Comparative study of deep learning methods for one-shot image classification (abstract)

Citation for published version (APA):

Document status and date:
Published: 01/12/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 09. Oct. 2020
Comparative study of Deep Learning methods for One-shot Image Classification (abstract)

Joep van den Bogaert*† Haleh Mohseni* Mahmoud Khodier* †Joep.v.d.Bogaert@tue.nl
Yuliyan Stoyanov* Decebal Constantin Mocanu* Vlado Menkovski
*Dep. of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

Abstract

Training deep learning models for images classification requires large amount of labeled data to overcome the challenges of overfitting and underfitting. Usually, in many practical applications, these labeled data are not available. In an attempt to solve this problem, the one-shot learning paradigm tries to create machine learning models capable to learn well from one or (maximum) few labeled examples per class. To understand better the behavior of various deep learning models and approaches for one-shot learning, in this abstract, we perform a comparative study of the most used ones, on a challenging real-world dataset, i.e Fashion-MNIST.

1. Methods and Results

To perform the study, we proceed in a step-wise fashion approach. First, we split the training set of the Fashion-MNIST data (Xiao et al., 2017) in three subsets: a labeled training subset ($S_1$) consisting of all data (30000 images) from five classes (i.e. 1, 2, 3, 8, and 9); a labeled training subset ($S_2$) consisting in just one randomly chosen labeled example per class (5 images) from the remaining classes (i.e. 0, 4, 5, 6 and 7); and an unalbeled training set ($S_3$) consisting in all the remaining examples from the classes 0, 4, 5, 6 and 7 (29995 images). For testing we used the unaltered testing set of Fashion-MNIST.

To analyze the performance of the different approaches, secondly, we optimized a standard Convolutional Neural Networks model on $S_1$ ($\text{CNN}_{S_1}$) by performing a thorough hyperpameter optimization. Further on, we present the top five approaches that we followed: (1) we fine tune $\text{CNN}_{S_1}$ on $S_2$ using transfer learning without data augmentation ($\text{CNN}_{S_1}^{S_2}$), (2) we fine tune $\text{CNN}_{S_1}$ one $S_2$ using transfer learning and optimized data augmentation ($\text{CNN}_{S_1}^{S_2}$), (3) we trained a convolutional autoencoder on $S_2$ and we transfered its weights to a CNN which was fine tuned on $S_2$ ($\text{CNN}_{AE}$ $S_2$), (4) we trained Siamese Networks (Koch et al., 2015) ($\text{SN}^4$) on $S_1$ and then fine tuned them on an augmented version of $S_2$, (5) we have start performing a Divide and Conquer ($\text{DC}^5$) approach, where we divided the classification task in subtasks for which specialized autoencoders and CNNs were used. The results are reported in Table 1.

Table 1. Accuracy of the various models studied.

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CNN}_{S_1}^{S_2}$</td>
<td>59.3</td>
</tr>
<tr>
<td>$\text{CNN}_{S_1}^{S_2}$</td>
<td>72.4</td>
</tr>
<tr>
<td>$\text{CNN}_{AE}$ $S_2$</td>
<td>64.0</td>
</tr>
<tr>
<td>$\text{SN}^4$</td>
<td>63.1</td>
</tr>
<tr>
<td>$\text{DC}^5$</td>
<td>66.5</td>
</tr>
</tbody>
</table>

2. Conclusion

The obtained results are to a degree unexpected. More exactly, in this specific scenario, they show that data augmentation and hyperpameter optimization can lead a simple CNN model to reach better accuracy then more complex neural networks models. As further work, we intend to develop further the Divide and Conquer approach, which seems to have a very good potential in the one-shot learning context.

Acknowledgments

This research has been done as part of the PDEng Data Mining module at JADS, Netherlands.

References