On The rate of constrained arrays

Citation for published version (APA):

Document status and date:
Published: 01/01/2015

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
On The Rate of Constrained Arrays

Putranto Utomo Ruud Pellikaan
Eindhoven University of Technology
Dept. of Math. and Computer Science
PO Box 513. 5600 MB Eindhoven
p.h.utomo@tue.nl g.r.pellikaan@tue.nl

Abstract

Sudokus are nowadays very popular puzzles and they are studied for their mathematical structure. Binary Puzzles are also interesting puzzles with certain rules. A solved Binary Puzzle is an $n \times n$ binary array satisfying: (i) there are no three consecutive ones and also no three consecutive zeros in each row and each column, (ii) the number of ones and zeros must be equal in each row and in each column, and (iii) every two rows and every two columns must be distinct.

Binary Puzzles can be seen as constrained arrays and can be used for modulation purposes. In [2], we outlined some problems related to Binary Puzzles such as (1) rate of these code, (2) erasure decoding probability, (3) decoding algorithms and their complexity.

In this paper, we focus on the first problem, that is finding the rate of a code based on the Binary Puzzle.

The computation of the number of $n \times n$ Binary Puzzles is a very difficult problem, and so far we were only able to obtain the values for small n, by brute force.

Since a Binary Puzzle has to satisfy the conditions (1), (2) and (3), we consider these conditions separately and split the computation in three different part, where each part corresponds to one condition.

That means we consider the following collections of $n \times n$ binary arrays that are constrained:

\[
A_{n \times n} = \{ X \in F_2^{n \times n} \mid X \text{ satisfies (i) } \} ; \\
B_{n \times n} = \{ X \in F_2^{n \times n} \mid X \text{ satisfies (ii) } \} ; \\
C_{n \times n} = \{ X \in F_2^{n \times n} \mid X \text{ satisfies (iii) } \} ; \\
D_{n \times n} = \{ X \in F_2^{n \times n} \mid X \text{ satisfies (i), (ii) and (iii) } \},
\]

where $F_2^{n \times n}$ is the set of all $n \times n$ binary arrays

Although the exact size of $A_{n \times n}, B_{n \times n}$ and $D_{n \times n}$ is still an open problem, we provide the lower and upper bound of their size, and also of the asymptotic rates. The exact value for $|C_{n \times n}|$ by means of a recursive formula.

Keywords: Binary Puzzle, rate of a code, a constrained arrays.

References

http://www.w-i-c.org/proceedings/proceedings_SITB2015.pdf