed by taking s(tg) = lengthI(tg, p′) + distccw(p′)− distccw(p`).

When updating the convex hull after extending the path π∗, we calculate the lengths of
the tangent segments and the new involute arcs, and set the values distcw(u) and distccw(u)
to the new points of CH relatively to the values of the points remaining on CH . This will
take f(k) time to compute the arc length per segment of an involute of order k.

Taking these considerations into account, we conclude with the following theorem:

I Theorem 18. The algorithm above constructs a shortest self-approaching path from s to t
or reports that it does not exist in O(K + n logK√

K
(g(
√
K) + f(

√
K))) running time, where K

is the size of the output, f(k) is the time it takes to compute an involute of order k, and g(k)
is the time it takes to evaluate an involute of order k at a given point.

5 Self-approaching polygon

A polygon is self-approaching, if for any two points there exists a self-approaching path
connecting them.

I Theorem 19. Polygon P is self-approaching if and only if for any disk D centered at any
point p ∈ P , the intersection D ∩ P has one connected component.
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Figure 9 The illustration for Theorem 21.

Recall that a path is increasing-chord if it is self-approaching in both directions.

I Corollary 20. Any self-approaching polygon is also increasing-chord.

Next, we present an algorithm to test whether a given simple polygon P is self-approaching.
Observe that from the proof of Theorem 19 the following property holds: the polygon P is
self-approaching if and only if an area bounded between the two normals to e at its two end
points in the right half-plane of e is free of ∂P , for all edges e on the boundary of P directed
in counter-clockwise order. We call this area the half-strip of e. We will use this property to
test efficiently if the polygon is self-approaching.

Let P be given as a set of points p0, p1, . . . , pn−1 in counter-clockwise order around the
boundary. We will start at p0, move along the boundary in counter-clockwise order and
maintain the union of all the half-strips of the edges visited so far. More precisely, we will
maintain the left and the right sides, ρl and ρr, of the hour-glass shape that is the union of
the half-strips; ρl and ρr are convex polygonal chains (refer to Fig. 9). Store the segments of
ρl and ρr as two lists, the last segments in the lists are infinite rays.

At every iteration of the algorithm, perform the following steps. Let pi be the current
point of the polygon P . The chain ρr contains the right side of the union of all the half-strips
up to point pi−1. Consider the next boundary segment pi−1pi, and a perpendicular ray hi at
the point pi (refer to Fig. 9 (a)). To update the chain ρr, do the following: Traverse ρr, and
for every its segment cjcj+1,

if pi−1pi intersects cjcj+1, then report that P is not self-approaching and terminate;
if hi intersects cjcj+1, calculate the intersection point c′, and replace the first elements of
the list ρr up to cjcj+1 with two segments, pic′ and c′cj+1; repeat for the next point pi+1.

Traverse the boundary of polygon P twice in counter-clockwise order, and then repeat the
same algorithm traversing the boundary of P twice in clockwise order. If none of the segments
pi−1pi intersected a segment of ρr, report that P is self-approaching.

I Theorem 21. Given a simple polygon P with n vertices, the presented algorithm tests in
O(n) time if it is self-approaching.
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Proof. Consider the counter-clockwise traversal of the boundary of P . There are two cases
when the boundary segment pi−1pi intersects ρr. In the first case, pi−1pi intersects ρr, and
hi does not intersect it (refer to Fig. 9 (b)). Let us call it the intersection of type 1. In the
second case, pi−1pi intersects ρr after hi intersects it (refer to Fig. 9 (c)). Let us call it the
intersection of type 2. Moreover, the boundary segment pi−1pi may intersect ρl (refer to
Fig. 9 (d)). Let us call it the intersection of type 3.

When traversing the polygon counter-clockwise, the presented algorithm will recognize
the first type of the intersection, but not the second or third type. In case of the second type,
during one iteration, the algorithm stops traversing ρr after finding the intersection point of
hi, and thus will not find the intersection of the segment with ρr. And in case of the third
type, the algorithm does not check for intersection with ρl at all.

Nevertheless, we will prove, that by repeating the checks above twice and in two directions,
counter-clockwise from p0 to pn−1, and clockwise from pn−1 to p0, the algorithm will correctly
decide if the polygon is self-approaching or not.

Case 0. If the polygon is self-approaching, then none of the segments will intersect ρr or
ρl. The algorithm will traverse the polygon twice, then twice in clockwise direction, and
report that it is self-approaching.

Case 1. If only the first intersection type occurs, then the algorithm will traverse the
boundary of P until the first violation of the half-strip property, correctly report that the
polygon is not self-approaching, and terminate.

Case 2. Suppose that the second intersection type occurs. Consider the first segment pi−1pi,
such that both hi and pi−1pi intersect ρr. Let pi−1pi intersect the normal to some
preceding segment pj−1pj at the point pj . As the ray hi intersects ρr before pi−1pi
does, it also intersects the polygon boundary between the points pj and pi−1. And,
therefore, the ray hi−1 perpendicular to pi−1pi at the point pi−1 also intersects the
polygon boundary between the points pj and pi−1. Then, consider the behavior of the
algorithm during the backwards traversal. Let p` for j ≤ ` < i− 1 be the first point on
the left side of the ray hi−1. Then the segment p`+1, p` intersects hi−1, and either the
segment p`+1, p` intersects the left chain ρl or there was another segment before p`+1, p`
that intersected ρl. Note, that because the intersection of pi−1pi and ρr was the first
violation of the half-strip property in counter-clockwise order, the intersection of p`+1, p`
and ρl cannot be of the second type, otherwise pi−1 would already lie on the right side of
a normal to p`+1, p` at the point p`+1. Therefore, this intersection can only be of type
one, and the algorithm will recognize it during the backwards traversal.

Case 3. Suppose that the third intersection type occurs. Then, there will be a segment
pj+1, pj (where j ≥ i), for which the first or the second intersection type occurs when
traversing the polygon in the opposite direction, and thus either case 1 or case 2 applies.

Thus, we only need to explicitly check for the first intersection type. The running time of
the algorithm is O(n). At every iteration, the number of segments removed from the list ρr
is equal to half the number of tests for intersections the algorithm makes, and the number
of segments added back is at most 2. Therefore, the total number of segments that can be
removed from ρr over one traversal of the boundary is not more than 2n. Similarly, the total
number of segments that can be removed from ρl over one traversal of the boundary is not
more than 2n. Therefore, the algorithm performs O(n) intersection tests. J
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