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Trapping of Rydberg atoms in tight magnetic microtraps
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We explore the possibility to trap Rydberg atoms in tightly confining magnetic microtraps. The trapping
frequencies for Rydberg atoms are expected to be influenced strongly by magnetic-field gradients. We show
that there are regimes where Rydberg atoms can be trapped. Moreover, we show that so-called magic trapping
conditions can be found for certain states of rubidium, where both Rydberg atoms and ground-state atoms have
the same trapping frequencies. Magic trapping is highly beneficial for implementing quantum gate operations
that require long operation times.

DOI: 10.1103/PhysRevA.97.013430

I. INTRODUCTION

Atoms with one electron excited to a high principle quantum
number n, commonly known as Rydberg atoms [1], have been
proposed as the basis for quantum simulators and quantum
information processing [2,3]. An idea going back to Feynman
[4], a quantum simulator is an easily manipulated quantum
system onto which the Hamiltonian of other quantum problems
can be mapped. Ever since, quantum simulation and informa-
tion processing have been driven by the promise of access to
complex quantum systems as well as applications in quantum
technology [5].

In this context, Rydberg atoms attract a lot of attention
due to their extreme properties like n11 scaling of the C6

Van der Waals coefficient and the blockade effect, providing
strong interactions and the essential mechanism for quantum
gates [2,6,7]. An important issue is to achieve so-called magic
trapping, identical trapping potentials for the ground state
and the Rydberg state. Magic trapping conditions can sup-
press decoherence due to atomic motion during quantum gate
protocols, much needed for high-fidelity quantum operations
[8,9]. However, this is challenging to realize for alkali atoms
in optical traps [10,11].

In this paper we show that magic trapping conditions can
be achieved more easily in magnetic lattice traps [12]. Both
ground-state and Rydberg atoms can be trapped in magnetic
fields arising from microwires on a fabricated chip [13–16],
or from a patterned magnetic film giving rise to an array
of microtraps [17–19]. These microtraps have very strong
magnetic-field gradients, and hence are very tight, and can
be arranged into different lattice geometries, such as square
or hexagonal. Field gradients can be particularly strong using
patterned magnets. Whereas gradients above microwires are
typically 10–100 T/m, with magnetic film chips they can be
readily two orders of magnitude higher. If the blockade radius is
comparable to, or larger than, a single trap, each trap effectively
becomes a single excitation site. In this paper we investigate

*r.u.skannrup@tue.nl

the magnetic trappability of alkali Rydberg atoms, and address
the issue of achieving magic trapping conditions.

For ground-state atoms the magnetic field can be assumed
to be uniform across the atom. However, the large classical
electron orbit radii of the Rydberg atoms and the large gradients
of the microtraps make this approximation invalid. Magnetic
trapping of Rydberg atoms in other magnetic configurations
has been studied by other authors [20–28]. Our paper is related
to the work performed by Mayle, Lesanovsky, and Schmelcher
(MLS) [27,28], however, our paper is focused on the strong
gradient regime of the microtraps, requiring a higher-order
expansion of the magnetic fields.

In this paper we base our calculations on 87Rb atoms,
however the treatment is generally applicable to other species
as well. For a 50-kHz trap the oscillator length of a rubidium
atom (34 nm) is much smaller than the rms radius of a n = 50
electron orbit (132 nm). The strong magnetic-field gradient
then results in a magnetic-field difference of 0.9 G across
the size of the atom, resulting in an energy difference of
about 1.3 MHz, much larger than the trapping frequency. This
paper therefore considers the effect of the spatial extent of the
electronic wave function on the trappability of the Rydberg
atom in a magnetic trap.

In accordance with the Born-Oppenheimer approximation,
we assume that the motion of the Rydberg electron and the
atomic core can be separated, and that the light Rydberg
electron will react instantly to any movement of the heavy
core. We then use perturbation theory in the fine-structure
basis to find the energy of the Rydberg electron as function
of the position of the core in the trap. These energies can be
regarded as potentials for the core, which we call potential
energy surfaces (PESs). We have expanded these potentials
as harmonic traps around their respective minima and found
feasible trapping conditions for a wide range of Rydberg states.

This paper is divided into six sections. In Sec. II we provide
a detailed description of the magnetic-field configuration used
in this paper. In Sec. III we provide the model Hamiltonian in
Jacobi coordinates and discuss some of the differences to the
earlier work by MLS. Furthermore, we discuss the perturbative
treatment of the system. In Secs. IV and V we discuss the
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outcome of the previous sections, with focus on trapping
Rydberg atoms and magic trapping conditions. In Sec. VI we
conclude on our paper.

II. PARAMETRIZATION OF THE MAGNETIC TRAPS

In the following two sections we use atomic (h̄ = me =
a0 = 1) units and summation over repeated indices for the sake
of readability. We model the magnetic field as a Ioffe-Pritchard
configuration around the trap minimum [29]:

B(x) =

⎛
⎜⎝

0

0

B

⎞
⎟⎠ + G

⎛
⎜⎝

x1

−x2

0

⎞
⎟⎠ + 1

2
êicijkxjxk. (1)

We shall call these terms constant Bc, linear Bl , and quadratic
Bq , respectively. The strength of the constant term is set to
3.23 G. At this field the differential Zeeman shift between
the two qubit states |F = 1,mF = −1〉 and |F = 2,mF = 1〉
vanishes [30].

Expanding the magnetic fields to quadratic order goes
beyond existing works in literature [27]. This is necessary for
the systems with strong magnetic gradients we explore. This
provides further accuracy for systems already investigated with
linear only expansions, which can never explain axial trapping.

The linear term coefficient G provides confinement in the
tight transverse directions. This coefficient has a value of
900 T/m for microtraps in a hexagonal lattice [17]. In the
remainder of this paper we use microtrap parameters as relevant
for this hexagonal lattice. This is much greater than that of more
conventional Z-wire magnetic chip traps withG ≈ 7 T/m [31].

The curvature tensor cijk , which determines the strength of
the quadratic term of the magnetic field, is symmetric under
permutation of its indices and all partial traces vanish. This
leaves seven independent components. For the microtraps the
nonzero components of cijk are on the order of 107 T/m2, again
much larger than for a typical Z-wire trap, where the nonzero
components are on the order of 10–100 T/m2.

Choosing the Coulomb gauge we find the vector potential
corresponding to Eq. (1):

A(x) = B
2

⎛
⎜⎝

−x2

x1

0

⎞
⎟⎠ + G

⎛
⎜⎝

0

0

x1x2

⎞
⎟⎠ + 1

8
êiεijkcjlmxlxmxk, (2)

with εijk the fully antisymmetric Levi-Civita tensor. We retain
the naming convention from the magnetic field, i.e., the curl
of the “linear” term of the vector potential corresponds to
the linear term of the magnetic field ∇ × Al = Bl , etc. It is
convenient to define “residual terms” for the magnetic field
and the vector potential, respectively, as follows:

B̃(R,r) =B(R + r) − B(R) − B(r), (3)

Ã(R,r) =A(R + r) − A(R) − A(r). (4)

Note that these do not describe the fields at any position, but
merely express the difference between the sum of fields at two
positions and the field at the sum of those two positions.

r

R

xc

xe

c

e
O

FIG. 1. Schematic of the coordinates used in this paper. O denotes
the origin. xe and xc are the position vectors of the electron and core,
respectively, in the Ioffe-Pritchard frame. r and R denote the relative
and center-of-mass coordinates, respectively. Since the mass is almost
entirely contained in the core we approximate R with xc.

III. HAMILTONIAN AND PERTURBATION TERMS

Our approach builds on a spin and minimal coupling scheme
for the valence electron with position xe, momentum pe, and
mass me = 1 and the core with position xc, momentum pc,
and mass M in an external magnetic field. We reexpress this
Hamiltonian using Jacobi coordinates [(x,y,z)T = r = xe −
xc, (X,Y,Z)T = R = xe/M + xc, see Fig. 1]. Since the mass
ratio is large, about 1.6 × 105 for 87Rb, we identify the core
xc and center-of-mass coordinate R as an approximation. This
leaves us with the Hamiltonian

H = Hff + A(R + r) · p + S · B(R + r)

+ P2

2M
+ 1

M
[A(R + r) − A(R)] · P

+ 1

2
A2(R + r) + gI

2
I · B(R), (5)

with Hff being the (field-free) fine-structure Hamiltonian, P
the center-of-mass momentum operator, S the electron spin, I
the nuclear spin, and gI the nuclear Landé g factor. We apply
degenerate perturbation theory in the fine-structure basis |κ〉 =
|nLjmj 〉 to this Hamiltonian, coupling to all states within one
L manifold.

At this point, in previous work [27,28] a unitary transforma-
tion is applied: Ulit = exp[−i(Bc × r) · R/2] = exp[i Ac(R) ·
r]. This removes what they consider the most dominant
perturbation terms in the linear field approximation, A2

c(R)/2
and −Ac(R) · p, which are of similar magnitude but opposite
sign, making the perturbative treatment more robust. How-
ever, this transformation complicates the diamagnetic terms
unnecessarily. If we consider Eq. (20) in Ref. [27] along the
line X = Y we obtain E(2)

κ (R) ≈ CzG2X4 with Cz ≈ −1/2,
within 10% for 35 � n � 45 and l � 4. But if we consider
the term A2

l (R)/2 = G2X2Y 2/2, which is implicitly neglected
by MLS, we find the same value but with opposite sign along
X = Y . Thus the main Rydberg contribution is countered by a
neglected term.

Instead we use a more general unitary transformation that
does not rely on any explicit field to be introduced, and is
inspired by the previous:

U = exp [i A(R) · r]. (6)
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We apply this to the Hamiltonian: H = UHU †. The transfor-
mation (6) removes the terms A2(R)/2 and −A(R) · p, in their
entirety in contrast to the standard transformation Ulit .

The resulting Hamiltonian can be split into four parts (H =
HR,r + HR + Hr + Hr,P ) according to their dependence on
the Jacobi operators:

HR,r = Hff +
(

S + 1

2
Lr

)
· B(R) + 1

2
Ã

2
(R,r)

+ A(r) · Ã(R,r) + Hsmall, (7)

HR = P2

2M
+ 1

2
gI I · B(R), (8)

Hr = [Bl(r) + Bq(r)] · S + [Al(r) + Aq(r)] · p

+ 1

2
A2(r), (9)

Hr,P = 1

M
{A(R + r) − A(R) + ∇R[A(R) · r]} · P, (10)

with Hsmall [32] collecting some terms we can neglect in per-
turbation theory, and Lr being the electron angular momentum
operator. For the ground state, only the B(R) term of Eq. (7)
contributes significantly to the energy, as 〈|r|〉 ≈ 0, and the
magnetic trapping field is assumed to be constant across the
atom. This is sharply contrasted for large Rydberg states, where
terms dependent on r become important, since 〈|r|〉 ∝ n2 is
large, and the terms

1
2 Ã

2
(R,r) + A(r) · Ã(R,r) + Hr, (11)

which we call the Rydberg term, become important. These
terms are mostly extra terms compared to the MLS approach,
and together constitute the Rydberg specific part of the Hamil-
tonian.

We work in a frozen gas setting where P/M ≈ 0. This
has the direct consequence that we can neglect the Hr,P .
Furthermore, this setting is well explored with the Born-
Oppenheimer approximation, where the electrons are assumed
to react instantly to any core movement. In accordance with the
Born-Oppenheimer approximation we assume the eigenstates
to be product states of a r dependent part and a R dependent
part:

|ψ〉 = |ψr〉|ψR〉 =
∑

κ

cκ |κ〉|ψR〉, (12)

where cκ are expansion coefficients for ψr in the fine-structure
basis.

By applying the electronic parts (i.e., the parts dependent on
the relative coordinate) of the Hamiltonian, we find an energy
dependent on the core position R:

(HR,r + Hr )|ψ〉 = E(R)|ψ〉. (13)

We specifically use degenerate perturbation theory to find the
electronic energies E(R) at any given core position R. We use
a set of all fine-structure states |κ〉 = |nLjmj 〉 (the eigenstates
of Hff ), within one nL manifold, as basis for our perturbative
treatment, as the energy contribution from the fine-structure
Hamiltonian is, by far, most dominant. We have found that
coupling between states with different n or L quantum numbers

is not significant for the parameter space we are considering,
and we have not included this in our model.

The complexity of this computation can be greatly reduced
by carefully examining and understanding the couplings be-
tween different states. The expressions become quite simple
and S1/2 states can be solved analytically. We include mixing
between different j states within one L manifold, as they are
sufficiently close in energy for the principal quantum numbers
of interest.

Since the energy in Eq. (13) is dependent on the core
position R we interpret it as a potential and construct a total
potential W seen by the core:

〈ψr |H |ψ〉 = [HR + E(R)]|ψR〉
= [TR + W (R)]|ψR〉. (14)

We call these potentials W (R) PESs. Since the microtraps are
designed to trap ground-state atoms with only little spatial
extent, it can be expected that trapping is mostly provided by
the unperturbed Hamiltonian. However, there are exceptions
leading to antitrapping, as we will explain below.

IV. POTENTIAL ENERGY SURFACES

We have calculated PES states that are reachable via a
standard two-photon excitation process (S and D states) from
the rubidium ground state. We consider only states where
n � 80 in order to keep perturbations small compared to the
fine-structure energies and to not break the Born-Oppenheimer
approximation. For nDj states mixing becomes significant
when n > 80 and the fine-structure states are no longer good
quantum states. Thus the results for nDj with n > 80 are
unreliable. In the remainder of this paper we no longer use
atomic units, but rather SI units.

In Fig. 2 we present the PESs for the 70Lj states with all
different positive mj up to a distance of 0.75 μm from the trap
center in the radial plane (Z = 0). These have been rescaled by
mjgj to make them comparable. The approximate symmetry
with respect to the X = Y line is due to this line being normal
to the chip surface. In Fig. 3 we see the Z dependence of the
PESs for the same states to a distance of 4 μm from the trap
center along the X = Y = 0 line. The choice of the 70Lj states
is motivated by being well within the limits of our methods
while the high n makes the Rydberg specific contributions
clearly visible. This is seen in the strong dependence on the
angular state, which is not evident for n < 40. When going to
even higher n these effects become more pronounced and we
eventually lose trapping for the nD3/2 potentials, whereas the
nD5/2 states transition to quartic trapping potentials.

The nS1/2 state trapping potentials do remain fairly similar
to that of the ground state, not surprising as the electron is more
tightly confined near the core.

The 70D3/2 states stand out among the PESs by being
antitrapping on the micrometer scale in both the Z = 0 plane
and along the X = Y = 0 line. The PESs of these states
are more strongly influenced by the diamagnetic terms in
the Hamiltonian, leading to both the antitrapping behavior and
the structure in the positive potential region of the mj = 1/2
state, by coupling to (j , mj ) states of different angular sym-
metry. This structure makes the state unsuitable for quantum

013430-3



BOETES, SKANNRUP, NABER, KOKKELMANS, AND SPREEUW PHYSICAL REVIEW A 97, 013430 (2018)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

−0
.6

−0
.4

−0
.2

0
.0

0
.2

0
.4

0
.6

−0
.6

−0
.4

−0
.2

0
.0

0
.2

0
.4

0
.6

VPES
h̄mjgj

(MHz)
−30 −20 −10 0 10 20 30

70S1/2 mj = 1/2

10

5

70D5/2 mj = 1/2

2520
15

10
5

0
0

Y
(μ

m
)

70D3/2 mj = 1/2

0

0

-5
-10

70D5/2 mj = 3/2

20 10

5 0

X (μm)

70D3/2 mj = 3/2

0

-5

70D5/2 mj = 5/2

10

5

FIG. 2. PESs for the different angular states with n = 70 in the
Ioffe-Pritchard plane (Z = 0) scaled by mjgj . These represent results
for a typical magnetic potential of the hexagonal magnetic lattice.
Solid contours at every 5 MHz and dashed contours at every 0.2 MHz
in the interval −1 to 1 (limits included) are shown. Near the origin we
observe positive curvature, meaning that the state is trappable, for all
but the 70D5/2 with mj = 1/2 state, where a small bump indicates a
crossover to a Mexican hat type potential. At higher n this will be more
pronounced. For both 70D3/2 states we observe strong downwards
gradients for large |R|, due to the strong influence of the diamagnetic
term. The noticeable asymmetry in the plots is due to the fact that
the coordinates are rotated with respect to the atom chip surface. The
X = Y direction is normal to the surface.

simulation but shows the importance of the Rydberg nature of
the atom to the PES.

We see a small bump near the origin in the PES of the
70D5/2, mj = 1/2 state. For higher n this bump becomes a
regular peak making the potential a Mexican hat shape.

In our analysis of the PESs of the n = 35, 45, 55, 65, and
75 states, we fitted a polynomial to the contributions of the
Rydberg specific terms in Eq. (11). This showed that, though
highly state dependent, the effect of the Rydberg terms can be

−10
−5

0
5

10
15
20
25
30
35
40
45

−4 −3 −2 −1 0 1 2 3 4

V
(k

H
z)

Z (μm)

70S1/2, mj = 1/2
70D3/2, mj = 1/2
70D3/2, mj = 3/2
70D5/2, mj = 1/2
70D5/2, mj = 3/2
70D5/2, mj = 5/2

FIG. 3. Trapping potential in the Z direction at X = Y = 0 for
the different angular states with n = 70. Parameters of the hexagonal
lattice microtraps have been used [17]. Trapping along this direction
is much weaker than in the X-Y plane. All states shown have local,
albeit weak, minima near Z = 0.

reduced to an offset and an R2 dependent term for the nS1/2

and nD5/2 states. When n > 73, however, this simple picture
fails for the nD3/2 states, and higher-order terms are needed to
describe the behavior.

We predict that one can encounter this effect in spectro-
scopic measurements, even for weaker traps, as long as the
magnetic field is well described by the second-order expansion
of our model.

Our results show that, in general, the PESs of the nS1/2 and
nD5/2 states are always trapping on micrometer length scales
for atoms with n < 80. The nD3/2 states also show trapping
PESs, but for n > 50 the PESs become of antitrapping nature
on the micrometer scale, and we only observe local trapping
on submicrometer scales, and rich structure appearing near the
center of the PES, when mj = 1/2 and n > 60.

V. TRAPPING CONDITIONS

We now analyze the trapping conditions for different Ry-
dberg states as function of principal quantum number n and
angular state. We investigate in particular whether Rydberg
states with trapping conditions identical to the ground-state
conditions can be found. This is particularly relevant for
the implementation of various quantum information protocols
based on Rydberg interactions. Rydberg atoms and ground-
state atoms experience different trapping potentials, which
leads to motional decoherence. We denote a Rydberg atom in
internal state |r〉 = |nLjmj 〉 in a certain motional state |ν〉 by
|r,ν〉. During the Rydberg excitation that same motional state
|ν〉 will be a nonstationary state in the Rydberg trap. When
deexciting the atom the motional state will have changed under
time evolution and no longer be identical to |ν〉. Therefore
it is of great interest if we can suppress this decoherence
mechanism by realizing conditions of magic trapping, where
ground and Rydberg state atoms would experience identical
trapping potentials.

First, we define the rotated coordinates away from the

surface of the chip X̃ =
√

1
2 (X + Y ) and Ỹ =

√
1
2 (X − Y )
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FIG. 4. (a) Radial trap frequency and (b) position of the local potential minimum as a function of n, both in the X̃ direction. The shift of
the trap minimum away from the origin occurs gradually for low n but becomes very rapid for larger n. The rapid shift indicates crossover
to a Mexican hat type potential. Dashed lines indicate the value of the 5S1/2, mj = 1/2 state in all cases. Similar results are found in the Ỹ

direction, whereas in the Z direction the trap is an order of magnitude weaker. Of special interest is the 45D3/2, mj = 3/2 state, where the
trapping frequency is very close to that of the ground state. This and the small value of X0 lead to magic trapping conditions for the 45D3/2,
mj = 3/2 state.

parallel to the surface:

V (X̃,Ỹ ,Z) = C + 1
2mω2

X̃
(X̃ − X̃0)2 + 1

2mω2
Ỹ

(Ỹ − Ỹ0)2

+ 1
2mω2

Z(Z − Z0)2, (15)

where C is some constant offset, (X̃0,Ỹ0,Z0) is the minimum
position of the trap, and ωi is the local trap frequency around
the minimum in the R̃i direction. This is a good approximation
over a distance of 0.3 μm from the trap center, many times
larger than the trap oscillator length. Analysis of the traps show
that all states have tens or hundreds of trap levels. With energy
much lower than the potential walls, the center of mass will
behave as in an infinitely deep potential. The lowest number of
trap levels are found for the nD3/2, mj = 1/2 states, consistent
with the antitrapping long-range behavior.

Our analysis shows that the trap behaves harmonically for
n � 50 and does not deviate significantly from the n = 5
trapping potential for any given angular state (see Fig. 4). In
particular the changes in nS1/2 state trapping frequency and
minimum position remain insignificant over the whole n range
considered.

The nD3/2 states show strong dependence on n and mj . In
the mj = 1/2 states we find the trap bottom shift away from
the origin but the effective trap frequency remains relatively
stable until n = 70. The mj = 3/2 states show consistently
decreasing trap frequencies but the trap minima remain fairly
centered. As seen from Fig. 4 magic trapping conditions, i.e.,
effective trapping similar to that of the ground state, are present
for the nD3/2, mj = 3/2 states around n = 45. The effective
trap frequencies of these states are equal to that of the ground
state in the X̃ direction. This means that the Rydberg excitation
cycle can be performed with minimal motional decoherence.
Since the PESs for these states are nearly identical to that for
the ground state, the center-of-mass wave function remains
unchanged after the Rydberg excitation (see Fig. 5).

The nD5/2 states show rich behavior in the parameters of
the effective trapping. The trap frequencies of states with mj =
1/2 drop to around a quarter of the n = 5 value at n = 66. The
minimum of the traps shift position away from the origin, very

rapidly for 63 � n � 65. Inspection of the PES shows that
this is a crossover to a Mexican hat type potential in the Z = 0
plane. The mj = 3/2 state trapping frequencies remain stable,
at around twice the value of the ground-state trap frequency,
across the entire n interval considered, with a slight decrease
for very large n. The minimum position shifts away from the
origin. The mj = 5/2 states show large, increasing trapping
frequency, but no significant change in trap minimum position.
The nD5/2 states are not suitable for procedures requiring trap
frequencies comparable to those of the ground state.

The trapping conditions that were found for the X̃ direction
in Fig. 4 for the 45D3/2, mj = 3/2 and nearby states (and
similar conditions in the Ỹ and Z directions) are expected to
strongly suppress motional decoherence in any gate protocol
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FIG. 5. Overlap of the center-of-mass ground state after 10 μs
spent in an excited state, taking all directions into account. We
bring the system into the Rydberg state and deexcite after 10 μs; we
ignore all other decoherence effects like spontaneous emission. This
determines the probability of finding the center-of-mass particle in the
ground state after spending some time in a given excited electronic
state.
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involving Rydberg excitation and deexcitation. A full analysis
of gate fidelities should take into account the photon recoils
upon (de-)excitation, considering also that these tight magnetic
traps are in the Lamb-Dicke limit [33]. For the highest fidelities
the anharmonicity of the traps may also play a role. Such full
analysis of fidelities is beyond the scope of this paper.

As a first indicator, we have projected the motional ground
state of the 5S1/2, mj = 1/2 electronic state, denoted by |g,0〉,
onto the motional states of an electronically excited state:

|ψ〉 =
∑

ν

|r,ν〉〈g,0|r,ν〉 =
∑

ν

cν |r,ν〉, (16)

with ν = {νX̃,νỸ ,νZ} being the motional quantum numbers in
the indexed directions. We time evolve this projection |ψ(t)〉 =
exp(iH t/h̄)|ψ〉 and calculate the time delayed overlap:

βt = 〈ψ(0)|ψ(t)〉

=
∑

ν

|cν |2 exp

[
− i

(
ν + 3

2

)
ωt

]
, (17)

where the coefficients cν are calculated using second-order
perturbation theory, and define the overlap of the state as |β|2 =
|β10μs |2. Thus 1 − |β|2 represents the probability of finding the
atom in a different motional state after a 10-μs evolution time.

In Fig. 5 we see that this overlap reaches 0.9994, for the
46D3/2, mj = 3/2 state, comparable to that of the nS1/2,
mj = 1/2 states, which have overlaps exceeding 0.999 for
n � 58. We have identified two angular configurations that are
comparably good, around n = 46. In experiments, therefore,
we can choose between two angular states and therefore also
between symmetric and directional blockade regions. The
reason that the optimal overlap is found for 46D3/2, whereas
Fig. 4 would suggest n = 45, is due to a small shift of the trap
minimum position.

This overlap allows for minimizing decoherence due to
changes in effective trapping, making sure the effect of the
excited state trap is not the limiting factor. This should be
compared to losses due to other sources, which will be
dominant, in particular spontaneous emission and transitions
driven by blackbody radiation, with a lifetime of about 50 μs
for the n = 45 states [34].

VI. CONCLUSION AND OUTLOOK

We have studied Rydberg atoms in magnetic microtraps
described by a second-order expansion of the magnetic field.
The magnetic microtraps are much tighter and have much
stronger field gradients than more commonly used traps, such

as Z-wire traps. This enhances the effects of the trap on the
spatially extended Rydberg atoms.

Our paper confirms the findings by Mayle et al. [27], that
Rydberg atoms can indeed be magnetically trapped, and we
have extended their model with several terms in the Hamil-
tonian, most importantly the diamagnetic term mixing the
relative and center-of-mass coordinates. These terms constitute
an unknown contribution to the trapping potentials of Rydberg
atoms that, while negligible in weaker traps, are important in
the context of microtraps. We have, however, also found the
“Rydberg term” of Ref. [27] to be almost zeroed by some of
the additional terms.

We found that trapping of Rydberg atoms is possible for
both S states and D states, but for high n effective trapping
potentials become distorted, due to the anisotropic nature of
the Rydberg contributions and the increased contribution from
the diamagnetic terms.

We have found near-magic trapping conditions with more
than 99% overlap for nS states with n < 70 and nD3/2 states
with mj = 3/2 and 43 � n � 49, with the highest overlap
for the n = 46 state. This provides a choice between the two
angular states, and therewith the angular dependence of the
interaction. With magic trapping states available, a Rydberg
equivalent of the Mølmer-Sørensen gate [35–37], relying on
such conditions, could be possible. Such a gate implementation
will be of great value for quantum simulation and processing,
and demands further research.

We have found that the spatially extended nature of Rydberg
atoms has significant effects in the microtraps, and results
in significant modifications of the trapping potentials of the
center of mass. In particular we have observed a strong n

dependence of the center-of-mass trapping potentials, with
shallow trapping for nD3/2 states and quartic trapping of nD5/2

states.
Further research should consider the effect of the trap on

the electronic wave function and, in turn, the effect on the
Rydberg-Rydberg interaction.

Finally we remark that the methods employed in this paper
can readily be adapted to model other isotopes or elements. By
adjusting the magnetic-field parameters, we can model other
magnetic trap configurations.
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