Evaluation of the flame propagation within an SI engine using flame imaging and LES

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1080/13647830.2017.1343498

Document status and date:
Published: 02/11/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 15. Sep. 2023
Evaluation of the flame propagation within an SI engine using flame imaging and LES

Chao He, Guido Kuenne, Esra Yildar, Jeroen van Oijen, Francesca di Mare, Amsini Sadiki, Carl-Philipp Ding, Elias Baum, Brian Peterson, Benjamin Böhm & Johannes Janicka

To cite this article: Chao He, Guido Kuenne, Esra Yildar, Jeroen van Oijen, Francesca di Mare, Amsini Sadiki, Carl-Philipp Ding, Elias Baum, Brian Peterson, Benjamin Böhm & Johannes Janicka (2017) Evaluation of the flame propagation within an SI engine using flame imaging and LES, Combustion Theory and Modelling, 21:6, 1080-1113, DOI: 10.1080/13647830.2017.1343498

To link to this article: https://doi.org/10.1080/13647830.2017.1343498

Published online: 13 Jul 2017.

Submit your article to this journal

Article views: 122

View related articles

View Crossmark data
Evaluation of the flame propagation within an SI engine using flame imaging and LES

Chao Hea,b,*, Guido Kuennea, Esra Yildara, Jeroen van Oijenc, Francesca di Mared, Amsini Sadikia, Carl-Philipp Dingd, Elias Baumd, Brian Petersone, Benjamin Böhma and Johannes Janickaa

aInstitute of Energy and Power Plant Technology, TU Darmstadt, Darmstadt, Germany; bGraduate School of Computational Engineering, TU Darmstadt, Darmstadt, Germany; cMultiphase & Reactive Flows, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; dInstitute Reactive Flows and Diagnostics, TU Darmstadt, Darmstadt, Germany; eInstitute of Multiscale Thermofluids, School of Engineering, University of Edinburgh, Edinburgh, UK

\textit{(Received 20 September 2016; accepted 28 May 2017)}

This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.

\textbf{Keywords:} internal combustion engine; spark ignition; tabulated chemistry; thickened flame; flame imaging

1. Introduction

The internal combustion engine (ICE) has been recognized as one of the most influential inventions by humankind considering its impact on society, the economy, and the environment [1]. In order to reduce the depletion of petroleum-based fossil fuels and anthropogenic climate change, automotive researchers and manufacturers are now more than ever striving to develop cleaner, more efficient ICES. This starts with the development of cleaner combustion technology. The development focuses on geometrical improvements (e.g. downsizing) or the use of ‘advanced modes of combustion’ (e.g. lean combustion, HCCI, charge stratification, and direct-injection), which can offer 10–40% improvement in fuel efficiency and CO\textsubscript{2} reduction compared to conventional operation [2–6]. Successful
implementation of new ICE technology first requires a very fundamental understanding of the physical processes responsible for fuel–energy conversion and pollutant formation under engine relevant conditions.

Advanced, non-intrusive diagnostic methods and high-fidelity numerical simulations are at the forefront of understanding the fundamental science that aids in the development of cleaner combustion technology [7–12]. As many of the processes in ICEs involve a highly transient turbulent flow field, numerical simulations often utilize simplifying assumptions and models, such that the simulations can be less predictive. Thus, guidance from advanced laser diagnostic methods are used to validate and develop more predictive simulations. Specifically designed engine test rigs are important for providing a comprehensive experimental database that can be used to study the fundamentals of flows, sprays, and combustion.

In the literature, there exist several well-documented experimental engine test rigs. In this regard many of the studies arose from the Sandia diesel engine [13,14], the GM R&D test rig [3,15,16], the TCC-III engine in Michigan [17,18], the SGEmac (IFP) engine [19], and the Darmstadt test rig [20–22]. The corresponding databases have provided a stronghold for engine simulations with regards to model validation and development. Together, experimental and Reynolds-averaged Navier–Stokes (RANS) modelling studies have jointly addressed studies of flow cycle-to-cycle variations (CCV) [14,23], sprays [15], ignition [24–26], and combustion [27]. Large eddy simulation (LES) studies have primarily been concentrated with the SGEmac, Darmstadt, and TCC-III engine databases. These studies have investigated the non-reacting flow physics pertaining to CCV extensively [18,28].

LES has also been applied to the reacting flow of internal combustion engines [29]. Within spark ignition (SI) engines (as considered in this work), the model needs to capture the turbulent flame propagation that can be partially resolved within the LES. Accordingly, the majority of SI engine simulations employ LES combustion models that have already been established in this regard within other applications. Specifically, numerous works exist that use the flame surface density (FSD) approach [30,31], the G-equation [32], the artificially thickened flame (ATF) model [33] and also a few applications based on probability density functions (PDFs) [34,35].

LES of SI engines was initiated by [30], who applied different combustion models to a single cycle. Within later works, [36] simulated 25 consecutive cycles to study CCV. The computational domain included a significant part of the intake and exhaust geometry to allow for appropriate boundary conditions. Very recent studies used LES for a more in-depth analysis for CCV [31]. Besides CCV, near wall combustion [37] and engine knock [38–40] belong to the phenomena simulated within SI engines. Within these works, the chemistry is treated by reduced mechanisms. In order to account for detailed chemistry effects, tabulation has also already been applied to diesel engines [41,42], spark assisted HCCI-engines [27], and to treat the autoignition of engine knock [40]. Regarding the configuration, most of these studies considered the single-cylinder optical SGEmac engine [19] operating with a propane–air mixture where the pressure curves were used as the assessment criteria.

Numerous works using LES of ICEs have shown the capabilities of the method. Compared to the RANS approach, it reduces the modelled part of the solution and therewith the corresponding uncertainties. Furthermore, the availability of transient, spatially resolved data enables important insights into the process. With that, the LES is potentially a very powerful tool within the engine design process as well as for fundamental research. However, deficiencies have also been revealed indicating that the models still suffer weaknesses that can lead to predictions of the simulations that deviate from experimental data. This is caused by the complex physical processes that become increasingly difficult under engine
conditions. In this regard, the modelling of the turbulent flame kernel expansion determined by intense, only partially resolvable wrinkling under high pressure is of primary importance. Accordingly, investigations of modelling uncertainties using detailed experimental data are desirable. To this end, [43] performed a first qualitative comparison of measured and simulated flame kernel shapes which enables a more distinct model evaluation compared to the pressure curve that provides an integral assessment criterion only.

In this work, we look at flame propagation in a spark-ignition engine operating with an iso-octane/air mixture. Port-fuelled injection is used to obtain homogeneous lean conditions, as this mode potentially offers increased thermal efficiency and reduced pollutant emission when compared to higher equivalence ratios [44]. Furthermore, this setup provided conditions well suited to the optical measurements. The engine simulated is the engine test rig at TU Darmstadt, which is specially designed to investigate in-cylinder processes and provide valuable data for model validation [20]. LES has already been applied to motored operation [45,46], and [47] showed results from individual cycles of the fired mode. The objectives of this work are as follows:

- to provide an experimental database well designed for characterizing the combustion process and for model validation;
- to demonstrate the application of tabulated chemistry combined with the dynamically thickened flame model (DTFM) to flame propagation within an SI engine;
- to perform a statistical comparison of experiments and LES for the fired operation of this test rig;
- to investigate the sensitivity of the results with respect to the most significant modelling uncertainties;
- to utilize flame imaging in addition to pressure curves as a second quantitative assessment parameter, being directly linked to the prediction of flame kernel expansion.

2. Configuration and experimental characterization

The configuration considered is an optically accessible single-cylinder direct-injection spark-ignition engine from the Anstalt für Verbrennungskraftmaschinen List (AVL). The engine is equipped with a four-valve pent-roof cylinder head, a side-mounted injector, a centrally-mounted spark plug, a quartz-glass liner, and a flat piston window. The optical engine is embedded in a test-rig facility specifically designed to provide reproducible engine operating conditions and well controlled boundary conditions. For this work, the side-mounted injector remained inactive, while iso-octane fuel was injected via a port-fuel injection located approximately 1 m upstream of the engine to ensure homogeneous fuel–air mixtures.

Figure 1 shows the cylinder head with part of the intake and exhaust manifold. The locations of the temperature and pressure sensors in the intake and exhaust manifold are indicated and correspond to the extent of the computational domain. A detailed description of the test facility, engine geometry, boundary conditions, and experimental measurements of the motored in-cylinder flow can be found in [20,21,48]. In this work, the boundary conditions of the fired operation are shown. Operating conditions are given in Table 1.

Spark timing was set to achieve stable operation for the given equivalence ratio (φ = 0.8). The dwell time was 3.5 ms and the mean spark duration was 0.8 ms. The temperatures in the intake and exhaust manifold were measured using PT-100 thermocouples. The pressure was recorded using piezoelectric pressure sensors (AVL) with a measurement uncertainty of 0.5%. Figure 2 shows the pressure of the cylinder, intake, and exhaust manifold of all
600 processed cycles. The in-cylinder pressure shows that the operating point is very stable. Before ignition timing, the standard deviation of the in-cylinder pressure is very low. After ignition the in-cylinder pressure deviates between cycles due to cycle-to-cycle fluctuations. The standard deviation of the in-cylinder pressure is about 2 bar and there are no cycles that strongly deviate from the mean trace (e.g. misfires).

The intake manifold pressure shows a behaviour similar to that of the motored case with standard deviations much less than 1% confirming the repeatability of the boundary conditions during operation. The exhaust manifold pressure trace has a higher standard deviation. There are two main reasons for this; first, the cycle-to-cycle deviations of the in-cylinder pressure lead to fluctuations in the exhaust manifold as soon as the exhaust valves open (valve lift is also indicated in Figure 2). Second, the exhaust manifold heats up during fired operation which causes the exhaust gas temperature to rise during the recordings leading to a change in frequency at which the pressure in the exhaust manifold oscillates.

To determine the enflamed region, the intake flow was seeded with silicone-oil droplets (Dow Corning® 510 cSt-50) using an aerosol generator (PALAS™ 10.0). The estimated droplet size was 0.5 μm. The oil droplets that evaporate in the flame are a sufficiently accurate marker to identify burned gas regions within the engine [49]. The effect of the seeded oil droplets on the combustion performance was evaluated and it was found that the silicone oil has no significant influence (Figure 3). This is corroborated by the fact that seeded oil droplet densities are not enough to sustain a flame kernel [50].

Figure 4 shows a schematic of the experimental setup used for flame imaging. Measurements were acquired in the central tumble-plane (y = 0 mm) and a horizontal (swirl)

| Table 1. Engine operating conditions. Crank angle degree (cad) is relative to top-dead-centre. |
|---------------------------------|---------------------------------|
| Compression ratio | 8.5 |
| Bore/stroke | 86/86 mm |
| Displacement volume | 500 cm² |
| Intake valve open/closed | 325/–125 cad |
| Exhaust valve open/closed | 105/–345 cad |
| Equivalence ratio/fuel | 0.8/iso-octane |
| Rotational speed | 800 rpm |
| Spark timing/dwell | –16 cad/3.5 ms |
| Mean $P_{\text{intake}}/T_{\text{intake}}$ | 950 mbar/49±2 °C |
plane 1.4 mm below the spark plug. For each plane, the setup was changed accordingly. The spatial extents of the acquired images are limited by the field of view, being $38 \times 12 \text{ mm}^2$ (34.5 pixl/mm) in the umble-plane and $43 \times 70 \text{ mm}^2$ (18.5 pixl/mm) in the swirl-plane. The droplets were illuminated using a frequency doubled Nd:YAG high-speed laser (EdgeWave™, INNOSLAB™, 532 nm), operated at 2.4 kHz, and scattered light was detected using a CMOS camera (LaVision™, Phantom v711) equipped with 50 nm lenses (Nikon™, $f/1.2$). Flame luminosity was suppressed using a bandpass filter centred at 532 nm. Laser and camera were synchronized to the crank shaft encoder with a high-speed controller (LaVision™, HSCv2). The laser light sheet was expanded and collimated using two cylindrical lenses with $f = -50 \text{ mm}$ and $f = 750 \text{ mm}$ and then focused using a cylindrical lens with $f = 1000 \text{ mm}$. The laser sheet thickness was 0.6 mm ($1/e^2$).

Measurements in the umble-plane and swirl-plane were performed separately. Three runs were recorded for each plane, with 200 fired cycles per run. The last hundred cycles of each run were used to calculate the flame statistics. Accordingly, the flame statistics consist of 300 cycles for each plane. Images were acquired every second crank angle degree (cad; negative values represent cad before compression top dead centre) starting at ignition at -16 cad until 2 cad. Figure 5 shows raw images for an individual ignition event. After
Figure 3. Average and standard deviation of the magnitude and cad of maximum pressure for the evaluated runs. Red indicates a single run with 100 evaluated cycles without seeded oil droplets. (Colour online)

Figure 4. Experimental setup used for flame position detection. Green colour indicates the setup used for the horizontal plane, red colour indicates the vertical plane measurements. (Colour online)
background subtraction and normalization, the images were filtered using a local median filter (21 pixels). The images were then binarized using an adaptive threshold method to identify burnt and unburnt regions similar to the processing in [51]. From the binarized images, the relative frequency of occurrence of the flame was determined for every recorded cad.

3. Numerical modelling
Simulations were conducted with the KIVA-4mpi code [52,53]. For this work it has been extended to compute the combustion process with the DTFM [54] in combination with flamelet generated manifolds (FGM) tabulated chemistry [55,56] as detailed in Section 3.2. Within this framework, the system gets closed using the equation of state

\[p = \rho \frac{R}{M} T \] \hspace{1cm} (1)

and the transport equations for continuity, momentum, enthalpy, and the reaction progress variable are

\[\frac{\partial (\rho \tilde{u}_i)}{\partial t} + \frac{\partial (\rho \tilde{u}_i \tilde{u}_j)}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\tilde{\mu} + \mu_t \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} - \frac{2}{3} \frac{\partial \tilde{u}_k}{\partial x_k} \delta_{ij} \right) \right) + \rho g_i \] \hspace{1cm} (3)
\[
\frac{\partial (\rho \tilde{h})}{\partial t} + \frac{\partial (\rho \tilde{h} \tilde{u}_j)}{\partial x_j} = \frac{\partial \tilde{p}}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial}{\partial x_j} \left[\frac{\mathcal{F} \mathcal{E} \mu + (1 - \Omega) \mu_1}{\nu} \frac{\partial \tilde{h}}{\partial x_j} \right]
\]

(4)

\[
\frac{\partial (\rho \tilde{Y}_{CO_2})}{\partial t} + \frac{\partial (\rho \tilde{Y}_{CO_2} \tilde{u}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{\mathcal{F} \mathcal{E} \mu + (1 - \Omega) \mu_1}{\nu} \frac{\partial \tilde{Y}_{CO_2}}{\partial x_j} \right] + \frac{\mathcal{E}}{\mathcal{F}} \dot{\omega}_{CO_2},
\]

(5)

where \(\mathcal{E} \) and \(\mathcal{F} \) denote the efficiency function and thickening factor as detailed in Section 3.2, respectively. The code is second order in space and the Smagorinsky model is used for the subgrid closure of momentum. It uses the arbitrary Lagrangian–Eulerian (ALE) scheme to follow the moving geometry.

3.1. Computational domain

As indicated in Figure 1, the temperature and pressure of the intake and exhaust flow are measured 10 pipe diameters (D) upstream and 7D downstream of the combustion chamber. Accordingly, the computational domain extends to these positions such that these measurements can be used as boundary conditions (see bottom left of Figure 6) for the LES. These measured pressures, as applied in the simulation, were introduced in the middle of Figure 2 as a function of the cad. The pressure traces within the intake and exhaust systems reveal the typical pressure behaviour shown for single-cylinder engines, which is caused by the pressure waves created by valve opening and closing. As mentioned in Section 2, the variation of this quantity between cycles is negligible and we therefore applied the same trace for each cycle within the simulation. Complemented by the temperature provided (not shown), all other quantities evolve naturally in the simulation as a part of the solution. Important in this regard is the mass flux that finally leads to the trapped mass within the cylinder, which in turn has a significant impact on the pressure curve. Since there are many potential sources for errors (e.g. grid, geometric approximations, and valve lift) we first used the motored case as a basic assessment of the numerical setup. Figure 7 shows the corresponding phase-averaged pressure curve of this motored operation. The 50 cycles averaged in the simulation and experiment are in good agreement, which indicates that the...
overall numerical setup reproduced the correct trapped mass as is important when going to the fired operation.

The grid is illustrated in Figures 6 and 8. As one can see, the geometry is mapped onto boundary-fitted hexahedral cells that follow the moving geometry within the ALE approach. Accordingly, the mesh size varies from approximately two to four million cells throughout the cycle and the timestep size adjusts according to numerical accuracy and stability requirements (0.1–1 μs). During the flame propagation (bottom of Figure 8) the cell size is about $\Delta x = 0.4$ mm.

3.2. Combustion modelling

3.2.1. Chemistry reduction by tabulation

The chemical reaction is mapped onto controlling variables following the FGM methodology [55,56]. The pre-computed thermo-chemical states are based on the detailed mechanism of [57] describing the reaction of iso-octane by means of 148 species and 928 elementary reactions. According to the premixed combustion mode within the SI engine, freely propagating flames are used. To cover the engine relevant conditions, a series of these flamelets were computed for a range of pressure and enthalpy levels using the one-dimensional code CHEM1D [58]. The resulting three-dimensional lookup table is illustrated in Figure 9. Shown here is the variation of the chemical source term within the relevant subsection of the table during flame propagation.
3.2.2. ATF and KIVA coupling

The lookup table is embedded into the ALE-scheme by providing the viscosity, chemical source term, heat capacity, temperature, and molar mass:

\[\mu, \omega_{CO_2}, c_p, T, M = f(p, h, Y_{CO_2}) \]

for the iterative procedure solving the set of Equations (1)–(5). By tabulating the chemistry, the mesh resolution required to capture the flame gets reduced to the scales of the transported species, being in the order of the thermal layer thickness:

\[\delta = \frac{T_b - T_u}{\max \left(\frac{\partial T}{\partial x} \right)} \]

We intentionally transport the enthalpy itself (Equation 4) instead of its sensible form to avoid the heat release leaving the chemical source term of the progress variable (Equation 5) as the most stringent scale to be resolved. We observed that the predicted flame speed is sufficiently accurate for the full range of possible states as long as the maximum grid size
satisfies

$$\Delta x, \text{max} \leq \delta/3.$$ \hspace{1cm} (8)

The functionality of this coupling between the chemistry table and KIVA is demonstrated in Figure 10: the top shows the flame speed for the engine relevant range of unburnt gas temperatures (T_u) and pressures (p). One can see that KIVA reproduces the detailed chemistry solution for this undisturbed freely propagating flame very accurately. The transferability of these results to turbulent flames where strain and curvature alter the propagation speed was demonstrated in [59–61]. The lower plot shows the flame structure for conditions found at about 10 cad after ignition. Here, the spatial evolution of the flame is given by the temperature and the chemical source term of CO$_2$, representing the large and small scales of the flame to be resolved, respectively. Just as for the flame speeds, the results are in good agreement.

Still, as will be illustrated in the next section, the limiting grid size, given by Equation (8), is exceeded by far for typical grids, especially since the flame thickness reduces throughout the process caused by the rising pressure. This problem encountered in all simulations of realistic devices is treated with the ATF-model in this work, entering the governing equations (4) and (5) by the thickening factor F and the efficiency function E. Their basic functions are illustrated in Figure 11, where the original flame front (as would be obtained on a fully resolving grid) is given by the red line. First, the flame structure is made resolvable by artificially thickening it by the factor F corresponding to a mathematical transformation which preserves the laminar propagation speed. We use the dynamic formulation to limit the thickening to the flame region using the flame sensor Ω according to

$$F = 1 + (F_{\text{max}} - 1) \Omega \quad \text{with}$$ \hspace{1cm} (9)
Figure 10. Comparison of one-dimensional flame properties using detailed chemistry (CHEM1D, circles) and tabulated chemistry (KIVA, lines), $\phi = 0.8$. Top: flame speed for conditions during flame propagation. Bottom: flame structure represented by the temperature and the progress variable’s chemical source term ($T_u = 590$ K, $p = 15$ bar). (Colour online)

Figure 11. Schematic illustration of the flame propagation as modelled in the ATF context. Initial flame kernel sizes, as referred to in Section 4.1, are visually shown at the spark plug (large: LES1, small: LES2, see Table 2). (Colour online)
\[\Omega = 16[c(1-c)]^2 \quad \text{where} \quad c = \frac{\tilde{Y}_{\text{CO}_2} - Y_{\text{min}, \text{CO}_2}}{Y_{\text{max}, \text{CO}_2} - Y_{\text{min}, \text{CO}_2}}. \tag{10} \]

Herein the maximum thickening factor \(F_{\text{max}} \) adjusts to the grid size, using

\[F_{\text{max}} = \frac{\Delta x}{\Delta x_{\text{max}}}. \tag{11} \]

Furthermore, for the application within engines this thickening factor must also adjust to the pressure which is realized by adding the flame thickness \(\delta \) to the variables extracted from the table (see Equation 6). \(F \) then simply follows from Equations (8)–(11) by using

\[\delta = f(p, h). \tag{12} \]

The flame front found after the thickening procedure is given by the blue line in Figure 11. Owing to the thickening, the flame becomes less sensitive to turbulent wrinkling and accordingly an effective area of fuel consumption is lost when compared to the original flame. This unresolved wrinkling needs to be compensated for by an efficiency function that yields, according to the area ratio of the actual and modelled flame, an increase of the flame speed by

\[\mathcal{E} = \frac{s_{T, \text{LES}}}{s_L}. \tag{13} \]

Accordingly, the flame front resolved within the LES will propagate with \(s_{T, \text{LES}} \), which results from spatial filtering and is a numerical property not to be confused with the classical turbulent flame speed associated with temporal averaging. Since the area ratio is unknown, the efficiency function can only be estimated, which represents the major uncertainty within the ATF approach. Within this work, the efficiency function is estimated according to [62] as

\[\mathcal{E} = f \left(F, \frac{u'_{\Delta}}{s_L} \right) = \left[1 + \min \left(F, \Gamma \frac{u'_{\Delta}}{s_L} \right) \right]^\beta, \tag{14} \]

where \(u'_{\Delta} \) represents the turbulence of the subgrid scale [63] and \(\beta \) is the scaling exponent. The expression is plotted in Figure 12, where one can see that the increased flame speed according to the estimated lost flame area is easily a multiple of the original one, especially with the large thickening factors required within engines. For this expression additionally the flame speed \(s_L \) is stored in the chemistry table analogous to Equation (12).

3.2.3 Cycle illustration

Figure 13 illustrates how the lookup table is employed within the actual process. Given here is a slice of the table showing several quantities within the pressure–enthalpy plane. The first quantity, shown in greyscale, is the flame thickness \(\delta \). As mentioned, it is used to determine dynamically the necessary thickening factor during the flame kernel expansion and varies significantly with pressure and enthalpy. As a second quantity, the flame speed
has been added by white iso-lines. As is known, it reduces with the pressure but increases with the enthalpy level.

Finally, the circles show some states perceived by the flame during combustion for the specific engine operation. They represent data taken from the simulation during a representative cycle. To illustrate the states perceived by the flame, only data within the flame front ($c = 0.1$ to $c = 0.9$) has been gathered. One can see that, for each cad, the pressure is very constant, while a certain scatter in the enthalpy is found at different spatial locations. The colours show the expected course through increasing pressure and enthalpy levels with the crank angle, the latter being caused by the transient pressure term in Equation (4). One interesting observation is that the flame speed reduction by the pressure is compensated for by the simultaneous enthalpy increase. This leads to an overall increase of the laminar
flame speed throughout the flame propagation besides the acceleration caused by turbulent wrinkling. Furthermore, it is important to note the flame thicknesses found throughout the cycle. In conjunction with the modelling outlined above and specifically the resolution requirement given by Equation (8), a discrepancy in the resolution actually available in the simulation ($\Delta x = O(0.5 \text{ mm})$) must be compensated for by the model.

4. Results

For the evaluation, statistics are gathered for a series of cycles conditioned on the cad. As already outlined in Section 2, within the experiment 300 cycles for each plane are considered where statistical convergence was confirmed. Owing to limited resources, the simulation covers only 60 cycles. The convergence analysis based on the measurements revealed that such a subset of 60 cycles mostly suffices for first-order moments. With this, the pressure curve quickly converged while the flame propagation still showed some statistical uncertainties. In the following, first in Section 3.1 the measured and computed pressure curves are discussed. Two simulations are considered, called LES1 and LES2 in the following. LES1 was conducted first with the default model settings and an estimated flame kernel size at ignition as detailed below. This first simulation underestimated the pressure evolution and the analysis of the results revealed modelling deficiencies which have been corrected in the second simulation (LES2) by adjusting parameters according to their physical interpretation. After the pressure curve evaluation, Section 3.2 compares the measured and simulated flame propagation.

4.1. Pressure curve and model sensitivity

The results are summarized in Figure 14 and Table 2. As is common for SI engines, the measurements show a distinct pressure rise with a certain delay after ignition. The
averaged peak pressure is 29.27 bar at 10 cad and the fluctuation added to Figure 14 increases up to 2.19 bar at 4.5 cad indicating an rms of about 10% compared to the average pressure. Considering the simulation LES1, it generally underestimates the pressure evolution. Compared to the measurements it also shows a distinct increase caused by the flame propagation also being at about the same cad, but the slope is visibly lower. Accordingly, the predicted peak pressure is delayed by 6 cad (see Table 2). During this delay, the piston proceeds downwards such that the combustion evolves within a larger in-cylinder volume, causing an underestimation of the maximum pressure by 6 bar. Likewise, the CCV indicated by p_{rms} are reduced. It should be noted, that p_{rms} in Figure 14 does not return to a value of zero for the cad regime shown. This is likely due to reactions taking place during early expansion that involve a fresh mixture outgassing from the relatively large piston crevice volume associated with optical engines. This phenomenon has been documented in [64–66]. It is also visible in the simulation but the fluctuation is slightly underestimated, probably caused by insufficient resolution of the crevice.

It is important to evaluate the potential differences between experiments and simulations as they may explain the discrepancies in the LES1 pressure results. Regarding the boundary conditions at the inlet and outlet, the motored case showed that the values provided in the intake and exhaust manifold are well defined and suited for simulations. Engine speed is another parameter with potential discrepancies. The engine speed was assumed to be constant in the simulation. In the experiments, [64] has performed a detailed crank-angle based engine speed analysis. For the engine operating conditions presented in this study, it was demonstrated that the actual engine speed can reduce by up to 5% near the end of compression for fired operation. This problem arises owing to a single-mass flywheel inertia change at a relatively low engine speed of 800 rpm. In theory, this gives the flame more time to evolve per cad in the experiment such that the simulation would appear to be delayed. However, for the duration from ignition until the end of combustion (i.e. about 26 cad), this minor reduction in engine speed would only amount to a duration of 285 s for which the flame would have an additional time to propagate in the experiments and increase the in-cylinder pressure. At most, this would suggest a maximum 1.3 cad lag between experiment and simulation at the peak pressure. Accordingly, this effect would only shift the results slightly closer towards each other and can therefore only explain a small part of the deviation. Likely the major cause is related to the modelling of the combustion process. This process consists of two physical sequences, i.e.

- ignition until stable flame kernel formation;
- subsequent (turbulent) flame propagation.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Experiment</th>
<th>LES1</th>
<th>LES2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrinkling factor</td>
<td>–</td>
<td>Default ($\beta = 0.5, 1u_A'$)</td>
<td>Adjusted ($\beta = 0.8, 1.5u_A'$)</td>
</tr>
<tr>
<td>Ignition kernel diameter</td>
<td>–</td>
<td>4 mm</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>p_{max}</td>
<td>29.27</td>
<td>23.28</td>
<td>29.59</td>
</tr>
<tr>
<td>cad(p_{max})</td>
<td>10</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>$p_{\text{rms, max}}$</td>
<td>2.06</td>
<td>1.54</td>
<td>2.3</td>
</tr>
<tr>
<td>cad($p_{\text{rms, max}}$)</td>
<td>4.5</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Major uncertainties in the simulation are associated with both these phases, causing the mismatch between LES1 and the measurements. Therefore, a systematic study was conducted to understand the sensitivity of their prediction according to modelling parameters related to each of them. Owing to the high computational costs, it is not possible to perform a full statistical evaluation (i.e. phase averaging of 60 cycles) for each set of modelling parameters. Accordingly, the procedure was to restart the simulation of some representative cycles from their state prior to ignition. This allows an adequate range of the pressure curve’s sensitivity to the modelling parameters to be obtained, which were varied according to their physical significance. Such a map is provided in Figure 15 and will be detailed with the associated settings of the combustion model in the following.

Consider first the ignition. This is a complex physical process that can only be approximated in simulations. The current approaches must be adjusted to the individual modelling concept (e.g. energy deposition is used for ATF [36], and the ISSIM model is used for FSD [67]). Within our tabulation approach the ignition is realized by setting a small region at the spark to its burnt state (see Figure 11) at the instant of spark discharge at -16 cad. This is a relatively simple approach but still widely used (see for example [32]). After this initial artificial fuel conversion, just as in a real engine, a self-sustaining flame forms that naturally expands in the turbulent flow. Obviously, setting a meaningful kernel size is then a sensitive choice for which generally little reference is available. The impact of the initial kernel size on the pressure curve is given qualitatively on the left-hand side of Figure 15, where two things can be observed. First, as expected, the combustion evolves quicker with increasing kernel size. However, and second, even though the correct peak can finally be reached, the qualitative course towards it is wrong. While the kernel size has a strong effect on the early stage after ignition, the strong change in the pressure slope observed in the measurements at about -5 cad is not associated with it. One possible reason for the underestimation of the pressure evolution is insufficiently strong ignition. With these findings this is obviously not the case since an increased kernel size leads to a clear deviation at very early stages where it is the dominant parameter. Furthermore, as indicated by the larger circle in Figure 11, the kernel size of LES1 already covers a significant region, and increasing it further seems rather unrealistic. Indeed, the following analysis and the flame imaging discussed in the next section will confirm that the flame front evolution corresponds rather to a smaller kernel and a faster growth.

Consider next the flame propagation. Since this growth rate results from the turbulent flame propagation, these findings shift the attention to the flame–turbulence interaction partially being modelled within the LES. Naturally, regardless of the model, flame wrinkling under high pressure cannot be resolved on LES meshes, which must be compensated for.
In this regard, [32] also observed a strong impact related to the estimated turbulent flame speed utilized for the G-equation approach. As explained in Section 3.2.2 and Figure 11, within the DTFM, the efficiency function should compensate for the wrinkling suppressed by the thickening. With this approach, [36] predicted the pressure curve for the SGEmac engine very well. However, their mesh was significantly finer (0.2 to 0.4 mm here) while a lower pressure was considered (20 to 30 bar here). Owing to both of these differences, the amount of unresolved wrinkling is significantly higher within this simulation, i.e. for a given modelling uncertainty its impact is much larger here. Furthermore, a more complex fuel is considered here, but this should be covered well by the tabulation. In summary, the modelled turbulent flame propagation generally can have a large influence and is apparently underestimated by the efficiency function in our simulation. Accordingly, as done for the kernel size, we studied the impact of the modelled unresolved wrinkling on the pressure curve. It should be noted that the formulation of Equation (14) itself has been derived based on assumptions whose transferability to engine conditions is uncertain. However, this fundamental question is beyond the scope of this work and we are limited to adjusting the given formulation.

The effect of increasing the modelled part of the turbulent flame propagation is qualitatively shown on the right-hand side of Figure 15. It is clearly visible that it has a significant impact on the change in slope, while the pressure evolution in the early phase is only slightly altered. Accordingly, it can be concluded that the effects of ignition and propagation can be separated into the initial behaviour after ignition and the subsequent change in slope, respectively. Likewise, it is possible to attribute the corresponding modelling uncertainties by considering the respective phases.

Instead of a simple scaling of Equation (14), it is more reasonable to consider the individual uncertainties that enter the efficiency function formulation. Those are the velocity fluctuation u'_h and the scaling exponent β. Both of them have been varied based on analysing E found in our simulation and the corresponding pressure curves. For this purpose, Figures 16 and 17 provide some insight into the efficiency function. The top of Figure 16 shows E mapped onto an iso-surface of the flame front in LES1 for a given cad. A more
quantitative representation is given in the top left of Figure 17 showing the PDF of E along such an iso-surface for several cad. In the early phase after ignition, the PDF shows a broad distribution and one can see that the flame gets strongly accelerated by about a factor of three on average. However, with increasing cad, the distribution continuously shifts towards lower values. On one hand, this is reasonable since the turbulence level reduces during this phase. On the other hand, the flame gets increasingly thinner, which in turn requires a larger thickening factor and therewith potentially more unresolved wrinkling to be compensated for.

Consider the velocity fluctuation u'_{Δ}: it is computed based on the Laplacian of the velocity field (see [63]) to enter the efficiency function. Accordingly, this quantity is sensitive to the turbulent decay following the intake stroke throughout the compression and flame propagation phases, which might be overestimated by the simulation. In this context it is worth noting that E as given by Equation (14) has a theoretical maximum depending on F via

$$E_{\text{max}} = (1 + F)^{\beta},$$

i.e. as also visible in Figure 12, for large values of u'_{Δ} it converges towards this value. As visible at the bottom left in Figure 17, where E is normalized using this quantity, the efficiency function is significantly lower, meaning that it is quite plausible that rather low values of u'_{Δ} get predicted by the simulation even though a reference for this latter does not exist. Accordingly, it is necessary and justified to rescale the computed fluctuation corresponding to an adjustment of the coefficient c_2 in reference [63]. Regarding the
scaling exponent, LES1 uses a constant value of $\beta = 0.5$ as suggested by [68]. However, later works [62,69] where a dynamic formulation has been developed and used also showed larger values even above $\beta = 0.8$.

To summarize the adjustments, appropriate values for the ignition kernel size, u'_Δ, and β were obtained to perform LES2 as given in Table 2 even though a final conclusion related to the quality of the predicted turbulent flowfield and the suitability of the efficiency formulation cannot be drawn. As already provided on the right-hand side of Figure 15, after increasing the efficiency function, a slight overestimation in the early stage also exists, which could only be corrected by lowering the initial kernel size (see Table 2 and Figure 11). Indeed, as we will see in Section 4.2, the flame images confirm that it was assumed too large in the LES1 simulation. Accordingly, both the kernel size and the propagation have a certain impact whose adjustments are consistent with the pressure curve and flame imaging. Here, the influence of the kernel size on the pressure curve is related to the early stage, while the propagation speed strongly impacts the slope increase and therewith the qualitative evolution.

To visualize the impact of these adjustments, the corresponding plot of LES2 is shown at the bottom of Figure 16. To be comparable, both of these simulations have been ignited starting from the same initial turbulent field. Accordingly, the geometric iso-surfaces are very similar since they mostly result from the resolved wrinkling being identical in both simulations. However, as the colour indicates, the flame of LES2 propagates significantly faster. Accordingly, the flame ball is larger, which is not so visible in this three-dimensional view but will be detailed in Section 4.2. The corresponding PDFs are given on the right-hand side of Figure 17, whereby two observations can be made. First, as forced by the modifications, larger values occur, but as for LES1, the PDF shifts towards lower values during the combustion process. Second, the PDF shape also changed; specifically, the reduction with increasing cad is delayed and here even the larger cads show a large contribution of very high values of E.

Finally, with these settings, the 60 cycles of LES2 have been averaged and the results have been added to Figure 14 and Table 2. One can see that this modification enables the simulation to predict very accurately the measured pressure, not only its average value but also its fluctuation.

4.2. Flame propagation

To provide further insight into the combustion process, we now consider the flame propagation in more detail. While the pressure is rather a global indicator for the integral fuel consumption, this allows one to judge the local flame position. First, the simulation results of LES2 will be used to outline qualitatively the process of flame propagation within this engine using Figures 18–22. Figure 18 gives an illustration of the flame propagation starting from the initial kernel that expands with increasing flame wrinkling and finally reaches the walls. This kernel expansion is a superposition of the turbulent flame propagation and flow convection as detailed in Figure 19. It shows the swirl-plane whose position is illustrated in Figure 4. The streamlines indicate the mean velocity field crossing the flame kernel given in red. One can see that there is a mean flow towards the negative x-direction that will convect the flame kernel while it is expanding as illustrated in Figure 20. The left-hand side shows the phase-averaged progress variable by means of one iso-contour per cad. An interesting observation is that the flame kernel is relatively circular, meaning that it propagates in each direction at a similar speed while it is being convected to the left by the mean flow. For illustrative purposes, a corresponding single cycle is shown on the right-hand side. As in Figure 18, one can see that the flame’s wrinkling increases throughout the propagation and
can be strongly asymmetrical. The same illustrations are given in Figures 21 and 22 within the tumble-plane, whose position is also marked in Figure 4. A slightly later cad has been chosen in Figure 22 where the interaction of the velocity field in the region of the spark plug and the propagation is clearly visible. A more qualitative discussion will be given below jointly with the measurements.

The propagation can strongly vary from cycle to cycle, as visualized in Figures 23 and 24. Especially in the swirl-plane one can see that, for a given crank angle, the flame shapes of different cycles are not only different regarding the local wrinkling, but also cover globally very different regions, while the averaged propagation represents a relatively smooth and symmetric shape. The effect of the increased efficiency function on the instantaneous flame propagation is given in Figure 25. It compares the flame positions as predicted by LES1 and LES2. As for the comparison in Figure 16, they are ignited from the same initial field and accordingly show a similar geometric shape. At 2 cad, the flame of LES2 covers a much larger area and its radial extent exceeds LES1 at almost all positions. From the perspective of this 2D viewing plane, LES2 has only small unburnt pockets while LES1 shows, rather, individual burnt gas islands. At 4 cad, these islands then unite within the process of the flame kernel growth but the delay compared to LES2 is very visible.

Finally, going over to the characterization of flame propagation using experimental imaging in the tumble- and swirl-planes, the evaluation and comparison with the simulations is given in Figures 26–30. Owing to the limited field of view in the experiments (see Figure 4), rather early instants being at −10, −6, and −2 cad are shown. The corresponding pressure evolution during these instants is given in Figure 31. The measured kernel expansion is given in the left column of Figures 27 and 28 for the tumble- and swirl-planes, respectively. In these figures, the colour represents the phase averaged probability of the burnt gas region to visualize the progress of the flame. As one can see in the tumble-plane measurements, right after ignition the flame kernel quickly moves towards the negative x-direction due to convection by the flow. Also the piston is quickly approached while the fresh gases towards the positive x-direction are consumed later by the flame propagation. Accordingly, for the x-direction the same behaviour is visible within
the swirl-plane, while the expansion in the y-direction is relatively symmetrical since the in-cylinder flow has no swirling motion.

The simulation results are given in the middle and right columns for LES1 and LES2 in Figures 27 and 28, respectively. Besides this visualization by means of the burnt gas PDFs, Figures 26 and 29 provide a more quantitative comparison of the flame positions by using $\bar{c} = 0.5$ iso-contours. Starting with LES1, we already mentioned that the comparison of the averaged flame position revealed that the initial kernel size was set too large. Within both the swirl- and tumble-planes, the flame is ahead of the experiments at -10 cad but shows a very similar convection towards the negative x-direction. In this early phase the flame imaging is vital to assess the simulation, i.e., as Figure 31 indicates, the effect on the pressure is not significant, but the flame deviations are clearly visible from the green curves in Figure 26. The further two instants being at -6 and -2 cad then provide the complete picture of the simulations deficiency. At -6 cad the predicted flame position is close to the
measured one while it shows an insufficient kernel expansion at -2 cad: in the tumble-plane, both approached the piston head but the simulated flame propagates too slowly in the positive x-direction. In the swirl-plane, in most of the regions the overall flame ball is too small primarily towards the y-direction. This evolution is reflected in the pressure curve (Figure 31). At -6 cad the measurements cross the simulation while a first significant difference is visible at -2 cad. This latter arises by the strong slope increase at about -5 cad where the influence of the flame propagation on the pressure curve starts to become significant, i.e. the deviations of LES1 are clearly attributable to an insufficient propagation speed whose effect is not yet very significant at -6 cad where partial compensation with the ignition model takes place.

Going over to LES2, just as for the pressure curve, the predicted burnt gas region is also in better agreement with the experimental findings. In the tumble-plane (Figure 26), at -10 cad, the burnt gas encompasses a small area left of the spark plug close to the one seen in the experiments. This agreement, found at 6 cad after ignition, supports the use of the smaller initial kernel size even though the simulated flame extends slightly further downwards such that it is already visible in the swirl-plane not yet reached in

Figure 20. Flame contour in the swirl-plane for several cad. Left: averaged; right: single cycle. The spark plug being above the plane has been added for orientation (grey). (Colour online)

Figure 21. Averaged streamlines in the tumble-plane superimposed on the flame contour (progress variable showing the flame kernel in red) at an early stage after ignition (-6 cad). (Colour online)
Figure 22. Flame contour in the umble-plane for several cad. Top: averaged; bottom: single cycle. Compared to Figure 20, also contains smaller kernels (−14 and −12 cad) that did not yet reach the swirl-plane. (Colour online)

Figure 23. Illustration of the flame propagation in the umble-plane for cad = −6 (top) and cad = −2 (bottom). Flame position for two individual cycles (coloured lines) and time averaged burnt gas region (green). Left: experiments, right: simulation. (Colour online)

the measurements. At −6 cad, the burnt gas area remains slightly larger than seen in the experiments in that it covers a larger region to the right of the spark plug. Considering the further evolution found at −2 cad, the burnt gas area agrees well with experiments, covering nearly the same regions. Here, the images as well as the pressure curve confirm that the faster burning predicted by LES2 provides a more accurate rate of pressure rise and flame propagation.

Finally, a further comparison is provided in Figure 30 where the normalized reaction progress variable is plotted along the lines indicated in green in Figure 28. This allows its spatial evolution to be evaluated in addition to the single contour given in Figures 26 and 29. The transition from the unburnt to the burnt state represents the turbulent flame brush in a phase-averaged sense. Along the x-direction at −6 cad the left slope is predicted quite accurately while a certain discrepancy exists towards positive x-positions where the flame propagation is very sensitive to the flow around the spark plug. At −2 cad, only LES2 is in satisfactory agreement with the experiments, while LES1 underestimates the slope and
5. Summary and conclusion

This work considered experiments and simulations of the fired operation of an optically accessible spark ignition engine. From the measurements, a database was derived to characterize the process by means of the pressure curve and a flame imaging technique. The latter provided a detailed view of flame propagation within the swirl- and tumble-planes.

Within the simulations conducted, we showed the application of the DTFM combined with pressure-dependent FGM tabulation of pre-computed thermo-chemical states using detailed chemistry. For this, we first demonstrated the functionality of the tabulation approach when embedded into the ALE-scheme of the LES code. The method was then
applied to the engine and a comparison based on phase-averaged data was conducted. The comparison revealed a certain discrepancy with the measurements, which was analysed and could be related to modelling uncertainties. Within this analysis, the flame imaging allowed a clear differentiation between errors in the ignition and the propagation. Based on these findings, we adjusted the modelling parameters, which enabled the simulation in a second run to reproduce quite accurately the measurements of both pressure and flame.
shape. An interesting observation is that the adjustments not only improved the agreement with the averaged pressure but also with the fluctuations that represent the intensity of the cycle-to-cycle variations.

Within this work, the joint utilization of experiments and simulation data gave access to valuable information on the actual flame shape regarding its spatial and temporal evolution. The primary focus was to show that the imaging technique can serve as a well-suited method for analysing simulation quality and identifying modelling deficiencies and necessary adjustments. Furthermore, a first view of the flame propagation mechanism was provided. For future work, the consideration of other engine conditions would be valuable in order to assess the generality of the conclusions and provide further physical insight.
Figure 29. As in Figure 27 but for the swirl plane being at $z = 1.3$ mm. Holes in the measurements are due to reflections. (Colour online)
Figure 30. As in Figure 28 but for the swirl plane being at $z = 1.3$ mm. The spark plug being above the plane has been added for orientation (gray). (Colour online)

Figure 31. Averaged normalized reaction progress variable extracted along the lines as indicated in green in Figure 29 for -6 (black) and -2 cad (red). The positions have been chosen to be outside reflections. Circle: experiment; dashed line: LES1; solid line: LES2. (Colour online)
Acknowledgments

Computations were performed on the Lichtenberg High Performance Computer of TU Darmstadt, a member of HPC (High Performance Computing) Hessen. We would like to thank Andreas Dreizler from TU-Darmstadt for helpful discussions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through the Sonderforschungsbereich (SFB)/Transregio 150 and the Graduate School of Computational Engineering (GSC 233) in Darmstadt.

Note

1. Plausible causes are an insufficient grid size or an overestimation of the turbulent viscosity.

ORCID

Jeroen van Oijen http://orcid.org/0000-0002-4283-2898

References

Combustion Theory and Modelling

