Hybrid Vehicle Energy Management: Singular Optimal Control

S. Delprat, T. Hofman, S. Paganelli

Abstract—Hybrid vehicle energy management is often studied in simulation as an optimal control problem. Under strict convexity assumptions, a solution can be developed using Pontryagin’s Minimum Principle. In practice, however, many engineers do not formally check these assumptions resulting in the possible occurrence of so-called unexplained “numerical issues”. The present work intends to explain and solve these issues. Due to the binary controlled-state variable considered (e.g., switching on/off an internal combustion engine) and the use of a lookup table with linear interpolation (e.g., engine fuel consumption map), the corresponding Hamiltonian function can have multiple minima. Optimal control is not unique. Moreover, it is defined as being singular. Consequently, an infinite number of optimal state trajectories can be obtained. In this work, a control law is proposed to easily construct a few of them.

Index Terms—Binary variable, lookup table, hybrid vehicle, optimal control, singular control.

I. INTRODUCTION

Energy management of hybrid vehicles has been studied intensively over the past two decades. Several approaches have been investigated for offline optimization, especially Pontryagin’s Minimum Principle (PMP). In this context, the optimal control algorithm is used to compute a state trajectory with endpoint constraints. This theory has some limiting theoretical requirements; in particular, the Hamiltonian associated with the optimal control problem must be convex and smooth [1]. Many engineers may stretch these theoretical limitations to solve different practical problems by using, in the models, lookup tables with linear interpolation and/or (heuristic) rules in order to include binary switching components in the control. Pontryagin’s Minimum Principle generally provides satisfactory solutions. However, so-called “numerical issues” are sometimes encountered and remain unexplained and unsolved. One of the most common issues is that the final end-point constraint cannot be satisfied by the optimal control algorithm.

The work presented intends to provide theoretical explanations and rigorous solutions to these “numerical issues” (e.g., solutions that ensure the optimality conditions for problems with linear interpolation and binary value optimization are satisfied).

The paper is organized as follows. In Section II, the optimal energy management of a parallel hybrid vehicle is introduced and the “numerical issues” studied are highlighted in different driving cycles. In section III, a simple series hybrid vehicle model is detailed (no mechanical connection between the engine and the driven wheels). The fuel consumption to be minimized is computed using a lookup table with a linear interpolation. The power delivered by the Auxiliary Power Unit (APU) and its on/off signal are controlled. The hybrid vehicle energy management is formulated as an optimal control problem, and the classical implementation of Pontryagin’s Minimum Principle is recalled. Control is obtained by minimizing the Hamiltonian associated with the optimal control problem. The optimization problem comes down to the choice of a single parameter: the initial co-state value. This boundary value problem described by a nonlinear function is solved numerically. The resulting algorithm is applied to the energy management problem presented and the numerical issues are highlighted.

In Section IV, a rigorous optimal control algorithm is derived from Pontryagin’s Minimum Principle. The Hamiltonian minimization explicitly accounts for the binary variable (through relaxation) and the piecewise linear model resulting from the lookup table. The Hamiltonian is neither smooth nor strictly convex. For some specific co-state values, it has an infinite number of minima and the control is said to be singular. The effect of singular control on the state dynamics is illustrated. For given co-state values, an infinite number of state trajectories can be obtained and so an infinite number of final state values can be reached. Finally, a new PMP-based algorithm for singular control problems is introduced that allows a few optimal state trajectories to be obtained in the case of singular control. In section V, the proposed algorithm is applied to both the series hybrid vehicle and the parallel hybrid vehicle studied. The computational performances of the proposed algorithm are discussed. From both the theoretical study and numerical simulations, the main factors causing the numerical issues are highlighted. Some explanations and recommendations are then formulated to facilitate the implementation of optimal hybrid vehicle energy management. Finally, some conclusions and perspectives are discussed in Section VI.

II. PROBLEM STATEMENT

Before analyzing the mathematics behind singular control in a simpler problem, let us introduce the following use case. A parallel single shaft hybrid vehicle, composed of an internal combustion engine coupled to a battery-powered electric machine via a mechanical transmission, is considered, Fig. 1. Two clutches are used to disconnect the motor and/or the engine. The power is transferred to the wheel through a five-
The vehicle parameters are listed in Table I.

Hybrid vehicle simulations for energy studies can be implemented in various ways: Simulink-based models in the Advisor software [2] or Matlab scripts as is used in this work. The IC engine specific fuel consumption map and the electric machine efficiency map are given in the Fig. 2 and Fig. 3.

In this study, the New European Driving Cycle and some driving cycles from the HYZEM project are considered, Fig. 4. To cope with two energy sources, one of the simplest approaches is to impose, over a driving cycle, identical initial and final battery states of charge. The hybrid vehicle energetic performance is there reduced to the fuel consumption.
The algorithm proposed can be easily adapted to other arrangements (such as a parallel hybrid powertrain) with a single degree of freedom.

The vehicle considered (depicted in Fig. 6) is composed of an electric vehicle powered by an Auxiliary Power Unit (APU) and/or an Energy Storage System (ESS).

![Series hybrid powertrain](image_url)

Fig. 6. Series hybrid powertrain considered.

In simulation, a driving cycle provides the vehicle speed v as a function of time t. The vehicle energy consumption is accurately described by quasi-static models for the engine, the electric machines, and the battery system [8], [9]. The principal vehicle parameters are listed in Table VII of Appendix I – Vehicle modeling.

A. System description: series hybrid powertrain

The auxiliary power unit output power $P(t)$ was chosen as the control variable. It is constrained by some physical limitations:

$$ P(t) \in \left[0, P_{\text{max}}\right] $$

In order to lighten the notations, the dependence on the time variable t is omitted when there is no ambiguity. In addition, let us denote $\theta(t) \in \{0,1\}$ as the primary energy source binary control (for instance, the fuel injection-enabling signal) with $\theta(t) = 0 \Rightarrow P(t) = 0$.

In many cases [10], [4], it is assumed that the driving cycle power $w(t)$ is piecewise constant, where T_s is the sampling period and n_w is the number of samples:

$$ w(t) = w_i \quad \forall t \in \left[i \cdot T_s, (i+1) \cdot T_s\right] \quad i = 0, \ldots, n_w - 1 $$

The energy storage system power is limited due to the electrical system component constraints:

$$ y(t) \in \left[-y_{\text{max}}, y_{\text{max}}\right] $$

The hybrid power split is defined as:

$$ \theta(t) \cdot P(t) = y(t) + w(t) $$

According to the limits of the different components (1), (4) and the driving cycle power $w(t)$, the binary control variable may be limited or not. Let us denote $\theta(t) \in \Phi(w(t))$ with $\Phi(w) \subset \{\{0\}, \{1\}, \{0,1\}\}$ as the set of admissible binary variable values with respect to w. The continuous control signal $P(t)$ must be limited:

$$ P(t) \in \left[P(w(t)), \bar{P}(w(t))\right] $$

with $P(w(t)) = \max\left(0, -y_{\text{max}} + w(t)\right)$ and $\bar{P}(w(t)) = \min\left(P_{\text{max}}, y_{\text{max}} + w(t)\right)$.
Let \(u(t) = [P(t), \theta(t)] \in U(w(t)) \) be the decision variable with \(U(w(t)) = [P(w(t)), \overline{P}(w(t))] \times \Phi(w(t)) \) as the admissible control space at time \(t \).

The energy storage system is considered as a dynamic system with \(x(t) \) being the state of energy. The main objective of this work is to study the effects of singular control, and so perfect energy storage is considered, as in [11], [12]. The storage capacity is denoted \(Q \). The system dynamics is:

\[
\dot{x}(t) = y(t) = (P(t) \cdot \theta(t) - w(t))Q^{-1} \tag{6}
\]

The fuel consumption is computed using a lookup table and linear interpolation between the gridded data points available (vertices), Fig. 7.

![Fig. 7. Fuel consumption (g/s) and specific fuel consumption (g/kWh) as a function of the auxiliary power unit power \(P \).](image)

The \(n_p = 10 \) lookup table breakpoints are denoted as \(P^j \). The fuel consumption model is a piecewise linear function:

\[
\dot{m}_j(P) = c_j \cdot P + d_j \quad \forall P \in [P_j, P_{j+1}], \quad j = 0, \ldots, n_p - 2 \tag{7}
\]

Coefficients \(c_j \) and \(d_j \) are chosen such that \(\dot{m}_j \) is convex and continuous with \(c_0 > 0, c_{j+1} > c_j, \quad d_0 > 0 \).

Fig. 7 also presents the specific fuel consumption of the auxiliary power unit. This corresponds to the ratio of the fuel-mass flow \(\dot{m}_j \) and the electric power \(P(t) \). The best efficiency is achieved for \(P(t) = P_{ce} : \)

\[
P_{ce} = \arg \min_{P \in [0, P_{max}]} (\dot{m}_j(P) \cdot P^{-1}) \tag{8}
\]

The auxiliary power unit fuel consumption over the driving cycle starting at \(t = 0 \) and ending at time \(T \) is:

\[
\min_{u(t) \in U(w(t))} \int_0^T \dot{m}_j(P(t)) \cdot \theta(t) \cdot dt \tag{9}
\]

Two additional state constraints are needed [13], [14]:

\[
\begin{align*}
x(0) &= x_0 \tag{10} \\
x(T) &= x_T \tag{11}
\end{align*}
\]

The optimal control problem considered, denoted \(OCP \), is given by (4), (6), (9)-(11).

Several approaches such as convex programming [8], [15], [16] or deterministic Dynamic Programming (DP) [17], [18] have been investigated to solve the \(OCP \). Pontryagin’s Minimum Principle provides the necessary conditions for solution optimality enabling the initial optimization problem to be reduced to a boundary value problem. If the Hamiltonian is smooth and convex, this boundary value problem can be solved by a simple shooting algorithm [19]. PMP-based optimization algorithms are usually significantly faster than DP. However, state constraints are quite difficult to handle with Pontryagin’s Minimum Principle [20]. Several iterative algorithms [21], [22], as well as penalty-based methods [23] have been proposed.

B. Pontryagin’s Minimum Principle

The work presented focuses on Pontryagin’s Minimum Principle and is restricted to an unconstrained state problem for the sake of simplicity. By introducing the co-state \(\lambda(t) \in \mathbb{R} \), the Hamiltonian of the optimization problem is:

\[
H(w, u, \lambda) = S(D(P \cdot \lambda - \lambda \cdot Q^{-1} \cdot w) \tag{12}
\]

with \(S(D(P \cdot \lambda)) = \dot{m}_j(P) + \lambda \cdot Q^{-1} \cdot P \) \tag{13}

The following necessary first order optimality condition can be derived from Pontryagin’s Minimum Principle [24], [25]:

\[
\dot{\lambda}(t) = -\frac{\partial H}{\partial x} = 0 \tag{14}
\]

This constant co-state is a well-known consequence of the chosen state-independent energy storage system model [4]:

\[
\lambda(t) = \lambda_{init} \quad \forall t \in [0, T] \tag{15}
\]

with \(\lambda_{init} \) as an unknown constant. The optimal control \(u(t) \) satisfies:

\[
u(t) = \arg \min_{u(t) \in U(w(t))} H(w, u(t), \lambda_{init}) \tag{16}\]

The Hamiltonian minimization results in two functions of the exogenous variable \(w \) and the co-state value \(\lambda_{init} : \)

\[
(\psi_w(w, \lambda_{init}) \cdot \psi_{\dot{\lambda}}(w, \lambda_{init})) = \arg \min_{u(t) \in U(w(t))} H(w, u, \lambda_{init}) \tag{17}\]

If the Hamiltonian is strictly convex with respect to the control \(u \), the optimal solution is unique and conditions (14) and (16) are also sufficient.

The final state value is a function \(g \) of the initial co-state \(\lambda_{init} : \)

\[
x(T) = g(\lambda_{init}) \tag{18}\]

\[
g(\lambda_{init}) = x(0) + \int_0^T (\psi_w(w, \lambda_{init}) \cdot \psi_{\dot{\lambda}}(w, \lambda_{init}) - w) \cdot dt \tag{19}\]

The only unknown is the initial co-state value, \(\lambda_{init} \). It is computed numerically as a solution to:

\[
g(\lambda_{init}) - x_T = 0 \tag{20}\]

C. Classical implementation of Pontryagin’s Minimum Principle

In many studies, it is assumed that the Hamiltonian has a single minimum [10], [26], [27] and the Hamiltonian minimization is computed numerically. For instance, the set of admissible controls \(U(w(t)) \) is replaced by a finite set of values denoted \(\{U_{grid}(w(t))\} \). It is composed, for \(\vartheta = 1 \), of \(n_{grid} \) values linearly spaced within the admissible range of the continuous variable \([\underline{P}(w(t)), \overline{P}(w(t))] \) and the pure electric mode (corresponding to \(\vartheta = 0 \), if available. The Hamiltonian
minimum is estimated by evaluating the Hamiltonian at each grid node, [10, 4] and [28].

As a result, an approximate Hamiltonian minimization is obtained. Approximated values are denoted with a tilde. The optimal control (17) is replaced by:

$$\begin{align*}
\left(\psi_p \left(w, \lambda_{\text{init}} \right), \psi_g \left(w, \lambda_{\text{init}} \right) \right)^T = \arg \min_{u \in \text{grid}(w)} H \left(w, u, \lambda_{\text{init}} \right) \\
\end{align*}$$

(21)

The exogenous signal w being piecewise constant, the control should also be piecewise constant:

$$\begin{align*}
P_i(t) = \varphi_i, \quad \forall t \in \left[i \cdot T_s, (i+1) \cdot T_s \right] \\
\vartheta_i(t) = \varphi_i, \quad \forall t \in \left[i \cdot s, (i+1) \cdot s \right]
\end{align*}$$

(22)

(23)

The values of P_i and ϑ_i are obtained using the approximated control law:

$$\begin{align*}
P_i = \psi_p \left(w_i, \lambda_{\text{init}} \right) \\
\vartheta_i = \psi_g \left(w_i, \lambda_{\text{init}} \right)
\end{align*}$$

(24)

(25)

The final state value is a function g of the initial co-state λ_{init}:

$$g \left(\lambda_{\text{init}} \right) = x_0 + \Omega^{T} \sum_{i=1}^{n_{\text{grid}}} \left(\psi_p \left(w_i, \lambda_{\text{init}} \right) \cdot \psi_g \left(w_i, \lambda_{\text{init}} \right) - w_i \right) \cdot T_s$$

(26)

The initial co-state value λ_{init} is the solution to the following equation:

$$g \left(\lambda_{\text{init}} \right) - x_f = 0$$

(27)

A first numerical experiment was conducted with the New European Driving Cycle (NEDC). The numerical settings are $x_0 = 50\%$, $x_f = 85.67\%$, and $n_{\text{grid}} = 100$. The solution to (27) is computed using a bisection algorithm.

The function $g \left(\lambda_{\text{init}} \right)$ represented in Fig. 8, is subject to a number of discontinuities that may not allow a solution to (27) to be found. The bisection algorithm solution converges toward each side of the discontinuity. The solution closest to the desired final state of energy is retained when the algorithm is stopped. The initial co-state obtained is $\lambda_{\text{init}} = -2442.5$.

HYZEM Highway driving cycle and not the NEDC. Without further analysis, these numerical results cannot be explained.

The worst case simulation conditions for different driving cycles obtained with the series hybrid vehicle are presented in Table III. The maximum final state of charge error is $x(T) - x_f = 6.66\%$.

Table III

<table>
<thead>
<tr>
<th>Driving cycle</th>
<th>Initial state of charge x_0 (%)</th>
<th>Expected final state of charge x_T (%)</th>
<th>Final state of charge error $(x(T) - x_f)$ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEDC</td>
<td>50</td>
<td>85.67</td>
<td>-6.66</td>
</tr>
<tr>
<td>HYZEM Urban</td>
<td>50</td>
<td>63.18</td>
<td>-3.01</td>
</tr>
<tr>
<td>HYZEM Road</td>
<td>50</td>
<td>50.21</td>
<td>-2.16</td>
</tr>
<tr>
<td>HYZEM Highway</td>
<td>50</td>
<td>42.90</td>
<td>9.02</td>
</tr>
</tbody>
</table>

IV. SINGULAR OPTIMAL CONTROL

To implement Pontryagin’s Minimum Principle, it is first necessary to determine the control that minimizes the Hamiltonian. In order to fit the theoretical requirements of Pontryagin’s Minimum Principle, the initial problem is replaced by an embedded problem similar to the OCP, except that $\vartheta(t) \in [0,1]$. If the solution to the embedded problem contains only $\vartheta(t) \in [0,1]$, then it is also a solution of the initial optimization problem [29].

Moreover, in some particular situations the Hamiltonian has an infinite number of minima, therefore, the final state errors encountered with the classical algorithm can be rigorously explained.

Finally, an algorithm is proposed to construct an infinite number of optimal solutions with no final state error.

A. Hamiltonian minimization

Two preliminary remarks need to be made. First, the Hamiltonian can be formulated as a piecewise linear function of the power P:

$$H \left(w, u, \lambda \right) = \left[\left(c_j + \lambda \cdot Q^{-1} \right) \cdot P + d_j \right] \cdot \vartheta - \lambda \cdot Q^{-1} \cdot w$$

(28)

In the sequel, a piecewise expression is considered each time the coefficients c_j or d_j are used. It is assumed to be valid over the appropriate interval $[p_j, p_{j+1}]$.

Equation (28) can be rewritten to show that the Hamiltonian is a piecewise affine function of the single variable λ, according to (29) where S_p is a so-called switching function defined by (30).

$$H \left(w, u, \lambda \right) = S_p \left(\lambda \right) \cdot \vartheta + d_j \cdot \vartheta - \lambda \cdot Q^{-1} \cdot w$$

(29)

$$S_p \left(\lambda \right) = c_j + \lambda \cdot Q^{-1}$$

(30)

In a same way, the Hamiltonian is also a piecewise affine function of the single variable ϑ, according to (31) where S_{ϑ} is also a switching function.

$$H \left(w, u, \lambda \right) = S_{\vartheta} \left(\lambda, P \right) \cdot \vartheta - \lambda \cdot Q^{-1} \cdot w$$

(31)
\[S_\rho (P, \lambda) = c_j \cdot P + d_j \cdot \lambda \cdot Q^{-1} \cdot P \]
(32)

Using the two switching function \(S_p \) and \(S_\rho \) will simplify the Hamiltonian behavior analysis.

![Fig. 9. Illustration of the admissible breakpoint set \(\Xi (w) \). The solid line depicts the “useful” part of the auxiliary fuel consumption model, \(\forall P \in [P(w), \bar{P}(w)] \).](image)

The second remark is related to the control constraint (5). Only a small set of power values needs to be considered. As illustrated in Fig. 9, for any \(P \in [P(w), \bar{P}(w)] \), this set, denoted as \(\Xi (w) \), is composed of:

- The admissible lookup table breakpoints with respect to the control constraint (5),
- The minimum and maximum control values \(\{ P(w), \bar{P}(w) \} \).

The formal definition of the set \(\Xi (w) \) is:

\[
\Xi (w) = \{ p_j : p_j \in [P(w), \bar{P}(w)], j = 0...n_p - 1 \}
\cup \{ P(w), \bar{P}(w) \}
\]
(33)

For a given \(w \) and \(\lambda_{init} \), the optimal control law, denoted \((P^*, \vartheta^*) \), is obtained by minimizing the Hamiltonian. In general, there is a unique solution and the control is well defined. But, the Hamiltonian being piecewise affine, it may happen that for particular cases, the minimum is obtained for an infinite number of control variables. The control is then said to be singular. The sign of the two switching functions \(S_p \) and \(S_\rho \) determines if control singular or not, and different cases need to be considered.

The sign of the two switching functions \(S_p (\lambda) \) and \(S_\rho (P, \lambda) \) determines the control. If \(S_p (\lambda) \) or \(S_\rho (P, \lambda) \) is null for a non-null time interval, the control is singular and an additional analysis is required to compute a solution to the optimal control problem.

- Case 1: \(S_\rho (P^*, \lambda) = 0 \), \(\vartheta^* \in [0,1] \)
In this case the binary variable is singular. For any co-state values such that \(S_\rho (P^*, \lambda) = 0 \), the Hamiltonian is a function similar to the one depicted in Fig. 10. Its minimum value is obtained for a particular value of the power \(P = P^* \), but for an infinite number of values of the binary variable \(\vartheta \in [0,1] \), which is represented by the thick line.

![Fig. 10. The Hamiltonian as a function of the auxiliary power unit \(P \) and binary control \(\vartheta \) for \(w = 20 \text{ kW} \) and \(\lambda = \lambda_j (w) = -2155.44 \).](image)

For this set of points, the Hamiltonian is reduced to

\[H(w, (P^*, \vartheta^*), \lambda) = -\lambda \cdot Q^{-1} \cdot w \]
(34)

If \(P^* = 0 \) then \(S_\rho (0, \lambda) = d_0 > 0 \), which is excluded by the very definition of Case 1. Hence \(P^* > 0 \) and the possible control and co-state values are a solution of \(S_\rho (P^*, \lambda) = 0 \):

\[\lambda = -\bar{m}_j (P^*) \cdot P^{-1} Q \]
(35)

The co-state value is proportional to the opposite of the specific fuel consumption. Depending on the sign of \(w \), minimizing the Hamiltonian (34) is equivalent to minimizing or maximizing the specific fuel consumption. Continuous control is obtained by minimizing the Hamiltonian over the admissible control interval:

\[P^* = \arg \min_{P \in [\Xi(w)]} \left(\bar{m}_j (P) \cdot P^{-1} Qw \right) \]
(36)

If \(w < 0 \), the solution of (36) is \(P^* = 0 \) which is excluded in the present case. Hence \(w < 0 \).

Let us denote \(Sat(P, w) \) as the following saturation function:

\[Sat(P, w) = \max \left(P(w), \min(P, \bar{P}(w)) \right) \]
(37)

For any \(w > 0 \), the power that minimizes the Hamiltonian is:

\[P^* = Sat(P_{be}, w) \]
(38)

Let us note that for a very efficient implementation of (38)

\[P_{be} \in \{ p_j \} \]
(39)

Due to the saturation in (38), different \(P^* \) are obtained for different values of \(w \).

To summarize, the binary variable can be singular, i.e., \(\vartheta^* \in [0,1] \), if \(w \geq 0 \) and if the co-state takes the specific value:

\[\lambda_{\vartheta} (w) = -\bar{m}_j \left(Sat(P_{be}, w) \right) \left(Sat(P_{be}, w) \right)^{-1} Q \]
(40)
As a result, for a given driving cycle, the co-state values $\lambda_g(w)$ that lead to singular binary control can be computed easily using the exogenous variable samples w_i.

- Case 2: $S_g \left(P^*, \lambda \right) > 0$, $\mathcal{G} = 0$

The binary variable \mathcal{G} is equal to 0 and $P^* = 0$. $S_g \left(P^*, \lambda \right) > 0$ holds for $\lambda > \lambda_g(w)$.

- Case 3: $S_g \left(P^*, \lambda \right) < 0$, $\mathcal{G} = 1$

$S_g \left(P^*, \lambda \right) < 0$ holds for $\lambda < \lambda_g(w)$. Let us first study the Hamiltonian minimization without control saturation. The optimal continuous variable P^* is a ‘staircase-shaped’ function dependent on the co-state λ:

$$P^* = \Psi (\lambda)$$ \hspace{1cm} (40)

with:

$$\Psi (\lambda) = p_j \quad \text{if} \quad \lambda > -Qc_j$$

$$\Psi (\lambda) = p_{j+1} \quad \text{if} \quad \lambda < -Qc_j$$

$$\Psi (\lambda) \in [p_j, p_{j+1}] \quad \text{if} \quad \lambda = -Qc_j$$ \hspace{1cm} (41)

It is important to note that if $\lambda = -Qc_j$ the control is singular: any value in $[p_j, p_{j+1}]$ minimizes the Hamiltonian. This situation is depicted in Fig. 11 for $\lambda = -Qc_5$ where $P \in [p^5, p^6]$ minimizes the Hamiltonian.

In order to take saturation into account, (40) is replaced by:

$$P^* = \text{sat} (\Psi (\lambda), w)$$ \hspace{1cm} (42)

To summarize the three cases, the optimal control law is actually composed of two multi-valued functions $\psi_p(w, \lambda)$ and $\psi_o(w, \lambda)$:

$$\psi_p(w, \lambda) = \begin{cases} \text{sat} (\Psi (w, \lambda), w) & \text{if} \quad \lambda < \lambda_g(w) \\ \text{sat} (p_{w}, w) & \text{if} \quad \lambda = \lambda_g(w) \\ 0 & \text{if} \quad \lambda > \lambda_g(w) \end{cases}$$ \hspace{1cm} (43)

$$\psi_o(w, \lambda) = \begin{cases} 1 & \text{if} \quad \lambda < \lambda_g(w) \\ [0.1] & \text{if} \quad \lambda = \lambda_g(w) \\ 0 & \text{if} \quad \lambda > \lambda_g(w) \end{cases}$$ \hspace{1cm} (44)

Continuous control is a staircase shaped function of the co-state until the co-state reaches the limit $\lambda_g(w)$ and is null after. Due to control saturation, control may be regular despite the fact that $\lambda = -Qc_j$ or $\lambda = \lambda_g(w)$. This is illustrated in Fig. 12 for $\lambda = -Qc_5$, where $\text{sat} (p_5, w) = \text{sat} (p_6, w) = \bar{P}(w)$.

The control value given by (43) inevitably belongs to the admissible breakpoint set $\Xi(w)$ and can be computed without any additional interpolation. This allows very efficient implementation of the control law.

Let us now investigate the possible optimal state trajectories generated for a given initial co-state value.

B. Effect of singular control on state trajectories

As illustrated in Fig. 12, control is well defined for most of the co-state values and a finite number of final state values $s(T)$ can be reached. These values correspond to the horizontal segments of the g function graph illustrated in Fig. 8.

Let us denote Ω_s as the set of initial co-state values that generate at least a singular arc for the binary variable. This set is composed of all the possible values $\lambda_g(w_i)$, as defined by (39), evaluated for every $w_i \geq 0$ over the entire driving cycle:

$$\Omega_s = \bigcup_{w_i \geq 0} \{ \lambda_g(w_i) \}$$ \hspace{1cm} (45)

Ω_s denotes the set of initial co-state values that generate singular arcs for continuous control:

$$\Omega_p = \bigcup_{j=0}^{\mathcal{G}} \{-Qc_j\}$$ \hspace{1cm} (46)
Finally, Ω is the set of initial co-state values that generate any singular arcs:
$$\Omega = \Omega_\nu \cup \Omega_\sigma$$
(47)
The number of co-state values that generate trajectories with singular arcs is related to the driving cycle length n_ν and the number of lookup table breakpoints n_σ and cannot exceed $n_\nu + n_\sigma - 3$. For the vehicle considered and the NEDC, $n_\nu + n_\sigma - 3 = 1232$, but only 142 co-state values are used in practice due to duplicate driving cycle sample values and negative w_t.

If the problem has a solution for any $\lambda_{nau} \not\in \Omega$, the OCP is solved and the control is well defined over the entire driving cycle.

Let us assume that the final state value x_f requested cannot be reached using $\lambda_{nau} \not\in \Omega$. This is the case for almost all x_f values, which correspond to the vertical segments of the g function graph depicted in Fig. 8.

For a given x_f, the proper co-state value λ_{nau} can be found using a bisection search algorithm within the ordered set Ω. For this particular initial co-state value, the control is singular for one or more time intervals. Over these intervals, optimal control is not unique. A particular value of the final state is obtained by choosing a particular control value in the admissible range.

Let us denote I_s as the set of sample indices i such that
$$\forall i \in [i-T_i, (i+1)-T_i]$$
the binary or continuous control is singular, and I_r as the remaining sample indices: $I_s \cup I_r = \{0, ..., n_\nu - 1\}$. Let us also define an activation function $\Gamma(I,t)$ for a set of indices I:
$$\Gamma(I,t) = \begin{cases} 1 & \text{if } t \in \bigcup_{i \in I} [i-T_i, (i+1)-T_i] \\ 0 & \text{otherwise} \end{cases}$$
(48)
The final state is a function g of the initial co-state given in (20). The integral in (19) results in two terms depending of the regular control and the singular control values, respectively:
$$g(\lambda_{nau}) = h(\lambda_{nau})$$
$$+ Q^{-1} \int_0^T \psi_p(\lambda_{nau}) \cdot \psi_s(\lambda_{nau}) \cdot \Gamma(I, t) \cdot dt$$
(49)
where $h(\lambda_{nau})$ is the function that only depends on the regular control values:
$$h(\lambda_{nau}) = x(0) + Q^{-1} \sum_{i=1}^T \psi_p(w_i, \lambda_{nau}) \cdot \psi_s(w_i, \lambda_{nau}) \cdot s$$
(50)

For a given final x_f value, an infinite number of optimal state trajectories can be obtained. They all correspond to the same total fuel consumption and are characterized by the following additional optimality conditions:
$$Q^{-1} \int_0^T \psi_p(w_i, \lambda_{nau}) \cdot \psi_s(w_i, \lambda_{nau}) \cdot \Gamma(I, t) \cdot dt = x_f - h(\lambda_{nau})$$
(51)

Depending on the value of x_f, either the binary or continuous control can be singular for some $i \in I_s$.

Over any singular arcs, Pontryagin’s Minimum Principle optimality conditions are satisfied by many different control signals. Let us define the two following control signals with feasible binary control ($\partial_a(t) \in [0, 1]$ and $\partial_b(t) \in [0, 1]$) :
$$\{ \partial_a(t), P_a(t) \} = \left(\max(\psi_a(w, \lambda_{nau})), \max(\psi_p(w, \lambda_{nau})) \right)$$
(52)
$$\{ \partial_b(t), P_b(t) \} = \left(\min(\psi_a(w, \lambda_{nau})), \min(\psi_p(w, \lambda_{nau})) \right)$$
(53)
When the control is singular, $\partial_a(t) \cdot P_a(t)$ (resp. $\partial_b(t) \cdot P_b(t)$) corresponds to the maximum (resp. minimum) of the optimal power that can be produced by the auxiliary power unit.

When the control is not singular, the two control signals are equal:
$$\{ \partial_a(t), P_a(t) \} = \{ \partial_b(t), P_b(t) \} \quad \forall t / \Gamma(I_s, t) = 1$$
(54)

Using the two control signals $\{ \partial_a(t), P_a(t) \}$ and $\{ \partial_b(t), P_b(t) \}$, two state trajectories x_a and x_b are obtained.

The final state values $x_a(T)$ and $x_b(T)$ correspond to maximum and minimum final state values reachable with the initial co-state value λ_{nau} as depicted in Fig. 13. For $x_0 = 50\%$ and $x_f = 45.79\%$, the initial co-state to be used is $\lambda_{nau} = -Qc_i = -2087.53$. This corresponds to state trajectories with a possible singularity of the continuous variable P. The binary variable θ is always regular. Due to saturation, the continuous control can be singular when the exogenous variable w is above 10 kW : during vehicle acceleration phases (for instance $\forall t \in [566, 574]$) or during the high speed driving phase (for instance $\forall t \in [1072, 1157]$). When the continuous control P is singular, the admissible control values depend on the lookup table breakpoints $\{p_5 = 17.8 kW, p_6 = 22.2 kW\}$ and the control constraint (5):
$$P(t) \in \left[\max(p^5, \overline{P}(w)), \min(p^6, \overline{P}(w)) \right]$$
(55)
As a result, final state variations as large as $x_a - x_b = 2.7\%$ can be obtained due to singular control.
C. Proposed algorithm

Let us consider only the optimal solutions obtained by switching between the control signals \((\partial_a(t), P_a(t))\) and \((\partial_b(t), P_b(t))\). Using \((\partial_b(t), P_b(t))\) \(\forall t \in [0, T]\) does not allow the auxiliary power unit to produce enough energy as \(x_a(T) < x_b\). The additional amount of energy to be generated using the control law \((\partial_a(t), P_a(t))\) is \(x_a(T) - x_b(T)\). The additional optimality condition (51) can be reformulated:

\[
\int_0^T \left(Q^{-1}(\partial(t) \cdot P(t) - \partial_a(t) \cdot P_a(t)) - \Gamma(I, t)\right) \cdot dt = x_a(T) - x_b(T)
\]

In practice, it is often preferred to limit the number of switches, especially for the binary control signal. Let us consider the control signals composed of maximum two switches between \((\partial_a(t), P_a(t))\) and \((\partial_b(t), P_b(t))\). By introducing two additional control parameters \(t_{\text{max}}, t_{\text{min}} \in [0, T]\) such that

\[
t_{\text{max}} > t_{\text{min}}
\]

the proposed control law is:

\[
(\partial, P) = \begin{cases}
(\partial_a, P_a) & \text{if } t \geq t_{\text{min}} \text{ and } t \leq t_{\text{max}} \\
(\partial_b, P_b) & \text{otherwise}
\end{cases}
\]

(57)

Additional dynamics are used to evaluate the amount of energy produced using \((\partial_a(t), P_a(t))\):

\[
\sigma(t) = \begin{cases}
\left(\frac{(\partial_a(t) \cdot P_a(t) - \partial_b(t) \cdot P_b(t))}{Q} - \Gamma(I, t)\right) & \forall t \geq t_{\text{min}} \\
0 & \text{otherwise}
\end{cases}
\]

(58)

With \(\sigma(0) = 0\). The proposed control law can be rewritten:

\[
(\partial, P) = \begin{cases}
(\partial_a, P_a) & \text{if } t \geq t_{\text{min}} \text{ and } \sigma(t) < x_a(T) - x_b(T) \\
(\partial_b, P_b) & \text{otherwise}
\end{cases}
\]

(59)

The derivation of the optimal control problem solution is reduced to the computation of the switching time \(t_{\text{max}}\):

\[
\sigma(t_{\text{max}}) = x_a(T) - x_b(T)
\]

(60)

There is always a solution for \(t_{\text{min}} = 0\). Other \(t_{\text{min}}\) values may be used to generate other optimal solutions.

Let us note that \((\partial_a(t), P_a(t))\) and \((\partial_b(t), P_b(t))\) are piecewise constant signals. Let us denote by \(\partial_a, P_a, \partial_b, P_b\) the control values over the time interval \(\left[iT_i, (i+1)T_i\right]\):

\[
\begin{align*}
\partial_a(t) &= \partial_{a,i} \quad \forall t \in [iT_i, (i+1)T_i] \\
P_a(t) &= P_{a,i} \\
\partial_b(t) &= \partial_{b,i} \quad \forall t \in [iT_i, (i+1)T_i] \\
P_b(t) &= P_{b,i}
\end{align*}
\]

(61)

(62)

For the sake of simplicity, let us choose \(t_{\text{min}} = 0\). \(\sigma\) is a piecewise linear signal:

\[
\sigma(t) = \alpha(t - t_i) + \sigma_i \quad \forall t \in [iT_i, (i+1)T_i]
\]

(63)

Where \(\sigma_i = \alpha T_i + \sigma_0\), \(\sigma_0 = 0\) and

\[
\alpha = Q^{-1}\left((\partial_{a,i} \cdot P_{a,i} - \partial_{b,i} \cdot P_{b,i}) \cdot \Gamma(I, i \cdot T_i)\right).
\]

As \(\partial_{a,i} \cdot P_{a,i} \geq \partial_{b,i} \cdot P_{b,i}\), \(\sigma(t)\) is a monotonic increasing function of time. To compute the switching time between \((\partial_a(t), P_a(t))\) and \((\partial_b(t), P_b(t))\), it is suggested to compute the \(\sigma_i\) values, starting from \(i = 0\), until the desired value \(x_a(T) - x_b(T)\) is reached over a sampling period. Let us denote \(j\) as the sample index such that:

\[
\sigma_j < x_a(T) - x_b(T) < \sigma_{j+1}
\]

(64)

Once the proper \(j\) value is obtained the derivation of \(t_{\text{max}}\) is straightforward, as illustrated in Fig. 14.

\[
t_{\text{max}} = (x_a(T) - x_b(T) - \sigma_j) \alpha_{j}^{-1} + t_j
\]

(65)

In general, the \(t_{\text{max}}\) obtained is not a multiple of the driving cycle sampling period \(T_i\).
Due to the state quantification, $P_t = sT$ and $P_t = (0, 0)$.

Finally, for $t_{\min} = 0$ the control algorithm is obtained as follows:

1) Compute the sets Ω_v and Ω_σ of initial co-state values that lead to singular variables.
2) Using a bisection search algorithm within the ordered set Ω, search for λ_{\min} such that
 $$\min\{g(\lambda_{\min})\} < x_f < \max\{g(\lambda_{\min})\}.$$
3) Compute the two control signals $(\vartheta_i(t), P_e(t))$ and $(\vartheta_i(t), P_e(t))$ for all $t \in [0, T]$ and their corresponding state trajectories x_a and x_e.
4) Starting from $j = 0$, compute σ_{j+1} until condition (64) is met. Compute the switching time t_{\max} using (65).
5) Using the piecewise constant optimal control (59), compute the optimal state trajectory using the state dynamics given by (6).

Other optimal state trajectories can be obtained by modifying t_{\min}. Whatever the value of t_{\min}, $\sigma(t)$ is still a monotonic increasing piecewise linear signal. If t_{\min} is a multiple of the sampling period T_s, it is sufficient to use a modified α_i in (63):

$$\alpha_i = Q^{-1}\left(\left(\vartheta(i \cdot T_s) \cdot P(i \cdot T_s) - \vartheta_{k,i} \cdot P_{b,i}\right) \cdot \Gamma(I, i \cdot T_s)\right)$$

The proposed approach is still valid if t_{\min} is not a multiple of the sampling period, but a more tedious implementation is required to account for the initial control law switching time when computing $\sigma(t)$ using (58).

V. SIMULATION RESULTS

Two use cases were studied. The first one corresponds to the series hybrid vehicle used to present the optimal control law derivation. The second one corresponds to the parallel hybrid vehicle introduced in section II. From the simulation results and the previous theoretical study, the main factors influencing the occurrence of the numerical errors encountered are highlighted. Then, practical recommendations for engineers are provided in subsection C “Discussion”.

A. Series hybrid vehicle

Two optimal control signals have been generated for the NEDC for $x_f = 45.79\%$. To obtain this final state value, the initial co-state value is $\lambda_{\min} = -Qc_\delta = -2087.53$. The continuous variable P is singular over some time intervals, whereas the binary variable is always regular. The control signal and state trajectories obtained are presented in Fig. 15. The first control signal corresponds to $t_{\min} = 0$ s and $t_{\max} = 1082.89$ s. The second one corresponds to $t_{\min} = 1083$ s and $t_{\max} = 1165.11$ s. The two corresponding state trajectories end exactly at $x_f = 45.79\%$ (the actual final state deviation $\left|\Delta x(T) - x_f\right|$ is lower than 10^{-13} % due to numerical implementation). The fuel consumption is identical for both (3.54 l/100 km). The dynamic programming (DP) algorithm has also been used to compute a solution [30]. It is denoted as “DP” in the Fig. 15. The state quantification step is chosen as 100 J. The obtained fuel consumption is 3.57 l/100 km. Due to the state quantification, the DP solution results in a higher fuel consumption (+0.03 l/100 km). Moreover, the computation time was 490 s compared to 2.64 ms required by the proposed control law. The deviations between both control signals and state trajectories are quite small. The admissible control variation is limited by (i) the control saturation and (ii) the difference between the two lookup table breakpoints: $p_{\min} - p_{\max} = 4.44$ kW.

The proposed control law was applied to the other driving cycles considered for the final state of charge given in Table III. The results are summarized in Table IV. The proposed control algorithm was applied with $x_e = 50\%$ and $t_{\min} = 0$ s. The final state of charge is reached exactly (the largest final state error is $6 \cdot 10^{-12}$%).

<table>
<thead>
<tr>
<th>Driving cycle</th>
<th>Final state of charge x_f</th>
<th>t_{\max} (s)</th>
<th>Fuel consumption (l/100 km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEDC</td>
<td>85.67</td>
<td>430.00</td>
<td>3.90</td>
</tr>
<tr>
<td>HYZEM Urban</td>
<td>63.18</td>
<td>113.00</td>
<td>5.99</td>
</tr>
<tr>
<td>HYZEM Road</td>
<td>50.21</td>
<td>476.94</td>
<td>6.32</td>
</tr>
<tr>
<td>HYZEM Highway</td>
<td>42.90</td>
<td>800.95</td>
<td>6.85</td>
</tr>
</tbody>
</table>
In addition to the optimal control signal behavior analysis, the algorithm implementation is discussed next. Interpolation is the most time-consuming operation. The control law proposed can be implemented very efficiently; it only requires a few interpolations to compute the minimum and maximum control values \(P(W_i) \) and \(\overline{P}(W_i) \). The remaining computations do not need any additional interpolation. In the classical implementation of Pontryagin’s Minimum Principle, the fuel consumption is computed using one interpolation for every value in \(U_{grid} \), which is a large set (732,000 values for the simulation presented).

Both algorithms require a bisection search to find the initial co-state value. For the algorithm proposed, the bisection search is restricted to an ordered set of possible initial co-state values \(\Omega \). As this set is finite, the number of bisection iterations is also finite. It only depends on the driving cycle length and the number of lookup table breakpoints. With the classical implementation of Pontryagin’s Minimum Principle, the number of bisection iterations is unlimited. For the series hybrid vehicle chosen, it is proven that the final state value can only be reached if singular control is considered. As a result, the execution time depends mostly on the maximum number of iterations allowed.

The algorithm proposed and the classical implementation of Pontryagin’s Minimum Principle were executed on an Intel Core i7-3520M 2.9Ghz laptop computer with 4 Gb of RAM running Windows 7. The algorithms were implemented using Matlab and both codes were optimized using vectorization techniques. The native “interp1” function was used for the linear interpolations. The computation task consisted in computing an optimal state trajectory for 50 different \(x_f \) values over the NEDC. To improve accuracy, this task was executed 20 times and the average execution time for a single optimal trajectory was obtained. The results are provided in Table V.

As expected, the proposed algorithm is significantly faster (at least seventeen times) than the classical one. Similar improvements were tested when deriving a similar optimal control algorithm for other arrangements such as a parallel single shaft.

Table V

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Maximum number of bisection iterations</th>
<th>Average execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical PMP</td>
<td>50</td>
<td>45.7 ms</td>
</tr>
<tr>
<td>implementation</td>
<td>100</td>
<td>69.8 ms</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>114 ms</td>
</tr>
<tr>
<td>Proposed control law</td>
<td>142</td>
<td>2.64 ms</td>
</tr>
</tbody>
</table>

B. Parallel single shaft vehicle

The optimal control problem in the case of a parallel single shaft algorithm is similar to the optimal control problem (4), (6), (9) - (11) except that the lookup table parameters are time dependent. Consequently, the number of co-state values that lead to singular control is significantly higher and the effect on the final state of charge error is potentially lower.

The optimal control algorithm was applied to the NEDC. The simulation parameters were \(x_0 = x_f = 50\% \) and the optimal solution was computed for \(t_{min} = 0s \). The initial co-state obtained is \(\lambda(0) = -5.63 \times 10^2 \) and induces singular binary control. The final state of charge was reached exactly (up to a numerical error of \(|x(T) - x_f| = 2.55 \times 10^{-13}\% \)). The corresponding fuel consumption was \(3.59l/100km \).

Simulations were also conducted with the other driving cycles and the simulation parameters corresponding to the worst cases given in Table II. For the HYZEM Highway, the simulation conditions also correspond to a deep battery discharge whereas for the other driving cycles the battery was recharged. For each driving cycle, the optimal control algorithm proposed computes the value of the \(t_{max} \) parameter so the final state of charge is
reached exactly. For all the driving cycles considered, the final state of charge error was lower than $5.55 \times 10^{-13}\%$.

From the theoretical study proposed, two recommendations and explanations can be formulated for a wide variety of hybrid vehicles.

Boundary Value Problem solvers will not work if a binary variable is optimized. When programming optimal hybrid vehicle energy management, one of the difficulties is computing the initial co-state $\dot{\lambda}_{init}$ so the expected final state is reached. Actually, the initial co-state $\dot{\lambda}_{init}$ is the only unknown in the following two-point boundary value problem (BVP):

$$\dot{x} = \left(\psi_p(w, \lambda) \cdot \psi_s(w, \lambda) - w(t) \right) Q^{-1}$$ \hspace{1cm} (67)

$$\dot{\lambda} = 0$$ \hspace{1cm} (68)

$$x(0) = x_0, \ x(T) = x_r$$ \hspace{1cm} (69)

BVP solvers based on a colocation algorithm (e.g. BVP4C solver in Matlab) require the right hand side of the differential equation (67)-(68) to be smooth enough. The optimal control given by (43)-(44) and depicted in Fig. 12 is clearly discontinuous. This explains why it is not possible to use collocation-based solvers to solve optimal hybrid vehicle energy management with binary variable optimization. Differential equations (67)-(68) are marginally stable, therefore, the shooting method proposed should be preferred. Problems without binary variable optimization can be solved with a collocation-based solver if the fuel consumption is modeled using a function which has a continuous first derivative (e.g. spline).

Root-finding algorithm. A root-finding algorithm is used to numerically compute a solution of $g(\dot{\lambda}_{init}) = x_r$. When singular control occurs, the function $g \lambda$ is discontinuous, Fig. 8. In the vicinity of a discontinuity of the g function, gradient-based root-finding algorithms (e.g. Newton’s method) are not likely to perform well, since the derivative of g is undefined. Instead, bracketing methods (e.g. bisection method) are preferable. At each iteration i, these algorithms compute $\overline{\lambda}_i$ and $\underline{\lambda}_i$, an upper and a lower bound of the unknown solution λ_{init} such that $\lambda_{init} \in [\underline{\lambda}_i, \overline{\lambda}_i]$. If no singular control occurs, each iteration improves the accuracy of the estimation: $\overline{\lambda}_{i-1} - \underline{\lambda}_{i-1} > \overline{\lambda}_i - \underline{\lambda}_i$, and convergence is ensured. Ultimately, $\overline{\lambda}_{i-1} - \underline{\lambda}_{i-1} \rightarrow 0$ and $g(\overline{\lambda}_i) = g(\underline{\lambda}_i) = x_r$ when $i \rightarrow +\infty$. Fig. 16 depicts the situation when singular control occurs. The function g is discontinuous. It is quite easy to detect this situation by analyzing the successive values of the upper and lower bounds: $\overline{\lambda}_i$ and $\underline{\lambda}_i$ converge toward λ_{init} but $g(\overline{\lambda}_i) - g(\underline{\lambda}_i)$ converges toward a non-null value.

Table VI

<table>
<thead>
<tr>
<th>Driving cycle</th>
<th>Initial state of charge</th>
<th>Expected final state of charge</th>
<th>t_{max} (s)</th>
<th>Fuel consumption (l/100km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEDC</td>
<td>50</td>
<td>67.15</td>
<td>981.00</td>
<td>4.80</td>
</tr>
<tr>
<td>HYZEM Urban</td>
<td>50</td>
<td>60.45</td>
<td>61.50</td>
<td>5.14</td>
</tr>
<tr>
<td>HYZEM Road</td>
<td>50</td>
<td>70.25</td>
<td>192.00</td>
<td>4.45</td>
</tr>
<tr>
<td>HYZEM Highway</td>
<td>100</td>
<td>6.62</td>
<td>1545.00</td>
<td>4.45</td>
</tr>
</tbody>
</table>

C. Discussion

Singular control can induce final state of charge errors. Depending on the architecture and the driving cycle, these errors may be higher or lower. Four factors can be highlighted.

Vehicle architecture. Series hybrid vehicles have a fuel consumption that does not depend on any parameters other than control. As a result, the cumulated length of singular arcs can be substantial. This is clearly visible in Fig. 15 where a significant share of the driving cycle samples leads to singular control. For some architecture and the driving cycle, these algorithms compute singular control. As a result, the continuous signal λ can be singular when their mechanical and electrical structure.

Fuel consumption model. Using linear interpolation with a lookup table to model the fuel consumption leads to singular control. The overall final state of charge error depends mostly on the number of vertices (for equally sampled breakpoints). In practice, with maps containing more than 20 vertices, the final state of charge error remains quite small.

Binary (and/or integer) signal optimization. Optimizing the IC engine ‘on/off’ signal induces singular control for all the hybrid vehicles, regardless of their mechanical and electrical structure. The same issue is encountered with clutches when their open/close state is optimized. For the series and parallel hybrid vehicles studied, when the IC engine on/off control signal is singular, the optimality condition requires the continuous signal to be set so as to maximize powertrain efficiency. In practice, the best efficiency is reached for high torque/power values and so the overall effect on the final state of charge can be significant (one must decide to switch the primary source off or to generate a high power/torque).

Driving cycle. From the authors’ experience, for most of the hybrid vehicles, singular control over the NEDC always has a significant influence on the final state of charge. This is due to the repetitive patterns used to build this driving cycle. Singular control is repeated with the velocity patterns used to build this driving cycle and thus its effects are cumulated in the final state of charge.
Linear interpolations between lookup table data and binary control signals can induce multiple Hamiltonian minima and therefore lead to multiple optimal trajectories. The construction of optimal trajectories with a singular control signal has been analyzed and discussed. The main idea is that singular control actions should be chosen appropriately such that a specific amount of energy is produced over the entire driving cycle. This provides numerous possibilities for generating multiple optimal state trajectories.

A simple control strategy, described as mathematical algorithms, has been proposed. It consists in switching the control signal between its minimum and maximum admissible values to reach the final state value defined.

The proposed algorithm is very efficient (17 times faster than the classical implementation of Pontryagin’s Minimum Principle) and can be easily extended to other hybrid vehicle arrangements and perform gear shift optimization. Finally, future work will be devoted to limiting the frequency of the binary variable switches to cope with the practical limits of the auxiliary power unit.

A simplified model is considered. Using the vehicle dynamics and the vehicle parameters, as defined in Table VII, the power at the wheel P_w produced by the powertrain on a flat road is computed using:

$$ P_w(t) = \frac{1}{2} \rho_{air} A_d c_d \rho_{air} v(t)^3 + Mv(t) g c_{rr} \frac{dv(t)}{dt} $$

Considering that only 40% of the vehicle’s kinetic energy can be recovered and η_{em} a constant electric machine efficiency, the driving cycle power $w(t)$ is obtained:

$$ w(t) = \begin{cases}
P_w(t) \cdot \eta_{em}^{-1} & \text{if } P_w(t) > 0 \\
0.4 & \text{otherwise}
\end{cases} $$

VII. APPENDIX I – VEHICLE MODELING

A simplified model is considered. Using the vehicle dynamics and the vehicle parameters, as defined in Table VII, the power at the wheel P_w produced by the powertrain on a flat road is computed using:

$$ P_w(t) = \frac{1}{2} \rho_{air} c_d \rho_{air} v(t)^3 + Mv(t) g c_{rr} \frac{dv(t)}{dt} $$

Considering that only 40% of the vehicle’s kinetic energy can be recovered and η_{em} a constant electric machine efficiency, the driving cycle power $w(t)$ is obtained:

$$ w(t) = \begin{cases}
P_w(t) \cdot \eta_{em}^{-1} & \text{if } P_w(t) > 0 \\
0.4 & \text{otherwise}
\end{cases} $$

VIII. REFERENCES

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air density</td>
<td>$\rho_{air} = 1.225 \text{ kg} \cdot \text{m}^{-3}$</td>
<td></td>
</tr>
<tr>
<td>Vehicle frontal area</td>
<td>$A_f = 1.9 \text{ m}^2$</td>
<td></td>
</tr>
<tr>
<td>Drag coefficient</td>
<td>$C_d = 0.28$</td>
<td></td>
</tr>
<tr>
<td>Vehicle mass</td>
<td>$M = 1200 \text{ kg}$</td>
<td></td>
</tr>
<tr>
<td>Gravity acceleration</td>
<td>$g = 9.81 \text{ m/s}^2$</td>
<td></td>
</tr>
<tr>
<td>Rolling resistance coefficient</td>
<td>$c_{rr} = 0.01$</td>
<td></td>
</tr>
<tr>
<td>Electric machine average efficiency</td>
<td>$\eta_{em} = 0.8$</td>
<td></td>
</tr>
<tr>
<td>Auxiliary power unit maximum power</td>
<td>$P_{aux} = 40 \text{ kW}$</td>
<td></td>
</tr>
<tr>
<td>Power that leads to best APU efficiency</td>
<td>$P_{pu} = 22 \text{ kW}$</td>
<td></td>
</tr>
<tr>
<td>Energy storage system capacity</td>
<td>$Q = 24.84 \text{ MJ}$</td>
<td></td>
</tr>
<tr>
<td>Energy storage system maximum power</td>
<td>$y_{max} = 10 \text{ kW}$</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 16. Non convergence of the root-finding algorithm](image-url)

Sébastien Delprat received his PhD in 2002 and became assistant professor at the University of Valenciennes and Hainaut Cambresis. He has been a full professor since 2012. His research activities are dedicated to vehicle control, and especially hybrid vehicle energy management.

Theo Hofman received his M.Sc. (with honors) and Ph.D. degrees in mechanical engineering from Eindhoven University of Technology, Eindhoven, The Netherlands, in 1999 and 2007, respectively. From 1999 to 2003, he was a researcher and project leader with Thales-Cryogenics. Since 2012, he has been an assistant professor with the Control Systems Technology group, Department of Mechanical Engineering, Eindhoven University of Technology. His research interests include the modeling, design, and control of hybrid propulsion systems.