

From concurrent state machines to reliable multi-threaded
Java code
Citation for published version (APA):
Zhang, D. (2018). From concurrent state machines to reliable multi-threaded Java code. Technische Universiteit
Eindhoven.

Document status and date:
Published: 12/04/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Dec. 2021

https://research.tue.nl/en/publications/5b113a47-ce72-4a70-965f-6930b8345f80

From Concurrent State Machines to Reliable
Multi-threaded Java Code

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op donderdag 12 april 2018 om 16.00 uur

door

Dan Zhang

geboren te Henan, China

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr. J.J. Lukkien
promotor: prof.dr. M.G.J. van den Brand
copromotoren: dr. R. Kuiper

dr. D. Bosnacki
leden: prof.dr.ir. L.M.G. Feijs

prof.dr. M. Huisman (Universiteit Twente)
prof.Dr. S. Leue (Universität Konstanz)
prof.dr. P.-E. Moreau (Université de Lorraine)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.

From Concurrent State Machines to Reliable
Multi-threaded Java Code

Dan Zhang

Promotor: prof.dr. M.G.J. van den Brand
(Eindhoven University of Technology)

Copromotoren: dr. R. Kuiper
(Eindhoven University of Technology)
dr. D. Bosnacki
(Eindhoven University of Technology)

Additional members of the reading committee:

prof.dr.ir. L.M.G. Feijs (Eindhoven University of Technology)
prof.dr. M. Huisman (University of Twente)
prof.Dr. S. Leue (Universität Konstanz)
prof.dr. P.-E. Moreau (Université de Lorraine)

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).
IPA dissertation series 2018-05.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4475-2

Cover design: The cover and layout was designed by Dan Zhang and the illustration was
designed and painted by José Brands.

c
 Dan Zhang, 2018.

Printed by Gildeprint

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronically, mechanically, photo-
copying, recording or otherwise, without prior permission of the author.

Acknowledgements

The journey of pursuing my PhD study has been a life changing event for me. Whenever
looking back upon those good days, I am always full of gratitude and appreciation to
all those people who have brought me growth and development. This dissertation is no
exception and I would not have succeeded without the help and support from all of you.

First and foremost I want to express my heartfelt thanks to my supervisor Prof. Mark
van den Brand who gave me the opportunity to come to the Netherlands and work on this
project. It has been an honor to be you PhD student. Mark, you are always able to guide
me with your high-level overview on my topic. I remember so vividly the optimism and
passion that you inspired me deeply at every moment of my PhD. Especially in the hard
times of my PhD study, your trust and continuous encouragements helped me to move on.
Your advice on both research as well as on my career have been priceless.

My special thanks go to my daily supervisors Dr. Ruurd Kuiper and Dr. Dragan
Bosnacki for guiding me through my PhD journey. Dear Ruurd, you are always full of
patience and ready to help me at any time I need. I cannot count how many times I
knocked your office door for having discussions about my work or sharing stories about
my life. You always managed to help me sort my research thinking out in a structural
way using your strong scientific advice and knowledge. Thanks so much for your strong
supports on helping me overcome all difficulties during my PhD. Dear Dragan, I really
appreciate that you agreed to be a member of my supervising team when I started my
PhD journey. At the beginning of my study you helped to guide me to dive into the ocean
of model driven technologies, theorem proving and model checking etc. Thank you very
much for spending time on many insightful discussions with me. I extremely enjoy our
daily discussions about research and life, from which you often give me a more intuitive
view of understanding and explaining things.

I would also like to express my deep gratitude to my PhD supporting team members
Dr. Anton Wijs and Dr. Kees Huizing. Dear Anton, it is a great pleasure to work with
you and I really appreciate your valuable feedbacks and fruitful discussions during the
weekly meetings in the last four years. Your support and experience gave me a lot of
confidence to finish this thesis. I am also very grateful for the trust and support from
your and Prof. Marieke Huisman on my new postdoc project. Dear Kees, thanks a lot for
joining my supervising team when I was searching an expert on Java language. You are
always able to think outside the box to help me improve the Java translation presented in

ii

this thesis. I really appreciate all the thorough discussions we had during last four years.
Throughout my PhD study I have collaborations with many people. Their supports

contributed a lot to this dissertation. I would like to thank Dr. Bart Jacobs (Katholieke
Universiteit Leuven), Dr. Luc Engelen, Sybren Roede, Philippe Denissen and Maciej
Wiłkowski. My PhD work builds on Sybren Roede’s master project (Suzana Andova was
an inspiration to that). Thanks for his help in the initial stages. My special thanks go
to Bart Jacobs for guiding me using the VeriFast tool for the verification presented in
this thesis. Your valuable comments on the Java implementation helped me to make the
current Java implementation simpler and more elegant. I enjoyed and learned a lot from
the discussions on my research work.

Furthermore, I would like to extend my sincere gratitude to the members of my reading
committee: prof.dr.ir. L.M.G. Feijs from Eindhoven University of Technology, prof.dr.
M. Huisman form University of Twente, prof.Dr. S. Leue from Universität Konstanz and
prof.dr. P.-E. Moreau from Université de Lorraine. I am very grateful for your valuable
comments on my thesis draft and your participation in my PhD promotion. I would also
like to express my deep gratitude to prof.dr. J.J. Lukkien for chairing my PhD defense
ceremony.

To all my colleagues in the MDSE group, thanks for your kind supports, collaborations
and enjoyable talking during my PhD. Especially, I would like to thank Luna (Yaping Luo)
for introducing the Software Engineering and Technology group (SET) to me and helping
me integrate into this group. Thank you very much for your great encouragement at the
beginning of my PhD study and your continuous help during the past four years. My special
thank also goes to Margje Mommers-Lenders for your continuous assistance for my work
and your great patience to allow me share my happiness and sadness with you. I would like
to convey my gratitude to Sander de Putter for the delightful experiences about ’work to
live’ during last four years. I also want to thank my former officemates: Ana-Maria Şutîi,
Ulyana Tikhonova, Yanja Dajsuren, Neda Noroozi, Felipe Ebert and current officemates
Weslley Silva Torres, Saurab Rajkarnikar and Gema Rodriguez Perez for having the joyful
office life together. It was always a great fun to talk with all of you about science, cultures
and foods. I also appreciate the rest of my current and previous colleagues, especially (in
no particular order) Fei Yang, Thomas Neele, Mahmoud Talebi, Önder Babur, Kousar
Aslam, Priyanka Karkhanis, Saneeth Kochanthara, Yuexu Chen, Raquel Alvarez Ramirez,
Mauricio Verano Merino, Rodin Aarssen, Miguel Botto Tobar, Arash Khabbaz Saberi,
Josh Mengerink, Frank Peter, Rob Faessen, Omar Alzuhaibi, Bogdan Vasilescu, Alexander
Fedotov, Gerard Zwaan, Ramon Schiffelers, Alexander Serebrenik, Loek Cleophas, Jurgen
Vinju, Tom Verhoeff, Tim Willemse, Erik de Vink, Hans Zantema, Julien Schmaltz, Jan
Friso Groote and others.

During my PhD life, I participated in several classes which made my life much more
enjoyable and fulfilling. Luckily, from those I met many nice people and made very sincere
friends. I am very much grateful to Wieger Wesselink for your continuous understanding
and encouragements that help me a lot to gain my confidence to go through the hard
times of my PhD study. Thanks so much for offering me the English and Dutch classes in
numerous evenings to improve my languages skills. I also appreciate your evening yoga
class in the sports center which really helps me a lot to find the balance between life and
work. I would also extend my gratitude to Ion Barosan for sharing your life experiences
with me after your meditation class. I was quite impressed by the state diagram of my
daily life drawn by you during one discussion. This state diagram gives me hints how to

iii

become more positive during my daily life. Thank you very much for offering such relaxing
and open meditation course to students.

Of course, my life in Eindhoven would not be so colorful without many friends here.
Thanks to Brishna Nader for sharing delights of life, doing yoga and excursions together
in the past years. Thanks to Hélène Arts and Mónica Fernandes for sharing your life
experiences with me. In addition, I also want to thank Xixi Lu, Yonghui Li, Yingchao Cui,
Weidong Zhang, Ruisheng Su, Yuan Chen, Zizheng Cao, Wenjie Bai, Ying Zhao, Bilin
Han, Haitao Xing, Valcho Dimitrov and others. It was a great pleasure to enjoy lots of joy
and fun with you.

The illustration of my thesis cover was designed and painted by José Brands. Thank
you very much José for the brainstorm discussions about arts and life. I enjoyed the tours
in Van Abbemuseum and bibliotheek in Eindhoven. Also, I was quite impressed by the
exhibition in Lievendael, which wakes up my talent about painting. Thanks a lot for your
time and efforts.

It took some time to finish this dissertation after my PhD study ended, and I thank
Prof. Marieke Huisman and Dr. Anton Wijs for allowing me to work on it during my
employment at University of Twente. Thank you very much for your understanding and
concerns to let me regain confidence in my life and research.

Finally, I would like to express my deepest gratitude to my family. Thanks to my
parents, sisters, brother, and my nieces and nephews for your unconditional love and
consistent supports on my journey. Thanks to my husband Jiong for sharing all the
happiness with me and supporting me to get through all the hard times. I really appreciate
your understanding and great patience all along. The support from my family give me the
greatest power to move on. Thanks for everything and now I am fully ready for challenges
ahead.

Dan Zhang
Eindhoven, February 2018

Table of Contents

Acknowledgements i

Table of Contents v

1 Introduction 1
1.1 Background . 1
1.2 Setting the Context . 4
1.3 Problem Statement . 5
1.4 Research Questions . 6
1.5 Outline and Origin of Chapters . 7
1.6 Suggested Method of Reading . 10

2 Preliminaries 11
2.1 SLCO . 11
2.2 Epsilon Generation Language . 15
2.3 Separation Logic . 17
2.4 VeriFast . 18

3 Challenges and Choices 21
3.1 Introduction . 21
3.2 Atomicity . 23
3.3 Transitions . 25
3.4 Channels . 27
3.5 Robustness . 30
3.6 Modularity . 31
3.7 Fairness . 31
3.8 Conclusions . 32

4 The Implementation of the Model-to-Code Transformation 35
4.1 Introduction . 35
4.2 Framework Architecture . 36
4.3 State Machines . 39

vi Table of Contents

4.4 Statement . 44
4.5 Channels . 51
4.6 Discussion . 63
4.7 Conclusions . 64

5 Verifying Atomicity Preservation and Deadlock Freedom of Generic
Code 65
5.1 Introduction . 65
5.2 Implementing SLCO Atomicity . 67
5.3 Specifying and Verifying SLCO Atomicity 70
5.4 Specifying and Verifying Lock-Deadlock Freedom 76
5.5 Related Work . 84
5.6 Conclusions and Future Work . 85

6 Modular Verification of SLCO Communication Channels 87
6.1 Introduction . 87
6.2 The Modular Specification Schema . 89
6.3 Implementing the SLCO Channel . 93
6.4 Specifying and Verifying the SLCO Channel 95
6.5 Related Work . 101
6.6 Conclusions and Future Work . 101

7 Increasing Robustness via Failboxes 103
7.1 Introduction . 103
7.2 A Basic Failbox Implementation . 105
7.3 An Implementation using Uncaught Exception Handler 107
7.4 An Implementation using Uncaught Exception Handler and JNI 108
7.5 A JNI Implementation without Uncaught Exception Handler 111
7.6 Related Work . 112
7.7 Conclusions and Future Work . 113

8 Test-Driven Evolution of Failboxes 115
8.1 Introduction . 115
8.2 Testing Failboxes in the Context of Dependency Safety 116
8.3 Delays within the Try Block: NBF to BF 120
8.4 Latches within the Try Block: NBF to BF 125
8.5 Before the Synchronized Statement: BF to UEHF (Java) 129
8.6 At the Start of the Enter Method: UEHF (Java) to UEHF (JNI) 133
8.7 At the Start of the Catch Block: UEHF (JNI) to NUEHF (JNI) 135
8.8 Overview of Tests and Results . 138
8.9 Conclusions and Future Work . 139

9 Conclusions 143
9.1 Contributions . 143
9.2 Future Work . 146

Bibliography 149

Table of Contents vii

Summary 159

Curriculum Vitae 161

Chapter 1

Introduction

1.1 Background
The rise in popularity of modern parallel computing hardware, such as multi-core proces-
sors [10,72,83] and graphics processing units (GPUs) [25,26,52,78,80], has increased the
demand for concurrent software that utilizes the available resources in an optimal way thus
pushing the computational boundaries in many fields significantly. However, concurrent
programs are usually difficult to develop. Due to the complexity of concurrency, such
programs are more prone to containing errors, such as data races and deadlocks, than se-
quential programs. Some of these errors are hard to reason about because of their notorious
non-deterministic characteristic. To make the development of correctly functioning parallel
software easier, we conduct our research on Model-Driven Software Engineering (MDSE)
techniques [88], in which the intended functionality is first modeled using a domain-specific
modeling language (DSML) [50]. Next, software code is automatically generated via a
model-to-code transformation, which prevents errors in the implementations that result
from misinterpretations of designs of software systems.

MDSE, combining DSMLs with model transformations, is gaining popularity as a
methodology for developing software in an efficient way. The methodology aims at dealing
with the increasing software complexity and improving productivity and quality by raising
the level of abstraction, using modeling techniques, model transformation, and code
generation. DSMLs are modeling languages that offer, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to, a particular
problem domain [104]. Constructing models with DSMLs enables developers to deal with
difficult aspects at a higher, less complex and more intuitive level of abstraction. As
the domain concepts provided by DSMLs are typically not computing-oriented, domain-
specific models are not directly usable for automatic execution [103]. For that purpose,
model transformations are employed to transform domain-specific models to different,
computing-oriented models [89]. Starting with an initial model written in a DSML, other
artifacts such as additional models, source code and test scripts can be produced via a
chain of model transformations. By shifting the focus from code to models, MDSE allows

2 Introduction

to tackle defects of the software in the modeling phase. Resolving errors in the early stages
of the software development process reduces the costs and increases the reliability of the
end product.

One challenging task in MDSE is to produce correct and high quality code from
high-level descriptions of models via model-to-code transformations. The challenging
issues mainly originate in the lack of correspondence between model-oriented primitives
in domain-specific modeling languages and their counterparts in programming languages.
Moreover, DSMLs are often not designed to address all details needed when generating
code, due to their high level of abstraction, so additional decisions have to be made
in this step. Furthermore, as with other software development artifacts, model-to-code
transformations and code produced by them may not be free of errors.

We use two main ideas to make code generation feasible. The first one is to make a
distinction between generic DSML concepts used in a model and the part of the model
that describes the specific behavior of a system. By doing this, we can improve the
understandability, modifiability as well as re-usability of the code produced by a model-to-
code transformation. The generic parts of models are the same for every model described
in the same DSML; they are transformed, once, into generic code. Aspects that are specific
for concrete models are transformed into specific code for each such model. To enable
combining generic with specific code, a first kind of modularity is required, namely between
the generic and the specific code.

The second idea is to treat each individual part of the generic code in a modular way.
For each of the modeling language constructs there is a corresponding part in the generic
code that provides its behavior. We call such an individual part a construct of the generic
code, a name we stick to in the rest of the thesis. These constructs are designed to be
modular, which provides several benefits. First and foremost, modularity enables the
translation to be compositional at the level of modeling language constructs. Second,
modification of some constructs of the generic code will then not affect the transformation
or other constructs of the generic code and modularity facilitates reuse of the existing
parts when the need for new target platforms arises. Third, each construct can then be
understood in isolation, which benefits the overall understanding of the transformation.
Lastly, the specification and verification of each construct can be modularized accordingly.
This is the second, more fine grained, kind of modularity: between individual constructs
of the generic code.

It turns out that providing the second modularity to a large extent provides the first
one. The reason for this is that generic and specific code are connected at the level of
individual constructs.

To ensure the correctness of produced code and transformations themselves, a formal
specification logic and proof support is required. Verifying a transformation that transforms
models written in a DSML to executable code in a programming language is fundamentally
more complex than verifying an individual program. In particular, this requires semantic
conformance between the model and the generated code. For models in the area of
safety-critical concurrent systems, the main complication to guarantee this equivalence
involves the potential of threads to non-deterministically interact with each other. This
complication makes a formal proof difficult and time-consuming.

To make the complexity of verification of model-to-code transformations manageable, we
specify the constructs in the generic code in a modular manner, i.e., supplying environment
information in the specifications, foremost about the other generic constructs, but also

1.1. Background 3

about the manner the specific code is intended to use the generic code. The benefits of such
an approach are that it will scale better than a monolithic approach. Once a construct has
been specified, we can abstract away its implementation details when verifying properties
of other constructs. It is then also easier to reason about properties of the complete
system.

Since verifying the correctness of the generic code is the main focus of this thesis,
we therefore start by identifying modules within the generic code, then add modular
specifications of these and then perform modular verification.

The techniques for the verification of traditional software artifacts, such as testing,
model checking and theorem proving, have been investigated in the past to verify the
correctness of model-to-code transformations [84]. Testing primarily focuses on producing
meaningful test cases that inform about the possible executions of programs transformed
from models. This approach helps to find bugs in the model transformations but there
is no guarantee that all the errors are detected. Therefore, we use testing to efficiently
assess potential weak points during the development of some parts of our generic code
but aim for complement verification of the generic code. Model checking [18] achieves
completeness for programs that have essentially a finite number of states, as it explores the
entire state space of a program under all possible input conditions. Sulzmann et al. [95]
apply the Spin model checker to verify whether C code generated from a high-level DSML
description is correct. Staats et al. [92] use software model checking (the ANSI-C Bounded
Model Checker) to check whether particular functional properties expressed in LTL are
preserved by a transformation from Simulink models to C code. Ab. Rahim et al. [8] use a
similar approach to verify a transformation from UML state machines to Java code. The
main obstacle that model checking faces is the state explosion problem [32]. The number
of global states of a concurrent system with multiple processes can be enormous or even
infinite. In such cases, model checking is less suitable, although in recent years, advances
have been made in exploring large state spaces [36,47,60,73,79,108,109,112,113]. However,
as model checking usually targets closed systems, it is hard to verify the correctness of a
component separated from its environment. Therefore, for verifying constructs of generic
code in this thesis, we did not opt for model checking.

As in model checking, theorem proving mathematically proves the correctness of a
program with respect to a mathematical formal specification. However, unlike model
checking, verification by theorem proving is not limited by the size of state spaces of
programs to be verified. This is because the assertions in theorem proving describe possibly
infinitely many state values in a finite manner. Additionally, theorem proving allows
for verifying each generic component separately in a modular way. In [22], a formal
verification using the Isabelle/HOL theorem prover is presented of a concrete algorithm
that generates Java code from UML Statecharts. It is shown that the source UML model
and the generated Java code are bisimilar. In [93], a Java code generation framework
based on the transformation language QVT is presented. The theorem prover KIV [19]
is used to prove security properties and syntactic correctness of generated Java code.
In [38, 39], annotations are generated together with code to assist automatic theorem
proving. However, one of the major issues of these works is the scalability and complexity
of the proof when the transformations are applied on more complex models.

This issue can be addressed by using the approach mentioned above, i.e., verifying the
code in a modular way. Each construct and its implementation is independently specifiable
and verifiable. Moreover, specifications for constructs of the generic code can be directly

4 Introduction

used when verifying the specific code. As a result, the verification of large software systems
can be decomposed into subproblems of manageable complexity.

We target the automated generation of multi-threaded Java programs from models. To
verify the generic code in a modular way, we therefore firstly need a verification approach
that supports object-oriented modularity, e.g., the formal proof system presented in [61]
supports the verification and derivation of object-oriented sequential programs. Secondly,
parallelism should be supported by the verification approach (e.g, the Owicki and Gries
method [82] provides this). The VeriFast [91] tool we use is a program verifier which
supports verification for object-oriented as well as multi-threaded Java programs. To
achieve this, VeriFast uses as specification logic separation logic [81, 86].

1.2 Setting the Context
In the current thesis, we consider a restricted, yet representative MDSE work-flow using
a DSML called the Simple Language of Communicating Objects (slco) [41,103]. slco
is defined for modeling complex embedded concurrent systems in which state machines
communicate via either shared variables or explicit message passing over channels. A
number of model-to-model transformations based on slco models and their quality are
investigated in [12,41,102,103]. The work in [103] is concerned with the quality of definitions
of model-to-model transformations, whereas the work in [12,41,102] focuses on the quality
of the process of transforming a source model to a target model and its correctness in
particular. As with model-to-model transformations [35,37,41,44,103,107,110,111], the
quality of model-to-code transformations, in particular their correctness, needs to be
investigated. To this end, we focus on how to generate reliable software from models in
the context of a framework that transforms slco models to parallel programs in Java via
model-to-code transformation.

The transformation chain of slco models consists of multiple steps, as shown in
Figure 1.1. The left dashed rectangle depicts a fine-grained sequence of model-to-model
transformations which is used to deal with differences between slco and its target
languages. This fine-grained sequence of transformations adds functional details in each
refinement step and therefore a number of intermediate slco models, such as M2

slco, M3
slco

and MN
slco, are introduced. After all functional details have been added, the last step

from an slco model to executable code needs to be applied, which is a model-to-code
transformation (M2C), as shown in the solid rectangle in the figure. For the construction
of parallel software in the last step, we target multi-threaded Java code. Although we
treat code generation as one step in the model transformation chain, in general this could
be done in multiple steps, for instance using the Tom language [16].

Figure 1.1: slco models to Java code transformation architecture.

1.3. Problem Statement 5

To successfully implement the model-to-code transformation and generate reliable code,
a number of problems need to be solved.

1.3 Problem Statement
As DSMLs focus on high-level domain-specific abstractions, they are often not expressive
enough to address all implementation details regarding target platforms. Moreover, a
target programming language may not have suitable constructs to directly implement all
concepts of a modeling language. This leaves choices and thereby challenges to developers.
For instance, synchronization mechanisms needed for shared data structures, such as
variables and channels in slco models, are not addressed at the model level, whereas at
the code level there are many options to implement them, e.g., using fine-grained locking
or coarse-grained locking mechanisms. Compared to coarse-grained locking mechanisms,
fine-grained ones can improve the performance of concurrent programs. However, they are
more complicated to implement and are more prone to errors like deadlocks. Therefore,
one of the prerequisites for generating reliable parallel application programs from models
with high-level descriptions is that developers need to identify corresponding challenges
and choices before designing the entire application’s architecture and their algorithms for
concurrent behavior.

Once challenges and choices are identified, the gaps between DSMLs and target
programming languages should be bridged. Quality aspects, like modularity and efficiency
which improve the quality of model-to-code transformations, also need to be taken into
account, which imposes additional challenges. The challenges and choices force developers
to think carefully about the interplay of parallel activities between multiple threads. The
reason for this is that the interactions have to be in line with the functional specification
given in the DSMLs when developing model-to-code transformations.

After model-to-code transformations are implemented, a question that naturally arises
is how to guarantee that functional properties of the input models are preserved in the
generated code. In particular, this requires semantic conformance between the model and
the generated code. To ensure this, a formal specification of the functional properties and
verification of their preservation are required.

As previously mentioned, safety-critical concurrent systems can be complex. To deal
with this complexity, instead of interpreting models and the corresponding implementations
with all their features monolithically, a software engineer can simplify implementations by
focusing on some features of constructs. Such a simplification also facilitates the verification
of the implementation. To improve the extensibility of the simplified implementations,
each construct should be treated as a separate module, which requires modular verification.

An aspect not considered at the model level is the possible occurrence of exceptions
during the execution of the program. Abnormal terminations caused by exceptions may lead
to critical issues for parallel programs, such as safety violations caused by inconsistent data
structures and deadlocks. To address this, existing handling mechanisms in programming
languages should be investigated to improve the robustness of the produced code. To
ensure that the handling mechanism leads to a correct implementation for any model it is
applied to, the correctness of the handling mechanism itself must be validated.

6 Introduction

1.4 Research Questions
We formulate a number of research questions aimed at addressing the problems described
in Section 1.3. The central research question is as follows.

RQ: How can we ensure the correctness of software that is automatically
generated from model-to-code transformations?

This central research question is split into six more detailed research questions, from RQ1
to RQ6. Each of these questions is addressed in the remainder of this thesis.

Model-to-code transformations play an important part in the software engineering
process for realizing the final products from models on a high level of abstraction. The
main challenge of this step is to ensure that the produced code conforms to its high-
level specification. As the challenge mainly originates in the gaps between DSMLs and
envisaged implementation platforms, we start our research by studying the challenges
and choices of implementing and verifying model-to-code transformations. To do so, we
investigate challenges and choices in the context of a framework that transforms slco
models consisting of concurrent communicating objects to parallel programs in Java. This
leads to the following research question.

RQ1: What are the challenges and choices of implementing and verifying Java
code generation from concurrent state machines?

Once challenges and choices have been identified in the context of model transformations,
gaps between DSMLs and corresponding implementation platforms need to be bridged. On
the one hand target programming languages may not have suitable constructs to directly
implement all concepts of modeling languages. On the other hand modeling languages are
often not designed to address all details needed when transforming models to concrete
platforms. In search of a practical solution to this problem we implemented a framework
that transforms slco models to Java code. The following research is related to this
framework.

RQ2: How to bridge the gaps between DSMLs and their target implementation
platforms?

To improve understandability, modifiability as well as re-usability of the implementation
of models, we make a distinction between model-generic concepts and model-specific parts
of models. We construct implementations of models by combining these two parts: generic
code and specific code. Generic concepts of models are transformed into generic code,
while aspects that are specific for concrete models are transformed into specific code. A
question that naturally arises is whether we are doing the things in the right way. This in
turn requires a formal logic and proof support to ensure the correctness of model-to-code
transformations. One challenge regarding the correctness of model-to-code transformations
is to guarantee that functional properties of the input models are preserved in their
corresponding implementations. In particular, we focus on proving whether the generic
code preserves certain desirable properties of models. This leads to the following research
question.

1.5. Outline and Origin of Chapters 7

RQ3: How to show that the generic code implementing model-generic concepts
preserves certain desirable properties of models?

By constructing implementations of models for target platforms with two parts: generic
code and specific code, modification of a construct of the generic code will not affect the
transformation as well as other constructs of the generic code. As a consequence, each
construct of the generic code can be understood in isolation which contributes to the
overall understanding of the transformation. This in turn requires modular approaches
for specifying and verifying each construct of the generic code. Demonstrating the ability
to use tool-assisted formal verification for verifying constructs of the generic code in a
modular way is therefore important. This is addressed in the following research question.

RQ4: How to use tool-assisted formal verification to verify in a modular way
a construct of the generic code implementing model-independent concepts?

Exceptions are not considered at slco modeling level but have to be handled correctly
in the produced code. This is because abnormal termination caused by exceptions may
lead to critical issues, such as safety violations and deadlocks. In search of a practical
solution to this problem, we study an exception handling mechanism called failbox in Java,
which is intended to be applied into the framework from slco models to Java code. The
following research question is related to this study.

RQ5: How to ensure that generated concurrent code is robust with respect to
exceptions?

When applying the mechanism for improving the robustness of the framework from
models to code, the robustness of the mechanism itself also needs to be considered. The
original implementation of the mechanism only works under certain assumptions. A better
implementation without assumptions is required in combination with a proof of correctness.
To provide this, we present a testing approach to investigate several implementations of
failbox. The following research is related to this testing approach.

RQ6: How to assess that the exception mechanism failbox used in the model-
to-code transformation is robust?

1.5 Outline and Origin of Chapters
The remainder of this thesis is structured as follows. For each chapter, we indicate the
research question it addresses. Also, we point out the earlier publications it is based on.
All of the original work has been revised for this thesis to reflect our latest insights.

Chapter 2: Preliminaries In this chapter, we provide the preliminary concepts that
are relevant to the model-to-code framework implemented and verified in this thesis.
Descriptions of the domain specific Simple Language of Communicating Objects (slco) for
modeling complex concurrent systems, Epsilon Generation Language (EGL) for transform-
ing models to code, the formal separation logic for verifying parallel programs, together
with the tool VeriFast based on the separation logic are given in this chapter.

8 Introduction

Chapter 3: Challenges and Choices In this chapter, we address research ques-
tion RQ1 by investigating the model-to-code framework from slco models to Java code
to derive the challenges as well as choices regarding the implementation and verification.
This chapter is based on the following publication:

[115] D. Zhang, D. Bošnački, M.G.J. van den Brand, L.J.P.
Engelen, C. Huizing, R. Kuiper, and A. Wijs. Towards
Verified Java Code Generation from Concurrent State
Machines. Proceedings of the Workshop on Analysis of
Model Transformations (AMT@ MoDELS), page 64-69.
CEUR, 2014.

Chapter 4: The Implementation of Model-to-Code Transformation In this
chapter, we address research question RQ2 by discussing how to bridge the gaps between
domain-specific modeling languages and their envisaged implementation platforms via
implementing the model-to-code framework from slco models to Java concurrent code.
This chapter is based on the following publication:

[115] D. Zhang, D. Bošnački, M.G.J. van den Brand, L.J.P.
Engelen, C. Huizing, R. Kuiper, and A. Wijs. Towards
Verified Java Code Generation from Concurrent State
Machines. Proceedings of the Workshop on Analysis of
Model Transformations (AMT@ MoDELS), page 64-69.
CEUR, 2014.

Chapter 5: Verifying Atomicity Preservation and Deadlock Freedom of Generic
Code In this chapter, we address research question RQ3 by providing a fine-grained
generic mechanism to preserve the atomicity of slco statements in the Java implementa-
tion. The atomicity preservation and lock-deadlock freedom of generic code have been
guaranteed by verifying this generic mechanism via the tool VeriFast. This chapter is
based on the following publications:

[117] D. Zhang, D. Bošnački, M.G.J. van den Brand, C. Huizing,
R. Kuiper, B. Jacobs, and A. Wijs. Verification of Atomic-
ity Preservation in Model-to-Code Transformations using
Generic Java Code. Proceedings of the 4rd International
Conference on Model-Driven Engineering and Software
Development, page 578-588. SciTePress, 2016.

[116] D. Zhang, D. Bošnački, M.G.J. van den Brand, C. Huizing,
R. Kuiper, B. Jacobs, and A. Wijs. Verifying Atomicity
Preservation and Deadlock Freedom of a Generic Shared
Variable Mechanism Used in Model-To-Code Transforma-
tions. Communications in Computer and Information
Science, Volume 692, page 249-273. Springer, 2017.

1.5. Outline and Origin of Chapters 9

Chapter 6: Modular Verification of SLCO Communication Channels In this
chapter, we address research question RQ4 by verifying the implementation of slco
communication channels in a modular way with VeriFast. To support this, a novel
proof schema that supports fine grained concurrency and procedure-modularity has been
proposed and integrated with VeriFast. This chapter is based on the following publication:

[29] D. Bošnački, M.G.J. van den Brand, J. Gabriels, B. Jacobs,
R. Kuiper, S. Roede, A. Wijs, and D. Zhang. Towards Mod-
ular Verification of Threaded Concurrent Executable Code
Generated from DSL Models. Formal Aspects of Com-
ponent Software - 12th International Conference (FACS),
page 141-160. Springer, 2015.

Chapter 7: Increasing Robustness via Failboxes In this chapter, we address
research question RQ5 by improving the robustness of an existing mechanism called failbox
by eliminating the limiting assumptions that the original version requires. To do so, we
developed several increasingly more robust implementations of failbox. This chapter is
based on the following publications:

[27] D. Bošnački, M.G.J. van den Brand, P. Denissen, C. Huiz-
ing, B. Jacobs, R. Kuiper, A. Wijs, M. Wilkowski and D.
Zhang. Dependency Safety for Java: Implementing Fail-
boxes. Proceedings of the 13th International Conference
on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, page
15:1-15:6. ACM, 2016.

[114] D. Zhang, D. Bošnački, M.G.J. van den Brand, P. Denis-
sen, C. Huizing, B. Jacobs, R. Kuiper, A. Wijs, and M.
Wilkowski. Dependency Safety for Java: Implementing
and Testing Failboxes. Science of Computer Programming,
Submitted. 2017.

Chapter 8: Test-Driven Evolution of Failboxes In this chapter, we address research
question RQ6. We describe a testing approach that makes it possible to develop tests for
demonstrating the dependency safety weaknesses of the different failbox implementations
in Chapter 7. These tests are repeatable in the sense that they give the same results for
runs that may differ in scheduling, even on different platforms. This chapter is based on
the following publications:

[27] D. Bošnački, M.G.J. van den Brand, P. Denissen, C. Huiz-
ing, B. Jacobs, R. Kuiper, A. Wijs, M. Wilkowski and D.
Zhang. Dependency Safety for Java: Implementing Fail-
boxes. Proceedings of the 13th International Conference
on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, page
15:1-15:6. ACM, 2016.

10 Introduction

[114] D. Zhang, D. Bošnački, M.G.J. van den Brand, P. Denis-
sen, C. Huizing, B. Jacobs, R. Kuiper, A. Wijs, and M.
Wilkowski. Dependency Safety for Java: Implementing
and Testing Failboxes. Science of Computer Programming,
Submitted. 2017.

Chapter 9: Conclusions This final chapter concludes the thesis. It revisits the research
questions and gives directions for future research.

1.6 Suggested Method of Reading
To reduce duplication of information, Chapter 2 provides a short description of preliminary
concepts used throughout this thesis. Chapter 3 provides a detailed guideline to chapters
4 to 8. Chapter 4 focuses on the model-to-code transformation. Subsequent chapters
address different aspects of the transformation, and can be read largely independently.
Chapters 5 and 6 focus on feasible verifications of different aspects of the generic code of
the framework. Chapters 7 and 8 focus on improving the robustness of the framework via
implementing and testing of failbox constructs.

Chapter 2

Preliminaries

In this chapter, we give a brief introduction to preliminary concepts that will be used later
throughout the rest of this thesis. First, we introduce the domain-specific modeling language
called Simple Language of Communicating Objects (slco) for modeling complex concurrent
systems. Second, we give a short description of the Epsilon Generation Language (EGL)
used for transforming slco models to Java code. Furthermore, we show the main concepts
of the logic that we use to verify parallel programs, i.e., separation logic. Finally, we
demonstrate essential ingredients of the verifier tool VeriFast based on separation logic for
reasoning about the generated Java code from slco models.

2.1 SLCO
The domain-specific modeling language called the Simple Language of Communicating
Objects (slco) [11,101] was developed at the Software Engineering and Technology (TU/e)
Group for specifying systems consisting of objects that operate in parallel and communicate
with each other by passing signals over channels. In [41], a small system of interoperating
conveyor belts is used as a case study for slco. The case study illustrates how different
implementations for controlling this system can be generated by composing a number of
transformations into different sequences of transformations.

An slco model consists of a number of classes, objects and communication channels.
A class has state machines, variables and ports. The objects are instances of classes and
their behavior is specified via state machines. The State machines of an object operate
in parallel. They can access and modify variables of this object and can also send and
receive signals via the ports of this object. The ports are used to connect channels to
objects, and each port is connected to at most one channel. The communication between
objects via channels is either bidirectional or unidirectional. slco supports synchronous,
asynchronous lossless, and asynchronous lossy channels which are suited to transfer signals
of predefined types. Each bidirectional asynchronous channel is implicitly associated with
two one-place buffers and each buffer is used for one direction while a unidirectional
asynchronous channel is implicitly associated with a one-place buffer.

12 Preliminaries

A state machine has variables, states, and transitions. Variables of a state machine can
only be accessed and modified by the state machine that contains them. States have three
types: initial, ordinary and final. Each state machine has exactly one initial state, in which
it starts. However, the number of ordinary and final states is not restricted, i.e., each state
machine can contain any number of ordinary and final states. slco allows that states
have multiple outgoing transitions. In such cases, if more than one outgoing transition
of a state is enabled, one is taken non-deterministically from the enabled transitions. A
transition from a source state to a target state is associated with a finite sequence of
statements. The simplified slco models [41] only allow that each transition has at most
one statement. In this thesis, we only deal with simplified slco models, since slco models
consisting of transitions associated with multiple statements can always be transformed
to their corresponding simplified variants via model transformations [41]. In simplified
models, a transition is enabled if its associated statement is empty or enabled. Otherwise,
it is blocked.

slco models can be created in two ways [101]. One way is to use the metamodel for
slco which is defined using the Eclipse Modeling Framework (EMF) [1]. In this way,
slco models are created using the standard tree-view editor provided by EMF. slco
also has a textual concrete syntax defined via Xtext [7], which also provides users with
a textual editor for creating slco models. Besides the textual concrete syntax, slco
also has a graphical concrete syntax which is in the form of diagrams. The diagrams are
produced by using Expand [54]; each of the diagrams is in fact a directed graph written
in Dot that can be visualized with the Graphviz tool [40]. Each dot file illustrates the
graphical version of an slco model consisting of a structure diagram, a behavior diagram
and a communication diagram. The structure diagram shows the structure of classes with
state machines in slco models; the behavior diagram represents the behavior of instances
of classes (i.e., objects) which is specified by using state machines; the communication
diagram demonstrates the communication between objects over channels.

In the rest of this section, we show the graphical and textual representations of an slco
model example, respectively. The diagrams of its graphical representation are depicted
in Figures 2.1, 2.2 and 2.3. In Figure 2.1, the structure diagram shows the structure of
classes P and Q in our example model. Class P comprises three state machines, i.e., Rec1,
Rec2 and SendRec, which communicate with each other via an shared integer variable
m. State machine SendRec comprises a local string variable s which can only be accessed
by state machine SendRec. Class Q consists of only one state machine called Com that
contains a local string variable s which is only visible inside the state machine Com.

Figure 2.1: Structure diagram of an slco model.

The communication diagram between instances of classes P and Q in Figure 2.1 is

2.1. SLCO 13

depicted in Figure 2.2. The object p is an instance of class P, and the object q is an
instance of class Q. These two objects communicate with each other over an asynchronous,
lossless channel c1 denoted by a dashed line, lossy channel c2 denoted by a dotted line,
and a synchronous channel c3 denoted by a solid line. The object p contains three ports,
i.e., In1 In2 and InOut, and the object q also contains three ports, i.e., Out1, Out2
and InOut. Arrowheads of lines show the directionality of channels. For instance, channel
c3 can be used to send and receive signals in both directions. Channels c1 and c2,
however, can only be used to send signals from object q. Additionally, the type of signals
sent over channels c1, c2, and c3 is restricted to Boolean, Integer or String.

Figure 2.2: Communication diagram of an slco model.

Figure 2.3: Behaviour diagram of an slco model.

The behavior of objects p and q is specified using state machines, which is depicted

14 Preliminaries

in Figure 2.3. The behavior of object p is specified by state machines Rec1, Rec2 and
SendRec on the left of the figure and the behavior of object q is specified by state machine
Com on the right. States Rec1, Rec2a, SendRec0 and Com0 are initial states and state
Com2 is a final state. State Com0 has two outgoing transitions: one to state Com1 and
the other to Com2. As we only focus on the simplified slco models, each transition of the
state machines in the figure is associated with only one statement.

slco supports five types of statements: SendSignal, ReceiveSignal, (Boolean) Ex-
pression, Assignment, and Delay. Each statement is either blocked or enabled and its
execution is atomic. The SendSignal and ReceiveSignal statements are used to send
and receive signals over channels for communication between objects. In Figure 2.3,
send T (s) to InOut, for instance, sends a signal named T with a single argument s via
port InOut. Its counterpart receive T (sjtrue) from InOut receives a signal named T
from port InOut and stores the value of the argument in variable s. Statements such as
receive P (vjv == false) from In1 offer a form of conditional signal reception. Only
those signals whose argument is equal to false will be accepted and the value of the
received argument is assigned to the variable v. Boolean expressions, such as m == 6 ,
denote statements that block their corresponding transitions until the expressions evaluate
to true. Time is incorporated in slco by means of delay statements. A delay statement
blocks a transition until a specified amount of time measured in milliseconds has passed.
For example, the statement after 5 ms blocks the transition from the source state Com0 to
the target state Com2 until 5 ms have passed. Assignment statements, such as m := m +1 ,
are used to assign values to variables. Variables either belong to an object or a state
machine. The variables that belong to an object are accessible by all state machines that
are part of the object; the variables that belong to a state machine are accessible by that
state machine.

The example model using graphical syntax, as shown in Figures 2.1, 2.2, and 2.3,
can be also described using the textual syntax. The corresponding textual version of the
model above is shown in Listing 2.1.

Listing 2.1: The textual SLCO model
1 model CoreWithTime {
2 classes
3 P {
4 variables Integer m = 0 ports In1 In2 InOut
5 state machines
6 Rec1 {
7 variables Boolean v = true initial Rec1
8 transitions Rec1toRec1 from Rec1 to Rec1 {receive

P(v| v == false) from In1 }
9 }

10 Rec2 {
11 initial Rec2a state Rec2b
12 transitions
13 Rec2a2Rec2b from Rec2a to Rec2b {receive Q(m| m

>=0)from In2}
14 Rec2b2Rec2a from Rec2b to Rec2a {m := m+1}
15 }

2.2. Epsilon Generation Language 15

16 SendRec {
17 variables String s = "" initial SendRec0 state

SendRec1 SendRec2
18 transitions
19 SendRec02SendRec1 from SendRec0 to SendRec1 {m

== 6}
20 SendRec12SendRec2 from SendRec1 to SendRec2 {

send S("a") to InOut}
21 SendRec22SendRec0 from SendRec2 to SendRec0 {

receive T(s|true) from InOut}
22 }
23 }
24 Q {
25 ports Out1 Out2 InOut
26 state machines
27 Com {
28 variables String s = "" initial Com0 state Com1

Com3 Com4 final Com2
29 transitions
30 Com02Com1 from Com0 to Com1 {send P(true) to

Out1}
31 Com12Com3 from Com1 to Com3 {send Q(5) to Out2}
32 Com32Com4 from Com3 to Com4 {receive S(s|true)

from InOut}
33 Com42Com2 from Com4 to Com2 {send T(s) to InOut}
34 Com02Com2 from Com0 to Com2 {after 5 ms}
35 }
36 }
37 objects p: P q: Q
38 channels
39 c1(Boolean) async lossless from q.Out1 to p.In1
40 c2(Integer) async lossy from q.Out2 to p.In2
41 c3(String) sync between q.InOut and p.InOut
42 }

2.2 Epsilon Generation Language
The Epsilon Generation Language (EGL) [71] is a template-based model-to-text (M2T)
transformation language which is provided by Epsilon. Epsilon is built on top of Eclipse
and is an extensible platform of integrated and task-specific languages for model manage-
ment. Due to its task-specific languages, Epsilon is well-suited to solve a range of model
management problems including not only code generation but also model transformation,
model comparison, merging, refactoring and validation. This facilitates the construction
of the whole chain for managing slco models. Specifically, the transformation from slco
models to Java code is achieved by its model-to-text transformation language, i.e., the
Epsilon Generation Language.

16 Preliminaries

Templates are a widely used implementation approach for code generators [14,15]. EGL
also supports template-based code generation by providing a co-ordination engine that
allows EGL programs to be decomposed into one or more templates. The Template type
is the core of the engine. To simplify the creation of Template objects, EGL provides a
built-in object called TemplateFactory to load templates and control the file system
locations from which templates are loaded and to which text is generated.

Similar to other template-based code generators, EGL provides static and dynamic
sections, from which templates may be constructed. Static sections contain code that
appears verbatim in the generated text, while dynamic sections contain executable code
that can be used to control the generated text. The [% %] tags are used to delimit
dynamic sections. Any text not enclosed in such a tag pair [% %] is contained in a static
section. Within dynamic sections, the construct [%=expr%] is used to append expr to
the output generated by the transformation.

In this chapter, we only provide a brief explanation of EGL by explaining via an example
how to generate code from models using it. More detailed information of EGL can be found
in the Epsilon Book [71]. The example of an EGL model-to-text transformation is depicted
in Listing 2.2. The transformation is used to generate a Java class called SLCO2Java
containing the main() method for starting the Java program corresponding to an slco
model. The static sections at lines 1-2 appears verbatim in the generated text, as shown at
lines 1-2 in Listing 2.3. The dynamic section at line 3 uses the allInstances (available
on every metamodel type and used to retrieve all of the instances of that metamodel type)
and first (used to retrieve the first element of a collection) properties to find the sole
instance of Model in the input model. The instance of Model is assigned to a variable
named m. The dynamic section [%= m.name %] in line 4 emits the value of the name
attribute of the Model instance m. The text that is not enclosed in the tag pair [% %]
in line 4 appears verbatim in the generated text, as shown in line 3 in Listing 2.3.

Listing 2.2: Generating a Java class containing a main method with EGL
1 public class SLCO2Java {
2 public static void main(String[] args) {
3 [%var m = Model.allInstances().first();%]
4 Slco[%= m.name %] slco[%= m.name %] = new Slco[%= m.name

%]();
5 }
6 }

EGL programs do not specify to which metamodel particular types belong. Instead,
the user can specify the models and hence metamodels on which the EGL program
operates just before executing the program. In our case, we specify the name, type,
location and metamodel of slco when creating an Eclipse launch configuration. Executing
the template in Listing 2.2, a Java class named SLCO2Java is generated, as shown in
Listing 2.3. CoreWithTime is the name of an input slco model.

Listing 2.3: The generated Java class: SLCO2Java
1 public class SLCO2Java {
2 public static void main(String[] args) {
3 SlcoCoreWithTime slcoCoreWithTime = new SlcoCoreWithTime

();

2.3. Separation Logic 17

4 }
5 }

2.3 Separation Logic
Concurrent programs are prone to errors because of the non-deterministic interactions
between threads. Proving the correctness of a concurrent program means that this program
performs its intended task for any possible scheduling of parallel actions. As a result, with
standard dynamic testing techniques it is hard to ensure the correctness of concurrent
programs. Static formal verification techniques are an attractive and efficient method
for verifying concurrent programs, as they can formally prove that the implementation
of a program satisfies its specification, i.e, any execution of the program is guaranteed
to behave correctly [94]. The Owicki and Gries method [82] was invented in 1976 for
reasoning about concurrent programs, building on Hoare logic [58] which is introduced for
verifying sequential programs. However, this methodology breaks down when verifying
parallel programs that manipulate pointers because of the possibility of race conditions
involving concurrent attempts to deallocate or update a heap cell being used by another
thread [30].

Separation logic [81, 86] has been developed for reasoning about shared memory which
can be referenced from more than one location. It builds upon Hoare logic and in the
context of concurrent programs also on the Owicki-Gries method. In this thesis, we
use permission-based separation logic [24] in which the control of thread interference
is established by the use of permissions of shared memory. We assume a Java-like OO
programming language that features references and aliasing as well as multi-threaded
concurrency. These two considerations motive us to use separation logic.

A separation logic assertion is interpreted on a program state (s; h), where s and h are
a store and a heap, respectively. The store is a function mapping program variables to
values, the heap is a partial map from pairs of object IDs and object fields to values. A
value is either an object or a constant. To capture the heap related aspects, separation
logic extends the syntax and semantics of the assertional part of Hoare logic. Separation
logic adds heap operators to the usual first order syntax assertions of Hoare logic. The
basic heap expressions are emp, i.e., the empty heap, satisfied by states having a heap with
no entries, and E 7! F (read as “E points to F ”), i.e., a singleton heap, satisfied by a state
with a heap consisting of only one entry at address E with content F . For instance, o:x 7! v
means that field x of object o has value v. Two heap expressions H1 and H2 corresponding
to heaps h1 and h2, respectively, can be combined using the separating conjunction operator
�, provided h1 and h2 have disjoint address domains. Expression H1 �H2 corresponds to
the (disjoint) union h1]h2 of the heaps. Note that H1 and H2 describe two separate parts
of the heap, h1 and h2, respectively. In contrast, the standard conjunction p1 ^ p2, where
p1 and p2 are separation logic formulas, corresponds to the whole heap satisfying both
p1 and p2. Because of the domain disjointness requirement, the separation logic formula
(o:f 7! 10) � (o:f 7! 10) evaluates to false, whereas (o:f 7! 10 ^ o:f 7! 10) is equivalent
to (o:f 7! 10).

Like in Hoare logic, the triple {P} C {Q}, where C is a (segment of) a program and
P and Q are assertions describing its pre- and post-condition, respectively, only concerns
partial correctness; termination of C needs to be proven separately.

18 Preliminaries

Separation logic adds to the standard rules (axioms) of the Hoare frame axioms for
each of the new statements - allocation, deallocation, and assignments involving the heap
cells. In some cases it is needed to embed a specification of a program segment C into a
more general context. A specific axiom that allows this by enlarging the specification of a
program segment C with an assertion R describing a disjoint heap segment which is not
modified by any statement in C, is the frame rule:

fPg C fQg
fP �Rg C fQ �Rg

Using such called tight interpretation, separation logic assertions can describe precisely
the heap footprint of a given program C, i.e., the parts of the heap which C is allowed to
use. Every valid specification {P} C {Q} is “tight” in the sense that every heap cell in its
footprint must either be allocated by C or asserted to be active by P [33].

One of the central concepts in concurrent separation logic is ownership. Let l be a
program component location and E a heap address. The component owns address E at
location l iff E is contained in a heap corresponding to an assertion H which is true at
location l. If E 7! F is part of the heap corresponding to H, then this can be seen as
an informal permission [24] for the verified component to read, write or dispose of the
contents of the heap cell at address E. Partial permissions are introduced to allow shared
ownership of variables. Ownership is split into a number of fractional permissions, each
of which only allows read access. Expression E 7�! F denotes permission 1, i.e., exclusive
ownership, whereas a fractional permission is expressed as [z]E 7�! F with 0 < z < 1.
Expression [1]E 7�! F is equivalent to E 7�! F . Permissions can be split and merged during
a proof. For instance, two fractional permissions can be merged according to the following
rule: [z]E 7�! F � [z0]E 7�! F , where z + z0 � 1, implies [z + z0]E 7�! F . One acquires full
ownership (and therefore write access) in case z + z0 = 1. The split rule is analogous.

2.4 VeriFast
The VeriFast [91] tool is a program verifier for sequential and concurrent C and Java
programs based on separation logic. Programs are annotated with function specifications,
loop invariants, predicate definitions, and other annotations. VeriFast takes a program
with its annotations and reports either that the program is memory safe, data-race free,
and complies with function specifications, or it shows a symbolic execution trace that
leads to a potential error.

VeriFast supports modular verification in the sense that each method is verified
separately with respect to its precondition and postcondition. The precondition and
postcondition of a method can be considered as a contract between callers calling the
method and implementers implementing the body of the method. Callers must ensure
that the precondition holds when they call the method and in return they may assume
that the postcondition holds when the method returns. Implementers may assume that
the precondition holds on entry to the method, and in return they are obliged to provide
a method body that establishes the postcondition when the method returns [68].

VeriFast executes the method body symbolically, using a separation logic formula as the
symbolic representation of memory. More concretely, VeriFast constructs a symbolic state
that represents an arbitrary concrete pre-state which satisfies the precondition and checks

2.4. VeriFast 19

that the body satisfies the contract for this symbolic state [68]. The symbolic execution of
a triple {P} C {Q} starts in the symbolic state corresponding to the precondition P. If the
triple is correct, each finite execution should eventually reach a symbolic state implying Q.

VeriFast uses fractional permission to specify the read-only sharing of chunks of memory.
That is, the program memory (heap) is allowed to be broken down into separate chunks
which are passed from one method to another during method calls and returns, or are
distributed between concurrent threads. Each chunk in the VeriFast symbolic heap specifies
a term known as its coefficient which represents a real number between 0 and 1, excluding
0 but including 1. A chunk with coefficient � is denoted by [�]o:f 7! v, where 0 < � � 1.
When � is 1, the coefficient is omitted and the usual o:f 7! v is obtained. This case
expresses the full ownership of the chunk, allowing exclusive write access. When � is
different from 1, it says that the chunk is a fraction. This case expresses the fractional
permission of the chunk, allowing shared read access. These two case are in line with the
concepts of separation logic explained in Section 2.3. VeriFast enforces that all fractional
permissions to a memory location combined give a full write permission; the sum of the
fractions should not exceed 1.

VeriFast supports custom predicates to achieve more concise contracts as well as
information hiding. For instance, instead of directly referring to the internal fields of an
object, preconditions and postconditions can be phrased in terms of a predicate. VeriFast
also supports generics, inductive data types and fixpoint functions. Apart from these,
lemma functions are introduced for proving properties about fixpoints and predicates.
They allow developers to use these properties when reasoning about programs. For us,
these features make it possible to verify properties of generic code of the framework that
is used to generate Java code from slco models. More detailed information about these
features is explained in the VeriFast tutorials [68,91].

Chapter 3

Challenges and Choices

A question that naturally arises for model-to-code transformations is how to guarantee
that functional properties of the input models are preserved in the generated code. We
consider this issue for a framework that implements the transformation from the modeling
language SLCO to Java code. Our aim is to specify generic modeling constructs and verify
the implementation of those constructs in a modular way. We identify several challenges
in the implementation and verification of the transformation. This chapter serves as an
introduction for Chapters 4 to 8.

3.1 Introduction
One of the main goals of MDSE is to produce source code automatically from models.
This goal can be achieved by providing model-to-code transformations that ensure the
conformance of the produced code to its high-level specification.

The issues presented mainly originate in the lack of correspondence between model-
oriented primitives in domain-specific modeling languages and their counterparts in
programming languages. Implementing the semantics of high-level modeling languages
is a challenging task because a target programming language may not have suitable
constructs to directly implement all concepts of a modeling language (e.g., atomicity,
non-determinism). Another challenge is that high-level modeling languages are often not
expressive enough to address all details needed when generating executable code from
them (e.g., exceptions, fairness).

Model-to-code transformations as well as code produced by them may not be free of
bugs and therefore must be verified and validated. Hence, once we figure out how to solve
the above mentioned discrepancy issues, we need to show that we are doing the things
in the right way. This in turn requires a formal logic and proof support to ensure the
correctness of produced code and transformations themselves. Besides that, quality aspects,
like modularity and efficiency, need to be considered, which impose additional challenges.
Of course, all these challenges are closely intertwined. For example, the correctness and
efficiency aspects can influence the choices between solution alternatives, i.e., how the

22 Challenges and Choices

particular concepts are implemented.
In this chapter, we investigate challenges regarding model-to-code transformations,

in the context of a framework that transforms slco models consisting of concurrent,
communicating objects to parallel programs in Java.

At the slco model level, the execution of each slco statement is atomic. This facilitates
reasoning about the behavior of concurrent systems at an abstract level. However, at the
Java level, the level of granularity of the execution of a statement is more fine-grained
than the one in slco, i.e., each slco statement is mapped to a block of instructions in
Java. The concurrent execution of these instructions results in better performance. Thus,
the challenge is how to transform an slco statement to a block of Java instructions with
equivalent observable behavior but where the strong atomicity notion is replaced with a
weaker one in Java, maintaining better efficiency.

Modeling languages usually feature non-determinism whereas the programming lan-
guages are essentially deterministic. Hence, implementing non-determinism is a standard
issue in model-to-code transformations. slco too allows a state to have multiple outgoing
transitions and the choice between enabled transitions is non-deterministic. In particular,
one needs to resolve the cases when one of the transitions of the non-deterministic choice
is blocked. Mimicking (a combination) of the blocking state of a transition and non-
deterministic choice is possible in Java. However, not all of the solutions work efficiently.
As efficiency is an important requirement for concurrent programs, the challenge is to
choose an efficient implementation while ensuring that the semantics of blocking state and
non-determinism before and after transformation are the same.

In slco the issue with the blocked choice is more complicated in the presence of
communication. State machines in different slco objects communicate with each other
over synchronous and asynchronous channels supporting conditional signal reception
statements. Such channel operations - and actually the channels themselves - have no
direct counterparts in Java that match their semantics. They are difficult to implement,
since state machines that are executed in parallel do not have the global overview of the
behavior of the slco model consisting of these state machines. Thus, a complex protocol
has to be applied in the implementation to ensure that the behavior of channels before
and after transformation is the same.

Modularity is one relevant quality attribute of model transformation [103]. By systemat-
ically separating and structuring a model transformation into small separated and isolated
modules, the understandability, modifiability and re-usability of a model transformation
are improved as well. For this purpose, we define the transformation framework from slco
models to Java code in a modular way. Luckily, most model transformation languages
have support for structuring model transformations by packaging transformation rules
into modules [34]. However, modularity is not limited to model transformations. The code
transformed from models should be divided into modules as well. The challenge is how to
construct small and separated modules that are well isolated instead of one monolithic
chunk of tightly-coupled code in the implementation. To this end, we make a distinction
between model-generic parts and model-specific parts of slco models. Model-generic parts
of an slco model are transformed into generic modules in Java while aspects that are
specific for an individual slco model are transformed into specific Java code. The specific
code is combined with the generic Java code to obtain complete, executable code that
should behave as the slco model specifies.

An exception is an issue that arises during the execution of a program, which is not

3.2. Atomicity 23

considered at the slco model level. However, abnormal terminations caused by exceptions
may lead to critical issues for concurrent programs, such as safety violations (caused by
inconsistent data structures) and deadlocks, which is not desired in the implementation of
an slco model. The problem of existing exceptions handling mechanisms in Java is that
they do not handle abnormal termination in a compositional manner. More specifically,
the failure of a code block should not necessarily terminate the entire application. For
this purpose, we considered applying an existing mechanism called failbox [66] to the
implementation. Unfortunately, the original implementation of failbox is not implemented
in Java and only works under some assumptions. Thus, the challenge is to improve it by
eliminating these assumptions and also test the robustness of the improved version.

Fairness is another important feature of multi-threaded programs. In the absence
of fairness guarantees, some threads may make no progress when multiple threads are
runnable. The reason is that certain threads may continuously grab the CPU time. As
slco was introduced to model complex concurrent systems by means of state machines and
each state machine is mapped to an individual thread in our framework, the concurrency
among multiple threads may raise fairness issues as well. The problem is that at the slco
modeling level fairness is not considered, in line with the high-level abstraction. At the
Java level not all constructs in Java library code support fairness policy as well. Therefore,
the challenge when transforming slco models to good implementations is how to ensure
the fairness between threads in the implementation to some extent by using the right
constructs obtained from Java library code.

The rest of the chapter is organized as follows. In Section 3.2 challenges on transforming
an slco statement to a block of Java instructions with equivalent observable behavior
but where the strong atomicity notion is replaced with a weaker one in Java are provided.
Mechanisms in Java to mimic the blocking state of a transition and non-deterministic
choice between multiple transitions in slco are discussed in Section 3.3. In Section 3.4
we present challenges on how to implement slco channels in Java. The challenge caused
by exceptions in the implementation and its solutions are discussed in Section 3.5. In
Sections 3.6 and 3.7 issues and their solutions regarding modularity and fairness are
described, respectively. Section 3.8 summarizes this chapter.

3.2 Atomicity
Atomicity is an important concept in slco models for concurrent executions of state
machines. slco provides a strong notion of atomicity – each statement is atomic. Se-
mantically, it means each statement s must execute as though there is no interleaved
computation, i.e., no other state machines are running. This strong notion makes reasoning
about the behavior of concurrent state machines easy.

Since the level of granularity of the execution of a statement in Java is more fine-
grained than the one in slco, not only the strong notion but also a weaker notion of
atomicity can be defined for a statement in Java. The weaker notion allows interleavings
between Java instructions originating from different slco statements which provides a
better performance of multi-threaded programs. Therefore, to present a well-performing,
efficient implementation of slco models, one of the important choices is where to set the
granularity of atomicity in implementations.

Specifically, each statement s in a state machine M can be transformed into a block of

24 Challenges and Choices

Java instructions � = s0; s1; : : : ; sn which are executed by a thread tM . The atomicity
of s in an slco model can be formulated as no instruction s0 of any thread t 6= tM is
allowed to be executed between the beginning and end of the execution of � in Java. This
can be achieved via coarse-grained locking mechanisms. For instance, the access to all
shared variables in a Java application can be controlled by a single lock. However, when
taking this approach, the problem is that it excludes the possibility for threads to run
truly concurrently, e.g., in cases where they access different shared variables, and therefore
do not interfere with each other. Hence, implementing atomicity in this strict sense is
undesirable for performance reasons.

To achieve true parallelism, the notion of strong atomicity is usually replaced with
weaker notions that still ensure non-interference. The weaker notions allow instructions of
different blocks to be executed concurrently as long as the instructions do not interfere
with each other. One such version, sometimes called serializability [21] guarantees that for
any concurrent execution of (atomic) Java blocks there exists a sequential execution of
those blocks that is indistinguishable from the concurrent execution, in terms of the final
effect on the global system state.

In order to realize this kind of weak notion of atomicity in Java in a setting where
multiple threads may access the same shared variables simultaneously, it must be ensured
that an instruction s of some thread t cannot affect the variables accessed by the instructions
in a block � of thread t 6= tM running concurrently. This can be achieved by a fine-grained
locking mechanism – lock each shared variable with an individual lock. Such kind of
fine-grained locking mechanism improves the performance of programs, but also poses
problems. For instance, a deadlock may occur if circular waiting is possible when for a set
of threads each thread waits for another one to release a lock. Moreover, several locks are
often required before executing a single statement. Omitting one of them potentially leads
to data races, i.e., unsynchronized conflicting accesses of the same variable by multiple
threads. Consequently, the challenge of applying the fine-grained locking is how to avoid
deadlocks and data races. The deadlocks are addressed by using the technique of ordered
locking when requiring locks, which is presented in Chapter 5. The ordered locking
guarantees that when multiple threads compete over a set of variables, one thread is
always able to acquire access to all of them. In this way, deadlocks can be prevented.
Additionally, omitting locks can be avoided by automatically creating a list datatype and
then storing all shared variables involved in a single statement to this list during the
model-to-code transformation. Consequently, the lock of each element in the list can be
acquired sequentially before the execution of a statement.

Reasoning about the preservation of atomicity of blocks in programming languages
is another challenge. The verification methodology should be able to verify that the
implementation satisfies its specification in terms of non-interference. On top of this,
the absence of data races and deadlocks of the implementation should also be verified.
To address this, we formally prove the implementation against a specification of non-
interference using the VeriFast tool [6]. This tool is also suitable to deal with race conditions
and deadlocks using the concept of ownership of shared resources for multi-threaded, object-
based programs. The implementation of atomicity as well as its verification are addressed
in Chapter 5.

3.3. Transitions 25

3.3 Transitions
As mentioned in Section 2.1, in simplified slco each transition is associated with at most
one statement. A transition is enabled if its statement is empty or its statement is enabled.
Otherwise, it is blocked. Moreover, if there are multiple enabled outgoing transitions from
a state, then the choice among them is nondeterministic. Thus, two challenging issues
have to be considered in terms of the implementation as well as their verification: the
blocking state of a transition and non-deterministic choice between transitions.

3.3.1 Non-deterministic Transitions
Non-deterministic choice between transitions is another challenging issue when implement-
ing slco models at lower level languages. One simple solution is to implement slco models
without preserving non-determinism in their corresponding Java code. Specifically, only
one transition from multiple outgoing transitions of a state is chosen and then preserved
during the model-to-code transformation. This approach can be adopted when the goal is
to see one of the possible implementations of a model, rather than a full coverage of all
options like in model verification. This approach is not taken into account in our research.

To preserve the non-determinism feature in the Java implementation, one possibility is
to list all outgoing transitions with a fixed order in a Java blocking code block. According
to the order, each of them is checked one by one within a loop until one of them is enabled
and then executed. However, the problem is that each transition is associated with a
potential priority that corresponds to its order in the block. As a consequence, transitions
with lower priority may never be executed when transitions with higher priority are enabled.
This case may lead to fairness issues which are undesirable in the implementation.

Another possibility is to make the choice between outgoing transitions from a state in
a fair way. This can be achieved by applying a pseudo-random number generator in Java.
The input of the pseudo-random generator can be limited to only enabled transitions. In
this case, all outgoing transitions from a state are evaluated in advance and then one
of the enabled transitions is selected using the pseudo-random generator. However, the
efficiency of this solution is quite low in cases where most of the outgoing transitions
of a state are enabled. Additionally, we use fine-grained locking for an atomic slco
statement, i.e., each shared variable is associated with a single lock. Hence, locks involved
in statements corresponding to all outgoing transitions of a state need to be acquired before
one of enabled transitions is taken, which also decreases the efficiency. Alternatively, a
pseudo-random number generator can select one of outgoing transitions randomly without
distinguishing between enabled and disabled transitions. In this case, one of the outgoing
transitions is chosen randomly and then evaluated. If it is enabled, this transition is taken.
Otherwise, the pseudo-random generator continues the selection process. This approach
is more efficient, since the enabled transition can be executed immediately after it is
chosen by the pseudo-random number generator. We apply this approach to our current
implementation, as shown in the generated code on state machines in Chapter 4. The
verification of non-determinism, another challenge, is not presented in this thesis but is
considered as future work.

26 Challenges and Choices

3.3.2 Blocking Transitions
The blocking state of a transition in the implementation can only be assessed by initiating
its associated statement and then observing whether it blocks. Each blocking transition
with its statement in slco can be modeled by means of guarded blocks in Java. The
guarded blocks in Java can be realized using two mechanisms: a busy-waiting loop and a
wait-notify mechanism.

A busy-waiting loop means that a thread continuously checks whether the condition of
the guarded block evaluates to true. However, the continuous checking may waste CPU
cycles, which is inefficient. Additionally, a low priority thread may never get a chance to
execute when a high priority thread goes into a busy-waiting loop.

A more efficient solution is to use a wait-notify mechanism that enables threads to
become inactive while waiting for signals. Java provides interfaces and classes to implement
the wait-notify mechanism. For instance, the class java.lang.Object defines three
methods, i.e., wait, notify, and notifyAll, to facilitate this. A thread calls the wait
method on an object to release the acquired monitor on this object and leaves the processor
to be used by other threads. The thread becomes inactive and waits until another one
notifies threads waiting on this object’s monitor to wake up either through a call to notify
or notifyAll. Note that these three methods must be called in methods or blocks marked
with the synchronized keyword which requires the locking to obey a built-in acquire-
release protocol, i.e., a lock is acquired on entry to a synchronized method or block,
and released on exit. However, when one thread releases a lock and another thread may
acquire it, there is no guarantee about which of any blocked threads will acquire the lock
next or when they will do so [75]. In particular, there are no fairness guarantees. Besides
such monitor methods, the interface java.util.concurrent.locks.Condition
provides a framework for locking and waiting for conditions, where a lock replaces the use
of synchronized methods and blocks and a condition replaces the use of the Object
monitor methods. Condition objects provide a means for a thread with the ability to
suspend its execution until the condition is true. A Condition object is necessarily
bound to a Lock and can be obtained using the newCondition method. Locks in Java
associated with conditions support an optional fairness policy, i.e., under contention locks
favor granting access to the longest-waiting thread. This avoids starvation of threads.
Thus, this solution can be considered when taking the fairness property into account for
implementing slco models.

However, the wait-notify mechanism also has some issues. One issue is spurious
wakeups [2], i.e., threads may wake up even if methods notify or notifyAll have not
been called. Another issue is that a waiting thread may wait forever. This happens when
there are two threads where one calls method notify on a object before the other calls
method wait on the same object.

To apply the wait-notify mechanism in the implementation, the two issues above need
to be addressed. The first issue is fixed via nesting each call of the method wait inside a
while loop with a conditional expression. If a blocked thread wakes up without receiving a
signal, the while loop will execute once more, causing this awakened thread to go back to
wait. The second issue is addressed by adding a timeout time to a wait call. The method
wait with timeout information causes the current thread to wait until either another
thread invokes the notify method or the notifyAll method on the same object, or a
specified amount of time has elapsed. In this way, a blocked thread can always wake up

3.4. Channels 27

and re-check the condition for the while loop when the signal to wake up is missed.
The implementation of the blocking state of a transition using the wait-notify mechanism

is reflected in the implementation of slco statements in Chapter 4, as the blocking state of
a transition depends on the state of its associated statement. Currently, the tool VeriFast
does not support the verification of methods wait, notify and notifyAll yet. An
interesting direction for future work is to define these methods’ specifications in VeriFast
and then verify the wait-notify mechanism which is applied in our framework. Alternatively,
we can also explore other verification tools with support for the Java wait-notify mechanism.

3.4 Channels
As discussed in Section 2.1, state machines in different objects in slco communicate
with each other by sending signals through asynchronous and synchronous channels. The
channels can be unidirectional or bidirectional, which allows communication in one or
two directions. As a bidirectional channel can be easily replaced with two undirectional
channels via model-to-model transformations, we only focus on the implementation of
unidirectional channels in this thesis.

In particular, slco allows for communication with conditional reception over channels.
Conditional reception states that a state machine, as a receiver, only accepts a signal if it
has appropriate arguments and satisfies conditional expressions over the arguments before
communicating with another state machine. Such channel operations - and actually the
channels themselves - have no direct counterparts in Java that match their semantics. The
implementation of conditional reception is more complicated in the presence of synchronous
communication, as state machines that are executed in parallel do not have the global
overview of the behavior of the slco model consisting of these state machines. Thus, a
complex protocol has to be applied in the implementation to ensure that the behavior of
channels before and after transformation is the same.

3.4.1 Asynchronous Channels
Each unidirectional asynchronous channel in slco is implicitly associated with a one-place
buffer. If the buffer corresponding to a channel is not empty, statements that send signals
over this buffer block. Otherwise, such a statement is enabled, and adds a signal to the
buffer. Similarly, if the buffer corresponding to a channel is empty, the signal reception
statements that receive signals via this channel are blocked. If the buffer contains a signal
but it does not have appropriate arguments or conditional expressions over the arguments
are false, the signal reception statements are also blocked.

As a first approximation to implement slco asynchronous channels in Java, we use
a class ArrayList instance with capacity one as the implicit one-place buffer that is
associated with an asynchronous channel. If slco is ever extended to support more than
one-place buffers for each asynchronous channel, the buffer implemented using ArrayList
can be easily adjusted to the one with more than one-place. Additionally, ArrayList
appends the specified element to the end of this list via method add and removes the
element at a specified position in this list via method remove. These two methods can
be used as sending and receiving operations of slco channels, respectively. The accesses
of sending and receiving operations between threads are controlled by using the Java class

28 Challenges and Choices

Semaphore.
This implementation can be considered as a simplified version of slco’s asynchronous

channels, since it does not cover the conditional reception feature. Also, the channel
implementation itself does not support blocking sending and receiving operations that
wait for the corresponding buffer to become non-empty when receiving a message, and
wait for space to become available in the buffer when sending a message. The advantage
of this simplification facilitates the verification of the channel implementation itself.

The implementation of asynchronous channels as mentioned above as well as its
verification is presented in Chapter 6. One of the aims in this thesis is to show that
modular verification of model-to-code transformations of multi-component models is
necessary and feasible. As a first step, we focus on how to formally specify the behavior
of a model independent concept, i.e., the channel, using the VeriFast tool introduced in
Chapter 2, such that modular verification of code is possible. Additionally, we introduce a
novel module specification schema which improves the modularity of the VeriFast approach.

To support the above mentioned features of asynchronous channels, we then develop
an alternative version incorporating more advanced concurrency features of Java. The
package java.util.concurrent contains a set of classes that makes it easier to develop
concurrent (multi-threaded) applications in Java. For example, the BlockingQueue in
the package java.util.concurrent is a queue that additionally supports operations
that wait for the queue to become non-empty when retrieving an element, and wait for
space to become available in the queue when storing an element. Accordingly, blocking
features can be added to the former implementation by replacing ArrayList with
BlockingQueue. Another important feature of BlockingQueue is that all queuing
methods achieve their effects atomically, using internal locks or other forms of concurrency
control, i.e., all operations on BlockingQueue are thread-safe. As a result, explicit
locking to control accesses on a shared BlockingQueue between threads can be avoided.
Furthermore, a conditional reception feature is also added to the implementation. This is
achieved via the method peek, which retrieves but does not remove the element from the
queue. Before taking an element from the queue, a thread needs to retrieve it and check
its content. In this way, the element can only be taken via the method take when the
element is expected.

The improved implementation of asynchronous channels is presented in Chapter 4. To be
able to verify the improved implementation in future work, we still need to extend the tool
VeriFast with specifications of operations of class BlockingQueue. The specifications
involve how to specify built-in locks of the operations and how to specify the blocking
state of each operation.

3.4.2 Synchronous Channels
Synchronous communication is a typical example of a construct at a high level of ab-
straction that is often present in formal modeling languages, but does not always have a
directly corresponding concept in the target programming language. One possibility is to
describe the behavior of synchronous communication in terms of communication over an
asynchronous channel at the modeling level. This can be achieved by a model-to-model
transformation which transforms an slco model to a different slco model with equivalent
observable behavior but where synchronous communication is replaced with asynchronous
communication [41]. In this thesis, however, we focus on how to directly implement the

3.4. Channels 29

construct of slco’s synchronous channel in the Java programming language, as it is
desirable to preserve modeling constructs as directly as possible at the implementation
level.

slco supports synchronous communication with conditional reception. Specifically, a
state machine, as a receiver, is ready only when a signal sent over the synchronous channel
is expected by the receiver. The signal is expected when it has appropriate arguments
and conditional expressions over these arguments are true for the receiver. If a state
machine, as a sender, sends a signal over a synchronous channel before its corresponding
receiver reaches the point to retrieve the signal, the sender waits until the receiver retrieves
the signal. Similarly, if the receiver reaches the point of receiving a signal before the
sender sends one, the receiver waits until an expected signal becomes available. slco also
supports synchronous communication in cases where slco models contain states with
multiple outgoing transitions and at least one of these transitions is associated with a
SendSignal statement or a ReceiveSignal statement. In such cases, if only one side,
a sender or a receiver, reaches the point of sending or receiving a signal, it will not wait
until the other side is ready and it will choose one of the other enabled outgoing transitions
to execute.

Java supports synchronous communication via class SynchronousQueue in the
package java.util.concurrent. That is, each insert operation of the queue must
wait for a corresponding remove operation by another thread, and vice versa. Synchronous
queues are similar to rendezvous channels used in CSP [59] and Ada [62]. However, this
kind of synchronous communication is different from the synchronous communication in
slco. One difference is that at the slco level state machines for receiving signals over
synchronous channels have to check whether the content of signals are as expected before
starting synchronous communication with other state machines. However, at the Java level
threads do not need to know the content of elements before taking them from synchronous
queues. Another difference is that the execution of a state machine in slco may not be
blocked at a send operation of the synchronous channel when no corresponding receive
operation is executed by another state machine. This is because a send operation of the
synchronous channel in slco may be associated with a non-deterministic transition. In
this case, the state machine is able to check other outgoing transitions from the same
state and select an enabled one to execute. However, at the Java level a thread is blocked
at an insert operation of the synchronous queue when there is no corresponding take
operation executed by another thread. In order to bridge these gaps between synchronous
communication in Java and in slco, an additional protocol has to be introduced.

The first gap can be bridged by using a SynchronousQueue together with a
BlockingQueue in Java to implement the synchronous channel in slco. Specifically,
the SynchronousQueue is used to synchronize the synchronous communication be-
tween sending and receiving threads when both of them are ready to communicate. The
BlockingQueue is used to achieve conditional receiving operations of slco synchronous
channel. More precisely, the sending thread first puts a message in the BlockingQueue,
after which the sending thread inserts the same message in the SynchronousQueue
via its put method. After these two steps, the sending thread will be blocked by the
put operation of the SynchronousQueue if its corresponding receiving thread does
not reach the point to take the message from the SynchronousQueue via its method
take. In this way, a receiving thread first checks the content of the message in the
BlockingQueue and then decides whether to start the synchronous communication with

30 Challenges and Choices

the sending thread over SynchronousQueue.
Based on the above solution for the first gap, the second gap mentioned can be filled

by adding timeout information to insert and take operations of SynchronousQueue
when implementing slco’s synchronous channels in Java. A thread inserts a message
into the SynchronousQueue and waits, if necessary, up to the specified wait time, for
another thread to take it. In this way, after the specified wait time, the inserting thread is
able to exit the blocking state when there is no corresponding take operation executed by
another thread. This solution is discussed in more detail in Chapter 4. As a next step of
our research, specifications of synchronous communications via methods take and put
need to be defined in VeriFast.

3.5 Robustness
An exception is an issue that arises during the execution of a program, which is not
considered at the slco modeling level. When an exception occurs, the normal flow of the
program is disrupted and the program terminates abnormally. Abnormal terminations may
lead to critical issues, such as safety violations (caused by inconsistent data structures) or
deadlocks, which is not desired. Therefore, towards the constructing of robust and reliable
generated code from models, one of the challenges is to ensure that when an operation in
generated code fails, code that depends on the operation’s successful completion is not
executed.

Exception handling is an important aspect of writing robust Java applications. When an
error occurs in a Java program, it usually results in an exception being thrown. Exceptions
that arise during program executions can be handled via the basic try-catch mechanism
in Java. A try block contains a block of program statements within which an exception
might occur. A try block is always followed by a catch block, which handles the exception
that occurs in the associated try block. The corresponding catch block starts executing
after an exception of a particular type has occurred within the try block.

However, the basic try-catch mechanism in Java is not sufficient to ensure that when
an operation fails caused by exceptions, code that depends on the operation’s successful
completion is not executed. To address this kind of issue, a language extension called
failbox was proposed in [66]. Failbox ensures that if an operation fails, no code that
depends on the successful completion of the operation is executed anymore nor will wait
for the completion. Therefore, we can apply the failbox mechanism instead of default
try-catch mechanism to improve the robustness of the implementation.

The failbox mechanism allows dealing with exceptions compositionally. However, the
problem is that the original failbox implementation requires the assumption of absence of
asynchronous exceptions inside the faibox code. This implementation is in Scala [4] and
there is no corresponding Java implementation. To this end, we implement the failbox in
Java and also improve it by eliminating the assumption required in the original failboxes
implementation. This assumption is eliminated in an incremental manner, through several
increasingly more robust implementations. For each implementation we analyze the
vulnerabilities and argue the remedies in the next implementation. The incremental
implementations are presented in Chapter 7. Additionally, we present a testing approach
to investigate whether the vulnerabilities of each implementation of failbox are realistic
and the remedies proposed in the next implementation are effective. This testing approach

3.6. Modularity 31

enables us to generate asynchronous exceptions in a controlled manner for concurrent
programs. The tests are repeatable in that they give the same results for runs that may
differ in scheduling, even on different platforms. More details of this testing approach can
be found in Chapter 8.

Verification of exception cases can also be challenging. In such cases, the verification
technique will require the specification taking exceptions into account. However, these
specifications are often not available in practice.

3.6 Modularity
We are aiming to automatically generate Java code from slco models in a modular way,
where generic features of models can be separated into independent modules. This allows
the implementation of each module to be updated without affecting other modules. In
this way, the maintainability and re-usability of the implementation can be improved.
Additionally, each module can be analyzed separately, allowing for modular verification.

To achieve modular implementation and verification, we divide the transformation into
two parts as described in Chapter 4, one part transforming slco concepts into generic
code, and the other part transforming the aspects that are specific for the particular input
slco model into specific code. An example of a generic slco concept is the communication
channel, while a particular state machine is an example of a concept specific for a given
slco model. In this way, the implementation of generic concepts can be updated without
affecting the overall transformation machinery. Additionally, generic code only needs to
be verified once. Each class of the generic code can be specified and verified in isolation,
allowing for modular verification. In Chapter 5 we discuss how we implement, specify,
and verify a generic protection mechanism to access shared variables involved in atomic
slco statements in a modular way. The solution and its specification and verification can
be regarded as a reusable module to safely implement atomic operations in concurrent
systems. In Chapter 6 we investigate the modular specification and verification of another
example of model-generic parts of slco models, i.e., the communication channel which is
generic in the sense that it is reused in the translation of all specific slco models consisting
of objects that communicate with each other through channels.

Besides the verification of generic code, specific code should also be verified. This can
be addressed by generating annotations along with the code from transformations. This
complementary approach allows fully automated program proofs from the model-to-code
generator. This part of work can be considered as a valuable direction for future work,
as the transformation framework can then be fully verified and thus its correctness can
be ensured. However, this step remains challenging to implement and maintain because
the annotations are cross-cutting concerns, both on the object-level (i.e., in the generated
Java code) and on the meta-level (i.e., in the generator).

3.7 Fairness
slco was introduced to model complex concurrent systems by means of state machines
in combination with shared variables and channels. At the slco model level, no fairness
is assumed. However, when implementing slco models for target platforms, each state
machine can be mapped to an individual thread. As a consequence, the concurrency

32 Challenges and Choices

among multiple threads raises fairness issues. For instance, in the absence of fairness
guarantees in a concurrent program, a given thread may starve because other threads
may continuously grab the CPU time. The thread is then starved to death, which is not
the intended meaning of the corresponding slco model. As a result, if the quality of the
implementation of slco models depends upon a fairness property, this must be taken into
account for the implementation in some way, especially when target platforms support fair
scheduling or constructs with fairness policy.

At the Java level, some constructs in Java library code supporting fairness policy
can be used in the implementation. An example of these constructs in Java is class
ReentrantLock. Its constructor accepts an optional fairness parameter. Locks favor
granting access under contention to the longest-waiting thread when this parameter is set to
true. This class is used to implement a fine-grained locking mechanism for protecting shared
variables in our framework, as shown in Chapter 4. Additionally, ArrayBlockingQueue
also supports an optional fairness policy for ordering waiting threads in FIFO (first-in-first-
out) order in the buffer. In Chapter 4 we use this class to implement the implicit buffer
associated with slco channels to ensure fairness between waiting threads for accessing
a channel. Furthermore, as discussed in Section 3.3.2, the blocking state of a transition
can be implemented via the wait-notify mechanism using either java.lang.Object
or java.util.concurrent.locks.Condition. The methods wait, notify and
notifyAll of java.lang.Object must be called in Java synchronized blocks
which do not guarantee fairness. Consequently, there are no guarantees about which of
the threads in a wait set will be chosen in a notify operation, or which thread will
grab the lock first and be able to proceed in a notifyAll operation [75]. However,
locks associated with conditions support an optional fairness policy, i.e., under contention
locks favor granting access to the longest-waiting thread. This in turn avoids starvation
of threads. For this purpose, the blocking state of a transition is implemented using
conditions, which is presented in Chapter 4 as well.

Therefore, the current Java implementation of slco models in our framework ensures
fairness properties in the sense that we rely on the constructs supporting fairness provided
by the Java library.

3.8 Conclusions
In this chapter, we identified several challenges in the context of Java code generation
from slco models. Exploring possibilities to address each challenge is time-consuming
and challenging. This is because the Java programming language does often not have
suitable constructs to directly implement all concepts of slco. This in turn requires
that developers have to investigate more time to explore existing Java constructs and
then find a way to mimic each slco construct with equivalent observable behavior by
using related existing Java constructs. Moreover, all implementation details which are not
defined at the abstract model level need to be figured out by developers when implementing
models at the low programming level. To have good implementations, quality aspects,
such as modularity, efficiency, robustness and fairness, need to considered as well. On the
other hand, this consideration imposes additional challenges, as quality aspects are often
intertwined. The choice between solution alternatives may be influenced when considering
different quality aspects.

3.8. Conclusions 33

To be able to transform an atomic slco statement to a block of Java instructions with
equivalent observable behavior, one possibility is to use coarse-grained locking mechanisms.
This solution makes reasoning about the behavior of concurrent programs easy. However,
it is undesirable for performance reasons regarding true parallelism of concurrent programs.
To gain better performance, we proposed another possibility by using fine-grained locking
mechanisms to ensure the equivalent observable behavior between an slco statement and
its corresponding block of Java instructions. We also discussed the way how to avoid
deadlocks often occurring in fine-grained locking mechanisms, i.e., locks are acquired in a
fixed order.

Another challenge is that one needs to resolve the cases when at least one of the
transitions in a non-deterministic choice is blocked in slco. To mimic the combination of
the blocking state of a transition and non-deterministic choice, we first explored solutions
to deal with non-determinism. As the execution of a program in Java is deterministic, one
possibility is to rule out the non-deterministic feature when implementing slco models.
Apart from ruling out the non-determinism, the possibilities to mimic the non-deterministic
choice by using a pseudo-random number generator in Java are also discussed. In terms of
mimicking the blocking state of a transition, several possibilities via using a busy-waiting or
a wait-notify mechanisms are proposed. Using the wait-notify mechanism is more efficient,
as it allows threads to become inactive while waiting for signals. However, the wait-notify
mechanism in Java has two issues, namely spurious wakeups and missing signals. These
two issues have to be fixed when applying the wait-notify mechanism to the framework.
We also presented solutions to address these issues.

In slco the issue with the blocked choice is more complicated in presence of com-
munication over synchronous and asynchronous channels between state machines. To
address this issue in terms of implementing slco channels, we explored possibilities to
implement slco channels by investigating Java constructs supporting blocking operations
and synchronous communications in the package java.util.concurrent, such as
BlockingQueue and SynchronousQueue.

Modularity as one relevant quality attribute of model transformations needs to be
considered when implementing model transformations. Each module can be analyzed
separately, allowing for modular verification. As a result, the verification of the framework
from slco models to Java code can be set up in an incremental way instead of verifying
the whole framework in one step. For this purpose, we proposed to define the model
transformation itself in a modular way by packaging transformation rules into modules
regarding different slco constructs. Also, we proposed to make a distinction between
model-generic parts and model-specific parts of slco models, which are transformed into
generic Java code and specific Java code, respectively.

Issues caused by exceptions and lacking of fairness are not addressed in an slco
model, since high-level abstract modeling languages are not often expressive enough to
address all details needed when generating executable codes from them. The challenge
when transforming slco models to good implementations is that exceptions and fairness
have to be considered in some way. To this end, an existing mechanism called failbox is
investigated to handle the issues caused by exceptions. Moreover, by using the appropriate
constructs obtained from Java library code, we discussed possibilities to ensure the fairness
between state machines when they access shared resources.

Based on choices we made in this chapter, we present our concrete solutions to address
challenges regarding discrepancy issues between slco and Java in Chapter 4. Once we

34 Challenges and Choices

figure out how to bridge the gap between slco and Java, we need to show that we are doing
the things in the right way. To this end, in Chapters 5 and 6 we demonstrate how to specify
and verify the correctness of the corresponding Java implementations of two examples
of slco constructs. In Chapters 7 and 8, we focus on how to deal with issues caused by
exceptions via investigating and improving an existing exception handling mechanism,
i.e, failbox, which plays a fundamental role for the further research on improving the
robustness of the implementations of slco models.

Chapter 4

The Implementation of the Model-to-Code
Transformation

Model-Driven Software Engineering (MDSE) aims at improving the productivity and
maintainability of software by raising the level of abstraction at which software is developed.
Starting with an abstract model specified in a domain-specific modeling language (DSML),
more detailed information is added to it in an incremental manner through a sequence of
model-to-model transformations, until the model can be transformed to source code. The
last transformation from model to source code, i.e., model-to-text transformation, can be
either manual or automatic. However, the manual transformation is slow and error-prone,
while the automatic transformation helps to increase effectiveness of complex software
production by reducing the cost and time associated with the coding effort. Therefore, in
this chapter, we present an automatic model-to-code transformation from slco models
to concurrent Java code using the Epsilon Generation Language (EGL). The challenges
discussed in Chapter 3 regarding implementation are also addressed in this chapter.

4.1 Introduction
The transformations from models to their corresponding source code can be performed
in a manual way. However, such manual transformations present a large work load.
Additionally, manual transformations are slow and error-prone. For these reasons, we
propose an automatic model-to-code transformation from slco models to concurrent Java
code, which not only reduces the cost and time associated with the manual coding effort
but also eliminates the introduction of human errors in the transformation process.

In Chapter 3, we investigate a number of challenges to implement the transforma-
tion from slco models to Java code. The challenges are normally caused by different
semantic characteristics between domain-specific modeling languages and their envisaged
implementation platforms. Some constructs of domain-specific modeling languages may
be difficult and even laborious to implement in the target programming languages. For
instance, synchronous channels of slco have no direct counterparts in Java. Moreover,
domain-specific modeling languages are often not designed to address all details needed

36 The Implementation of the Model-to-Code Transformation

when generating executable code from them, leaving some decisions to be made at the
generation phase. We provide the implementation of a model-to-code transformation from
slco models to Java code to address the challenges. The framework presented in this
chapter for transforming slco models has first of all been designed to cover all the aspects
of slco. In addition to this, our aim was to implement all those aspects in such a way that
high performance parallel programs can be obtained. However, addressing both concerns
is challenging. In Section 4.6, we further elaborate on this.

In MDSE, models and model transformations play a vital role in current software
engineering practice [88]. As a consequence, powerful and efficient model management
tools are needed during the development of DSMLs for the specification of models and
transformations. As mentioned in Chapter 2, Epsilon [71] appears to be well-suited for
many common model management tool chains, which facilitates the development of the
entire transformation chain of slco models. Moreover, the component of the Epsilon
platform for model-to-text transformation, i.e., the Epsilon Generation Language (EGL),
has support for structuring model transformations by packaging transformation rules into
modules. In this way, the model transformation from slco to Java can be systematically
structured into small isolated modules and every module can be developed separately.
Hence, the modification of one module will not affect the other modules. Therefore, the
transformation from slco models to Java code in this chapter is defined via EGL.

Besides model-to-code transformations, code transformed from models can also be
constructed in a modular way. In contrast to one monolithic chunk of tightly-coupled code
in which every unit may interface with any other, the generated code can be composed
of smaller, separated chunks that are well isolated. In this way, the maintainability
and re-usability of the generated code are increased. The target language Java, as an
object-oriented programming language, supports encapsulation and information hiding by
providing interfaces, abstract classes, and inheritance. These features make it possible to
divide the generated code into small isolated chunks. We make a distinction between model-
generic concepts and model-specific parts of slco models. Correspondingly, Java code is
also constructed by combining two parts: generic code and specific code. Generic code
corresponds to model-generic concepts of slco models while specific code is constructed
from model-specific parts of slco models. In this way, the implementations of generic
concepts can be updated without affecting the overall transformation. Besides this, generic
concepts of new constructs can be added as separated chunks of code without affecting
other generic concepts. In our approach we achieve modularity by firstly distinguishing
between generic and specific code and secondly modularizing the generic code.

The remainder of this chapter is organized as follows: Section 4.2 describes the overall
architecture of the automated transformation from slco to Java code. Sections 4.3 to 4.5
demonstrate implementations of primitives of slco models in Java, such as state machines,
statements as well as channels. Section 4.7 summarizes this chapter.

4.2 Framework Architecture
The transformation chain of slco models consists of multiple steps. The research on the
preceding steps including several model-to-model transformations from slco models to
more refined slco models is presented in [41]. The transformations are used to deal with
potential semantic and platform differences. After these problems have been resolved, the

4.2. Framework Architecture 37

last step from slco models to executable code needs to be applied. In this thesis, we
focus on the last step that transforms slco models to Java code, which is implemented in
EGL [71] using Eclipse.

As mentioned in Section 2.1, the metamodel for slco is implemented using the Eclipse
Modeling Framework (EMF) [1]. EMF provides a four-layer metamodelling architecture,
i.e., the metameta layer (M3), the meta layer (M2), the model layer (M1), and the object
layer (M0). Models on layer M1 are used to describe real-world objects on layer M0. A
model always conforms to a unique metamodel on layer M2 which describes the elements
of the model as well as their attributes and interrelations. Analogously, a metamodel
always conforms to a metametamodel on the layer M3 which defines the elements of the
metamodel as well as their attributes and the way they interrelate. A metametamodel
is always expressed using the concepts and relations that it defines itself. The four-layer
metamodeling architecture of EMF is depicted in Figure 4.1.

Figure 4.1: Four-layer metamodeling architecture

Model transformations used for transforming models into other formalisms can also
be considered as models [103]. Correspondingly, the architecture of a model transforma-
tion can be depicted along the aforementioned four-layer metamodeling architecture as
well. Therefore, following the four-layer architecture in Figure 4.1, we depict the overall
architecture of our automated transformation, including the source model (SLCO), target
platform (Java), and the transformation (EGL), as shown in Figure 4.2. In this figure, we
do not depict the top layer M3 which provides metametamodels for defining slco, Java
and EGL, as the metametamodels are not relevant to define transformations on layer M1.
On layer M2, slco, Java and EGL are defined and developed as metamodels. Actually,
the Java language specification (JLS) itself does not provide a formal metamodel of Java.
On this layer we consider the syntax of the Java language instead of a formal metamodel
of Java. Based on the metamodels on layer M2, slco model instances, Java programs,
and the transformation definition are defined on layer M1. The M0 layer in this figure
represents dynamic behaviors of slco models, run-time behavior of Java programs, and
run-time instances of the transformation, respectively.

The transformation definition on the layer M1 in Figure 4.2 is composed of a number
of templates. Each template consists of several transformation rules which describe how
one or more elements in slco can be transformed to one or more elements in Java. All
transformation rules refer to metamodels of slco and Java on the layer M2 instead of
slco instances and Java programs on the layer M1. In this way, transformation rules are
applicable for all instances of slco. All EGL templates for defining the transformation from
slco models to Java code are shown in Figure 4.3. The template Transformation.egl
file in this figure is the default when starting to execute the transformation. This file
has several imported EGL templates: the SLCO2Java.egl is used to generate a Java
class file containing the main() method for starting the Java program corresponding to

38 The Implementation of the Model-to-Code Transformation

Figure 4.2: Architecture of the transformation from SLCO to Java

an slco model; other templates are used to define transformation rules for transforming
model-dependent parts of slco constructs to corresponding Java class files. For example,
each Assignment statement in an slco model is transformed to a separated Java class
file via the template Assignment.egl.

Figure 4.3: EGL templates of the transformation

To improve understandability, modifiability as well as re-usability of the implementation
of slco models, we make a distinction between model-generic concepts and model-specific
parts of slco models and construct a Java program by combining these two parts: generic
code and specific code. Generic concepts of slco models are transformed into generic
Java code, while aspects that are specific for concrete slco models are transformed into
specific Java code. As a consequence, modification of some constructs of the generic code
will not affect the transformation and other constructs of the generic code. Moreover, each
construct of the generic code can be understood in isolation which benefits the overall
understanding of the transformation. Furthermore, the existing constructs in the generic
code can be reused as much as possible when the need for new target platforms arises,
e.g., C++ code is required instead of Java code.

The activity diagram to derive executable code from an slco model is shown in
Figure 4.4. The transformation from slco models to Java code applies transformation

4.3. State Machines 39

rules to all the meta-model objects, which results in the generation of specific Java
code corresponding to model-specific parts of an slco model. This specific Java code is
combined with the generic Java code to obtain complete, executable code that should
behave as the slco model specifies.

Figure 4.4: Activity diagram of the transformation process from SLCO to Java

The class diagram of the Java implementations of generic slco constructs is depicted
in Figure 4.5. In this figure, all classes are wrapped in the package GenericCode.
Class Model corresponds to the metaclass Model in the slco metamodel. It con-
sists of a number of objects and channels which are instances of class Class and class
Channel, respectively. Class Class is the implementation of the slco Class con-
struct which describes the structure and behavior of its instances. Class Channel is
an abstract class, including two abstract methods, i.e., send and receive that are
implemented in its subclasses SynchronousChannel and AsynchronousChannel.
Class SynchronousChannel implements the slco synchronous channels while class
AsynchronousChannel implements the slco asynchronous channels. The structure of
signals passed over channels is described by class SignalMessage, including the name
of a signal as well as a list of arguments of the signal. Class Port in Java corresponds
to the slco Port construct which connects channels to objects, i.e., instances of class
Class. Via ports of an object, state machines in this object can send and receive signals
over channels to state machines in other objects. On the Java side, each concrete slco
state machine is defined as a subclass of abstract class StateMachine in the pack-
age GenericCode. The subclasses of abstract class Statement, i.e., Assignment,
ReceiveSignal, SendSignal, and BooleanExpression, as shown in the figure,
represent different slco statement types. Each slco statement may involve several class
variables which are shared by different state machines in the same object. Therefore, we
provide class SharedVariable to wrap the structure of slco class variables and class
SharedVariableList to store all class variables involved in each slco statement.

In the rest of this chapter, we present the implementation of essential classes in the
package GenericCode. In addition, we also discuss the specific Java code generated
from the slco model example introduced in Section 2.1, referring to the classes in the
package GenericCode.

4.3 State Machines
The most common strategies for implementing state machines are State Pattern [105],
Table-driven Approach [119] and Switch/Case Loop. In the State Pattern

40 The Implementation of the Model-to-Code Transformation

Figure 4.5: Class diagram of generic code

approach, states are represented as subclasses implementing a common interface, and each
method in the interface corresponds to an event. This approach is flexible and elegant.
However, it is difficult to review the structure of a state machine as its implementation
is across multiple classes, especially in cases where state machines have a large number
of states. In the Table-driven Approach, states are on one axis and events on the
other axis of a table. In the cross field of the axis, one defines the actions (if there are
any). This approach has the advantage that the whole state machine can be viewed in a
single place making it easier to review and maintain. However, when more complicated
actions are used, more complex structures are required for the representation of state
table entries. The Switch/Case Loop is a simple and popular method to apply in
applications due to its fast execution. Moreover, the structure of a state machine in the
implementation is easily reviewed by developers, which facilitates the understandability of
the implementation.

Therefore, we use the simple Switch/Case Loop approach to represent the behavior
of a state machine. Each case corresponds to one state of the state machine and comprises
a sequence of statements corresponding to the actions of a related outgoing state transition.
If a state has more than one transition, nested switch statements are added in the generated
code with a separate case for each transition.

slco state machines are model dependent concepts, since their structure differs from
one model to another. Therefore, the corresponding Java code for the behavior of each state
machine is automatically generated from slco models. In the package GenericCode we
provide an abstract class StateMachine which only contains a constructor to initialize
its field slcoClass, as shown in Listing 4.1. slcoClass is an instance of class Class
that consists of this state machine. Each concrete state machine in an slco model is
implemented as a subclass of class StateMachine.

Listing 4.1: Class StateMachine
1 package GenericCode;
2 public abstract class StateMachine {

4.3. State Machines 41

3 protected Class slcoClass;
4 public StateMachine(Class slcoClass){
5 this.slcoClass = slcoClass;
6 }
7 }

As state machines represent concurrent processes, each state machine is mapped to a
different thread in the Java implementation. This is achieved by implementing each state
machine as an implementation of Java interface Runnable. For instance, part of the
implementation of state machine Com depicted in Figure 2.3 is shown in Listing 4.2. The
local variable s of state machine Com is transformed to an attribute of its corresponding
Java class Com, as shown at line 2. At line 4, the constructor of class Com invokes the
constructor of its superclass StateMachine, which initializes the variable slcoClass.
At line 8, the variable currentState is introduced to indicate the current state of state
machine Com during its execution. As the initial state of state machine Com is Com0,
currentState is initialized to "Com0" at line 8. A switch loop is introduced (lines 9-34)
and each case corresponds to one state of state machine Com. In case "Com0", a nested
switch statement is added (lines 17-24). This is because state Com0 has two outgoing
transitions, i.e., one from state Com0 to state Com1 and the other from state Com0 to
state Com2. Each case of this nested switch loop corresponds to one outgoing transition
of state Com0. For instance, "Com02Com1" in line 18 represents the transition from state
Com0 to state Com1. At line 13, a String variable named nextTransition is defined
and is used as the nested switch statement’s expression. At line 14, a boolean variable
isExecuted is introduced to indicate whether one of these two outgoing transitions is
enabled. Its initial value is false. When one of the two outgoing transitions is enabled, it
becomes true.

Listing 4.2: Part of generated code for state machine Com
1 public class Com extends StateMachine implements Runnable {
2 protected String s;
3 public Com(Class slcoClass) {
4 super(slcoClass);
5 s = "";
6 }
7 public void run() {
8 String currentState = "Com0";
9 while(true){

10 switch(currentState){
11 case "Com0":
12 ...
13 String nextTransition;
14 boolean isExecuted = false;
15 while(!isExecuted) {
16 ...
17 switch(nextTransition) {
18 case "Com02Com1":
19 ...
20 break;

42 The Implementation of the Model-to-Code Transformation

21 case "Com02Com2":
22 ...
23 break;
24 }
25 }
26 break;
27 case "Com1":
28 ...
29 break;
30 ...
31 case "Com2":
32 return;
33 }
34 }
35 }
36 }

As discussed in Chapter 3, non-deterministic choice between transitions is a challenging
issue when implementing slco models at lower level languages, as the programming
languages are essentially deterministic. Although mimicking non-determinism in Java
is possible, not all of the solutions work efficiently. Among all solutions discussed in
Section 3.3, the solution using a pseudo-random number generator to select one of outgoing
transitions randomly without distinguishing between enabled and blocked transitions
seems to work most efficiently. Therefore, this solution is applied in our framework to
mimic non-determinism.

We explain how a pseudo-random number generator is used to mimic non-deterministic
choice between slco transitions. In Java, class Random is used to generate a stream of
pseudo-random numbers and its method nextInt(int bound) returns a pseudo-random
uniformly distributed int value between 0 (inclusive) and bound (exclusive). This method
is used to mimic non-deterministic choice among multiple outgoing transitions in our
framework. More specifically, we create an array transitions to store names of all
outgoing transitions from a state. Its length is passed as the argument of method nextInt
when invoking it. As a result, it returns a random int value between 0 (inclusive) and
the length of transitions (exclusive). Since the return int value can be considered
as an index of the array transitions, the corresponding element can be obtained
and assigned to the expression of the switch statement. The value of the expression is
compared with each of the literal values in the case statements. If a match is found, the
code sequence following that case statement is executed.

The solution above can be applied when implementing slco states which have multiple
outgoing transitions. For instance, in Figure 2.3 state Com0 has two outgoing transi-
tions. One transition from state Com0 to state Com1, is associated with a statement
send P (true) to Out1 and the other one, from state Com0 to state Com2, is associated
with a Delay statement after 5 ms. The corresponding generated Java code for state Com0
is shown in Listing 4.3. Each case of the nested switch statement (lines 11-28) corresponds
to one outgoing transition. The sequence of statements (lines 13-20) following the case
"Com02Com1" (line 12) matches with the slco statement send P (true) to Out1 and
the sequence of statements (lines 22-27) following the case "Com02Com2" (line 21) is the

4.3. State Machines 43

Java implementation of the slco Delay statement after 5 ms. As previously mentioned,
the variable isExecuted at line 3 is introduced to indicate whether one of these two
outgoing transitions is enabled. Its value becomes true when statements associated with
the outgoing transitions are enabled, as shown at lines 17 and 23, respectively. As a result,
the execution of state machine Com exits the while loop.

At line 4, a string variable nextTransition is introduced as the expression of the
nested switch statement. At line 5, an array transitions is defined and initialized
with strings which indicate outgoing transitions from state Com0. For instance, the first
element Com02Com1 represents the transition from state Com0 to state Com1. In each
iteration of the while loop, a random int value is generated via a call of method nextInt
of rnd (an instance of class Random) at line 9. This int value is assigned to the variable
idx. The value of the element whose index is idx is assigned to the expression of the
nested switch statement at line 10. The updated value of nextTransition is compared
with each of the literal values in the case statements (lines 12 and 21). Consequently, the
sequence of statements following the matching case is executed.

As the transition from Com0 to Com2 is associated with an slco Delay statement, we
need to record the current time immediately after state machine Com enters case "Com0".
Based on this recording, we are able to check whether 5ms have passed immediately
after state machine Com entered case "Com02Com2". To this end, at line 2 we use Java
method System.currentTimeMillis() to get the current time in milliseconds and
store it in the variable start. At line 22, we recheck the current time via method
System.currentTimeMillis(). If System.currentTimeMillis()-start is
greater than 5 ms (i.e, the transition from state Com0 to state Com2 is enabled), then
isExecuted becomes true at line 23 and the current state of state machine Com is set
to Com2 at line 24. Correspondingly, as the condition of the while loop (!isExecuted)
becomes false, the program control passes to the line immeditately following the loop, i.e.,
the break statement at line 30. As the current state of state machine Com is Com2, then
the sequence of statements following the case "Com2" of the outer switch statement in
Listing 4.2 is executed.

Listing 4.3: Part of generated code for non-deterministic choice between transitions
1 case "Com0":
2 long start = System.currentTimeMillis();
3 boolean isExecuted = false;
4 String nextTransition;
5 String[] transitions = {"Com02Com1","Com02Com2"};
6 int idx;
7 Random rnd = new Random();
8 while(!isExecuted) {
9 idx = rnd.nextInt(transitions.length);

10 nextTransition = transitions[idx];
11 switch(nextTransition) {
12 case "Com02Com1":
13 SharedVariableList s_Com02Com1 = new

SharedVariableList();
14 boolean isExe_Com02Com1 = false;
15 isExe_Com02Com1 = slcoClass.getPortName("port_Out1")

44 The Implementation of the Model-to-Code Transformation

.channel.send(new SendSignal_Com02Com1(slcoClass,
s_Com02Com1, this), "Com02Com1", true);

16 if(isExe_Com02Com1) {
17 isExecuted = true;
18 currentState = "Com1";
19 }
20 break;
21 case "Com02Com2":
22 if((System.currentTimeMillis() - start) >= 5) {
23 isExecuted = true;
24 currentState = "Com2";
25 System.out.println("Transition: Com02Com2");
26 }
27 break;
28 }
29 }
30 break;

4.4 Statement
As discussed in Section 2.1, slco offers five types of statements: SendSignal, ReceiveSignal,
(Boolean) Expression, Assignment, and Delay. The corresponding Java code for each
Delay statement is automatically generated from slco models. For instance, a quite
straightforward sequence of Java statements (lines 22-26) in Listing 4.3 is transformed
from the Delay statement after 5 ms. Except for Delay, all other types of statements may
involve shared variables which are accessed and modified by multiple state machines in one
object, complicating the transformation. The synchronization construct to protect shared
variables can be extracted from concrete statements as a generic part of the implementation.
In this section, we first demonstrate this synchronization construct and then discuss the
implementations of (Boolean) Expression and Assignment statements. As SendSignal and
ReceiveSignal statements are relevant to channels, their corresponding implementations
are discussed when presenting the implementation of channels in Section 4.5.

4.4.1 Synchronization Construct
In the generic Java code we define an abstract class called Statement which provides the
implementation of the synchronization construct, as shown in Listing 4.4. As all subclasses
of class Statement can inherit its fields and methods, we implement all slco statements
which may involve shared variables as subclasses of class Statement.

As we discussed in Section 3.2, the way in which shared variables are protected has
a significant impact on the overall performance of concurrent programs. In the current
implementation, we choose a fine-grained locking mechanism to protect shared variables,
i.e., each element in the list of shared variables involved in a statement has its own lock for
read and write access. Using this fine-grained locking mechanism, an slco statement is
transformed to a block of Java instructions with equivalent observable behavior but where
the strong atomicity notion is replaced with a weaker one in Java, maintaining efficiency.

4.4. Statement 45

However, the aforementioned fine-grained locking mechanism may introduce deadlocks,
if not carefully designed. Deadlocks arise when circular waiting occurs in a set of threads,
i.e., each thread waits for another one to release a lock. This can be prevented using the
technique of ordered locking, i.e., the locks are always acquired in a certain fixed order.
This guarantees that when multiple threads compete over a set of variables, one thread is
always able to acquire access to all of them. Therefore, a locking order is applied to the
fine-grained locking mechanism.

The verification of atomicity preservation using the fine-grained locking mechanism and
its deadlock freedom is presented in Chapter 5. Here, we only demonstrate its implemen-
tation. As shown in Listing 4.4, the implementation of fine-grained locking includes two
methods, i.e, lockV at lines 4-8 and unlockV at lines 9-13. The methods lockV and
unlockV are used to acquire and release the lock of each shared variable in the shared
variables list variablesList which is an instance of class SharedVariableList.
The class SharedVariableList is introduced to store shared variables. The elements
of list are shared variables involved in a single statement and they are automatically sorted
in an alphabetical order during the transformation. Correspondingly, the locks of the
elements in variablesList are acquired in an alphabetical order when the method
lockV is invoked.

Listing 4.4: Class Statement
1 public abstract class Statement {
2 protected SharedVariableList variablesList;
3 ...
4 public void lockV() {
5 for (int i = 0; i < variablesList.size(); i++) {
6 variablesList.get(i).lock.lock();
7 }
8 }
9 public void unlockV() {

10 for (int i = 0; i <= variablesList.size(); i++) {
11 variablesList.get(i).lock.unlock();
12 }
13 }
14 }

We use a wrapper class for SharedVariableList to hide information of concrete
Java data structures, which facilitates modular verification when verifying the correctness
of its caller. The reason for this regarding verification is explained in detail in Chapter 5.
Listing 4.5 shows its implementation, including three operations (size, get and add).

Listing 4.5: Class SharedVariableList
1 public final class SharedVariableList {
2 protected ArrayList <SharedVariable> elements;
3 public SharedVariableList(){
4 elements = new ArrayList<SharedVariable>();
5 }
6 public int size(){
7 return elements.size();

46 The Implementation of the Model-to-Code Transformation

8 }
9 public SharedVariable get(int index){

10 return elements.get(index);
11 }
12 public boolean add(SharedVariable v){
13 return elements.add(v);
14 }
15 }

Each shared variable is an instance of class SharedVariable which has three fields
name, value and lock, as shown in Listing 4.6. Variables name (line 2) and value
(line 3) represent the name and value of each shared variable, respectively. The lock of each
shared variable can be acquired and released via the lock() and unlock() methods of
Java class Lock, respectively. Get and set methods for variables name and value are
defined, through which the variables can be accessed and new values can be assigned to
them. For instance, the method getName (lines 5-7) is used to obtain the value that the
variable name holds and the method setName (lines 8-10) is used to set a new value to
the variable name.

Listing 4.6: Class SharedVariable
1 public class SharedVariable {
2 private String name;
3 private Object value;
4 protected Lock lock;
5 public String getName() {
6 return name;
7 }
8 public void setName(String name) {
9 this.name = name;

10 }
11 public Object getValue() {
12 return value;
13 }
14 public void setValue(Object value) {
15 this.value = value;
16 }
17 ...
18 }

4.4.2 Boolean Expressions
An slco boolean expression represents a statement that evaluates to either true or false.
The transition associated with a boolean expression is enabled if the boolean expression
evaluates to true. Otherwise, the execution of the transition is blocked until the boolean
expression evaluates to true.

One generic part of implementing slco boolean expressions is the guarding of shared
variables involved in slco boolean expressions through the synchronization construct

4.4. Statement 47

defined in Listing 4.4. Another generic part is the blocking of executions of boolean expres-
sions when they evaluate to false. To implement these two generic parts, an abstract class
BooleanExpression is introduced as a subclass of Statement, as shown in Listing 4.7.
This class has two methods, i.e., evaluate (line 3) and lockVEvaluateUnlockV
(lines 4-28). The abstract method evaluate is implemented in subclasses of class
BooleanExpression regarding concrete slco boolean expressions. Its return value is
true if concrete slco boolean expressions evaluate to true. Otherwise, its return value
is false. The method lockVEvaluateUnlockV demonstrates how to use lockV and
unlockV methods to guard shared variables involved in slco boolean expressions and how
to mimic the blocking state of slco boolean expressions by using a wait-notify mechanism.
The parameter of lockVEvaluateUnlockV, i.e., isNonDeterTransition (line 4),
indicates whether boolean expressions are associated with non-deterministic outgoing tran-
sitions. Its value is true when boolean expressions are associated with non-deterministic
transitions. Otherwise, its value is false. At line 5, method lockV for acquiring the locks
of involved shared variables is invoked before checking the value of the boolean expression
via a call of evaluate at lines 7 and 12.

Listing 4.7: Class BooleanExpression
1 public abstract class BooleanExpression extends Statement {
2 ...
3 public abstract boolean evaluate();
4 public boolean lockVEvaluateUnlockV(boolean

isNonDeterTransition) {
5 lockV();
6 if (isNonDeterTransition) {
7 boolean isExecuted = evaluate();
8 unlockV();
9 return isExecuted;

10 }
11 else {
12 while (!evaluate()){
13 unlockV();
14 //waiting for notification from other threads
15 slcoClass.lock.lock();
16 try {
17 slcoClass.c_lock.await(10, TimeUnit.MILLISECONDS);
18 } catch (InterruptedException e) {
19 e.printStackTrace();
20 } finally {
21 slcoClass.lock.unlock();
22 }
23 lockV();
24 }
25 unlockV();
26 return true;
27 }
28 }

48 The Implementation of the Model-to-Code Transformation

29 }

If boolean expressions are associated with non-deterministic transitions whose source
states have at least two outgoing transitions, the block code at lines 7-9 in Listing 4.7
is executed. At line 7, evaluate is called and its return value is assigned to a boolean
variable isExecuted. At line 8, all locks are released via a call of the method unlockV
after checking the value of a boolean expression. At line 9, the value of isExecuted
is passed to the caller of lockVEvaluateUnlockV. According to this value, the caller
decides whether to take the corresponding transition that is associated with the boolean
expression whose value is evaluated via a call of evaluate. If this value is true, the
corresponding transition is taken. Otherwise, the caller selects another outgoing transition
from the same state and then checks whether its associated statement is enabled. The
solution of mimicking the non-deterministic choice between transitions is demonstrated in
Section 4.3.

If boolean expressions are associated with deterministic transitions, i.e., the source
state of each transition only has one outgoing transition, the while loop (lines 12-24)
in Listing 4.7 is executed. In this case, callers of lockVEvaluateUnlockV need to be
blocked until values of boolean expressions are true when executing the code within the
method lockVEvaluateUnlockV. As discussed in Section 3.2, each blocking transition
with its associated statement in slco can be implemented as a blocking Java block. The
blocking blocks in Java can be achieved by using a busy-waiting loop or a wait-notify
mechanism. The former is simple while the latter is more efficient. We therefore provide a
solution based on the wait-notify mechanism using the Java interface Condition which
provides a means for one thread to suspend its execution (to "wait") until notified by
another thread. As a boolean expression may involve multiple shared variables of an slco
object, any change of each involved shared variable may update the value of this boolean
expression. Thus, we introduce a Condition object for all shared variables of an slco
object, namely c_lock. Once the value of a boolean expression is false, the await
method of the corresponding c_lock is called and then the current thread suspends its
execution until this condition becomes true. If any of the shared variables that belong to
the same slco object are updated, the notifyAll method of the c_lock is called. As
a result, threads that are waiting on this condition are all woken up and then are able to
re-check the corresponding boolean expressions. Since a Condition object is intrinsically
bound to a Lock object, we introduce a Lock object for all shared variables of an slco
object as well, called lock. Before waiting on a condition, the corresponding lock must
be held by the current thread. As shown at line 15 in Listing 4.7, the lock is acquired by
using its lock() method before the method await of its associated condition c_lock
is invoked to suspend the execution of the current thread at line 17. As shared variables
involved in boolean expressions are only updated via a call of the method assign (at
line 6 in Listing 4.10 of class Assignment), the corresponding notifying part is added
immediately after the method assign call, as shown at line 11 in Listing 4.10.

Two issues of the wait-notify mechanism discussed in Section 3.3, i.e., spurious wakeups
and missing signals, are also addressed. The first issue is fixed by nesting each call of
await inside a while loop spanning lines 12-24 in Listing 4.7. If a waiting thread wakes
up without receiving a signal, the while loop will execute once more, causing this thread
to go back to wait. The second issue is addressed by adding a timeout time to an await
call, as shown in line 17. The method await with timeout information causes the current

4.4. Statement 49

thread to wait until either another thread invokes the notify method or the notifyAll
method on the same object, or the specified amount of time has elapsed. In this way, a
waiting thread can always wake up and re-check the condition of the while loop when the
signal to wake up is missed.

As mentioned above, we introduce a Condition object and a Lock object for each
slco object, namely c_lock and lock. Each slco object is mapped to an instance of
class Class which corresponds to the slco Class construct. As shown in Listing 4.8,
variables c_lock and lock are defined as fields of class Class at line 3 and 4, respectively.
Each slco object consists of variables, ports as well as state machines. At line 5, a shared
variable list sharedVariables is defined for storing all variables of an slco object.
The ports and state machines of an slco object are stored in lists ports (line 6) and
stateMachines (line 7), respectively.

As discussed in Section 3.7, one challenge when transforming slco models to good
implementations is to ensure the fairness between threads in the implementation to some
extent by using the right constructs obtained from Java library code. We therefore
consider fairness using the optional fairness policy that is provided by locks in Java.
Locks in Java support an optional fairness policy. For instance, the constructor for class
ReentrantLock accepts an optional fairness parameter. When it is set to true, locks
favor granting access to the longest-waiting thread. Note that fairness for locks does not
guarantee fairness of thread scheduling which is an independent other issue. Therefore,
fairness for locks does prevent starvation of threads only to a limited extent. At line 13,
lock is initialized with an instance of class ReentrantLock and the parameter of its
constructor is set to true. At line 14, the condition c_lock is bound to the lock lock
by using its newCondition() method.

Listing 4.8: Part of generic code for slco Class
1 public class Class {
2 ...
3 protected Condition c_lock;
4 protected Lock lock;
5 protected SharedVariableList sharedVariables;
6 protected ArrayList<Port> ports;
7 protected ArrayList<StateMachine> stateMachines;
8 public Class(String className, String objectName, Model

parent) {
9 ...

10 sharedVariables = new SharedVariableList();
11 ports = new ArrayList<Port>();
12 stateMachines = new ArrayList<StateMachine>();
13 lock = new ReentrantLock(true);
14 c_lock = lock.newCondition();
15 }
16 ...
17 }

The specific part of an slco boolean expression is implemented as a subclass of class
BooleanExpression in Listing 4.7. For instance, the transition from SendRec0 to
SendRec1 in Figure 2.3 is associated with a boolean expression m == 6 and m is

50 The Implementation of the Model-to-Code Transformation

an integer variable shared by three state machines Rec1, Rec2 and SendRec. The
specific part of the boolean expression m == 6 is shown in Listing 4.9. The method
evaluate at lines 4-6 is the implementation of the abstract method evaluate of class
BooleanExpression at line 3 in Listing 4.7. The boolean value true is returned to
its caller when the value of variable m equals 6. Otherwise, the boolean value false is
returned to its caller.

Listing 4.9: Part of generated code for a specific slco (Boolean) Expression statement
1 public class BooleanExpression_SendRec02SendRec1 extends

BooleanExpression{
2 ...
3 @Override
4 public boolean evaluate() {
5 return ((Integer)slcoClass.getSharedVariableName("m").

getValue()==6);
6 }
7 }

The method getSharedVariableName at line 5 in Listing 4.9 returns a shared
variable object whose string name is equal to "m". Its value can be obtained via a call of
the method getValue (lines 11-13 in Listing 4.6).

4.4.3 Assignment
The generic part of the class Assignment is defined as a subclass of class Statement,
as shown in Listing 4.10. Its method lockVAssignUnlockV (lines 4-15) is used to safely
assign a new value to a shared variable via method assign (line 3). The abstract method
assign is implemented in subclasses which are related to concrete slco assignments.
Whenever a thread attempts to execute the method assign, it needs to acquire all
involved locks via a call to the method lockV (at line 5). After the execution of the
method assign at line 6, all locks are released via a call to the method unlockV at
line 7. If any threads are waiting on the condition c_lock, then they are woken up by a
call to the signalAll method at line 11. The notifying part at lines 9-14 matches the
waiting part at lines 15-22 in Listing 4.7. Before signaling waiting threads on the condition,
the current thread needs to acquire the lock that is associated with the condition c_lock,
as shown at line 9. After signaling waiting threads on the condition, the current thread
needs to release the lock as well, as shown at line 13.

Listing 4.10: Class Assignment
1 public abstract class Assignment extends Statement {
2 ...
3 public abstract void assign();
4 public void lockVAssignUnlockV() {
5 lockV();
6 assign();
7 unlockV();
8 //notifying all waiting threads on Lock lock
9 slcoClass.lock.lock();

4.5. Channels 51

10 try {
11 slcoClass.c_lock.signalAll();
12 } finally {
13 slcoClass.lock.unlock();
14 }
15 }
16 }

The specific part of an slco assignment is implemented as a subclass of class Assignment.
For instance, the implementation of the concrete assignment m := m + 1 associated with
the transition from state Rec2b to state Rec2a of state machine Rec2 in Figure 2.3 is
shown in Listing 4.11. The method assign (lines 4-6) is the implementation of the abstract
method inherited from its parent Assignment in Listing 4.10.

Listing 4.11: Part of generated code for an slco Assignment statement
1 public class Assignment_Rec2b2Rec2a extends Assignment{
2 ...
3 @Override
4 public void assign() {
5 slcoClass.getSharedVariableName("m").setValue(((Integer)

slcoClass.getSharedVariableName("m").getValue()+1));
6 }
7 }

4.5 Channels
As mentioned in Section 2.1, slco supports synchronous channels, asynchronous lossless
channels as well as asynchronous lossy channels for communication between different
objects. They are either bidirectional or unidirectional. As lossy slco channels are
an undesired aspect of physical connections and a bidirectional channel can be easily
replaced with two unidirectional channels via model-to-model transformations, in this
section we only focus on the implementation of unidirectional lossless slco channels which
are associated with only one-place buffers.

We define an abstract class Channel which contains three abstract methods: send
(at line 12), put (at line 13), and receive (at line 14), as shown in Listing 4.12.
The asynchronous and synchronous slco channels are implemented as its subclasses
which create full implementations of these methods with specialized behaviors regard-
ing asynchronous and synchronous communication in slco. The one-place buffer, as
discussed in Section 3.4, can be implemented using the implementation of Java inter-
face BlockingQueue, i.e., class ArrayBlockingQueue. Therefore, at line 2 an
instance of class ArrayBlockingQueue called asynQueue is declared and is ini-
tialized with capacity one in its subclasses AsynchronousChannel (Listing 4.18)
and SynchronousChannel (Listing 4.24), respectively. Elements to be stored in
asynQueue are instances of class SignalMessage which is defined in Listing 4.13.
The class SignalMessage provides the structure of signals passed over channels.

Listing 4.12: Class Channel

52 The Implementation of the Model-to-Code Transformation

1 public abstract class Channel {
2 protected ArrayBlockingQueue<SignalMessage> asynQueue;
3 protected Lock receiverLock;
4 protected Lock senderLock;
5 protected Condition c_receiverLock;
6 public Channel() {
7 // asynQueue = new ArrayBlockingQueue<SignalMessage>(1);
8 receiverLock = new ReentrantLock(true);
9 senderLock = new ReentrantLock(true);

10 c_receiverLock = receiverLock.newCondition();
11 }
12 public abstract boolean send(SendSignal sendSignal, String

transitionName, boolean isNonDeterTransition);
13 public abstract boolean put(SignalMessage signal);
14 public abstract SignalMessage receive(ReceiveSignal

receiveSignal, String transitionName, boolean
isNonDeterTransition);

15 public SignalMessage peek() {
16 SignalMessage signal = asynQueue.peek();
17 return signal;
18 }
19 }

The send and receive operations of an slco channel are implemented by using sev-
eral operations of class ArrayBlockingQueue. Although each operation of class
ArrayBlockingQueue is thread-safe, we still need to introduce locks when imple-
menting operations of channels. This is because the slco send or receive operations of a
channel are mapped to a block of Java statements which involves more than one operation
of class ArrayBlockingQueue. For instance, the block of statements for implementing
the receive operation of a channel consists of retrieving the signal in the corresponding
buffer but not removing it, checking the content of the signal, and then removing the
signal from the buffer. The first step can be achieved by using the method peek of class
ArrayBlockingQueue which retrieves the head of the queue but does not remove it
from the queue and the third step can be implemented by using the method take of
class ArrayBlockingQueue which retrieves and removes the head of the queue. As
the receive operation of a channel in slco is atomic, a lock needs to be introduced to
ensure the atomic execution of its corresponding block of Java statements. Therefore,
at line 3 (Listing 4.12), a lock receiverLock is introduced to control access of the
receive operation executions of multiple threads. For the same reason, a lock for the
implementation of the send operation of a channel is needed as well. As shown at line 4
(Listing 4.12), a lock senderLock is introduced to control access of the send operation
of executions of multiple threads.

At the slco level, if the buffer associated with a channel is full, send signal statements
that send signals via this channel are blocked and the corresponding state machines are
blocked as well. Such a blocking situation can be achieved in the Java implementation by
using a blocking inserting operation of class ArrayBlockingQueue, like put. Similarly,

4.5. Channels 53

if the buffer associated with a channel is empty, signal reception statements that receive
signals via this channel are blocked and corresponding state machines are blocked as well.
However, this kind of situation can not be achieved in Java by using the blocking feature of
retrieving operations of class ArrayBlockingQueue, like take. This is because when
the method take is called, the execution of the corresponding state machine is suspended
until a signal is available in the buffer. After a signal is available, the state machine just
retrieves and removes it from the buffer without checking the content of it, which conflicts
with the fact that a state machine always needs to check the name of each signal before
receiving it.

As discussed in Section 3.3, the wait-notify mechanism is an efficient way to mimic the
blocking state in Java. Therefore, we let state machines suspend by using the wait-notify
mechanism instead of using the blocking feature of class ArrayBlockingQueue when
signal reception statements are not enabled. Specifically, we introduce an instance of
class Condition at line 5 in Listing 4.12, i.e., c_receiverLock which is bound to
receiverLock. When a signal reception statement is not enabled, the method await
of c_receiverLock is called. Then the corresponding state machine releases the lock
receiverLock and its execution is suspended as well. On the sending side, only after the
send operation of the channel is executed, the element in the buffer is updated. Therefore,
the corresponding operation for waking up suspended threads needs be called after a
state machine has executed the send operation of the channel. The implementation of the
wait-notify mechanism is demonstrated later through implementations of asynchronous
and synchronous channels.

The call of the method peek of asynQueue at line 16 in Listing 4.12 is wrapped in
the method peek at lines 15-18 which is shared by all subclasses of class Channel. As
mentioned before, elements in asynQueue are instances of class SignalMessage which
defines the structure of signals sent over channels, as shown Listing 4.13. Each signal has
a name and a list of arguments, which are defined as attributes of SignalMessage, i.e.,
name (line 3), and args (line 4), respectively. As the number of arguments of a signal is
arbitrary, we define the constructor of class SignalMessage as a varargs Java method
which takes a variable number of arguments and the variable-length argument is specified
by three dots (...). As shown at line 9, when an instance of class SignalMessage is
created, the first argument is matched with the first parameter name and the remaining
arguments belong to args.

Listing 4.13: Class SignalMessage
1 package GenericCode;
2 public class SignalMessage {
3 public String name;
4 public Object[] args;
5 public SignalMessage(String name) {
6 this.name = name;
7 this.args = null;
8 }
9 public SignalMessage(String name, Object...args){

10 this.name = name;
11 this.args = args;
12 }

54 The Implementation of the Model-to-Code Transformation

13 }

SendSignal Statement As SendSignal statements may involve shared variables
accessed by different state machines, the synchronization construct defined in class
Statement is also needed when executing this kind of statements. Therefore, we define
class SendSignal as a subclass of class Statement to inherit the synchronous construct,
as shown in Listing 4.14.

Listing 4.14: Class SendSignal
1 public abstract class SendSignal extends Statement {
2 public SendSignal(Class slcoClass, SharedVariableList

sharedVariables) {
3 super(slcoClass, sharedVariables);
4 }
5 public abstract boolean send();
6 public boolean lockVSendUnlockV() {
7 lockV();
8 boolean isSuccessful = send();
9 unlockV();

10 return isSuccessful;
11 }
12 }

The send at line 5 in Listing 4.14 is defined as an abstract method, which is imple-
mented in its subclasses regarding the model specific part of each concrete SendSignal
statement. For instance, the implementation of the concrete SendSignal statement
send Q(5) to Out2 associated with the transition from state Com1 to state Com3 in
Figure 2.3 is shown in Listing 4.15. An instance of SignalMessage is created at line 9
according to the signal Q(5). Such a signal is then added to the corresponding buffer of
the channel at line 10 by calling method put which is defined in Listing 4.21.

Listing 4.15: Generated code for an slco SendSignal statement
1 public class SendSignal_Com12Com3 extends SendSignal{
2 public Com sm;
3 public SendSignal_Com12Com3(Class slcoClass,

SharedVariableList sharedVariables, Com sm) {
4 super(slcoClass, sharedVariables);
5 this.sm = sm;
6 }
7 @Override
8 public boolean send() {
9 SignalMessage signal = new SignalMessage("Q", new Object

[]{5});
10 return slcoClass.getPortName("port_Out2").channel.put(

signal);
11 }
12 }

4.5. Channels 55

ReceiveSignal Statement Similarly, abstract class ReceiveSignal for extracting
the generic part of ReceiveSignal statements is defined as a subclass of Statement,
as shown in Listing 4.16. The method lockVEvaluateReceiveUnlockV() at lines
7-21 demonstrates how to use lockV and unlockV methods to safely operate involved
shared variables in ReceiveSignal statements. After acquiring the lock of each involved
shared variable via calling lockV at line 8, the evaluate which is used to check the
name of the signal and the conditional expression over the signal arguments is called. If
the name is expected and the conditional expression is held, the receive is called to
take the signal from the corresponding buffer. Moreover, a notifying part at lines 13-17
is called to wake up all threads waiting for changes of the values of shared variables, as
values of shared variables may be updated via ReceiveSignal statements. For instance,
the ReceiveSignal statement receive Q(mjm >= 0) from In2 changes the value of
shared variable m if a value greater or equal to 0 is received.

Listing 4.16: Class ReceiveSignal
1 public abstract class ReceiveSignal extends Statement {
2 public ReceiveSignal(Class slcoClass, SharedVariableList

sharedVariables) {
3 super(slcoClass, sharedVariables);
4 }
5 public abstract boolean evaluate();
6 public abstract void receive();
7 public boolean lockVEvaluateReceiveUnlockV() {
8 lockV();
9 boolean isExecutedStatement = evaluate();

10 if (isExecutedStatement) {
11 receive();
12 slcoClass.lock.lock();
13 try {
14 slcoClass.c_lock.signalAll();
15 } finally {
16 slcoClass.lock.unlock();
17 }
18 }
19 unlockV();
20 return isExecutedStatement;
21 }
22 }

The corresponding implementations of abstract methods evaluate (line 5) and
receive (line 6) in Listing 4.16 for statement receive Q(mjm >= 0) from In2 is shown
in Listing 4.17 at lines 4-7 and lines 9-12, respectively.

Listing 4.17: Part of generated code for an slco ReceiveSignal statement
1 public class ReceiveSignal_Rec2a2Rec2b extends ReceiveSignal

{
2 ...
3 @Override

56 The Implementation of the Model-to-Code Transformation

4 public boolean evaluate() {
5 SignalMessage signal = slcoClass.getPortName("port_In2")

.channel.peek();
6 return ((String)signal.name).equals("Q") && signal.args.

length == 1 && ((Integer)(signal.args[0])) >= 0;
7 }
8 @Override
9 public void receive() {

10 SignalMessage signal = slcoClass.getPortName("port_In2")
.channel.peek();

11 slcoClass.getSharedVariableName("m").setValue((Integer)
signal.args[0]);

12 }
13 }

4.5.1 Asynchronous Channels
The model-generic part of slco’s asynchronous channels is implemented as a subclass
of the abstract class Channel (Listing 4.12), as shown in Listing 4.18. The associated
buffer for each asynchronous channel is implemented using ArrayBlockingQueue with a
buffer capacity of 1, i.e., asynQueue initialized at line 3. The implementations of send and
receive operations of an asynchronous channel are based on put and take operations of
ArrayBlockingQueue, as shown in Listings 4.19 and 4.22, respectively.

Listing 4.18: class AsynchronousChannel
1 public class AsynchronousChannel extends Channel {
2 public AsynchronousChannel() {
3 asynQueue = new ArrayBlockingQueue<SignalMessage>(1);
4 }
5 @Override
6 public boolean send(SendSignal sendSignal,
7 String transitionName, boolean isNonDeterTransition) { ...

}
8 @Override
9 public boolean put(SignalMessage signal) { ...}

10 @Override
11 public SignalMessage receive(ReceiveSignal receiveSignal,
12 String transitionName, boolean isNonDeterTransition) { ...

}
13 }

The Implementation of the send Method The implementation of the send operation
of the asynchronous channel is shown in Listing 4.19.

When executing an slco SendSignal statement and the corresponding buffer is empty,
a signal will be added to the buffer and then the method send returns true to its caller,
i.e., the corresponding state machine, as shown at lines 6-15. Otherwise, the method send

4.5. Channels 57

returns false to the caller, as shown at lines 16-18. Note that when the send operation
is executed successfully, a notifying part for waking up all threads suspending on receive
operations of the channel is needed, as shown at lines 9-14.

If a send operation is associated with a deterministic transition, it blocks as well as
the execution of the corresponding state machine blocks when the buffer is full. This is
achieved by the semantics of the blocking put operation of class ArrayBlockingQueue. After
adding the signal to the buffer successfully, the notifying part for waking up all threads
suspending on receiving operations of the channel is executed at lines 22-27.

The method lockVSendUnlockV called at lines 7 and 20 in Listing 4.19 is defined at
lines 6-11 in abstract class SendSignal in Listing 4.14.

Listing 4.19: The send method of class AsynchronousChannel
1 public boolean send(SendSignal sendSignal, String

transitionName, boolean isNonDeterTransition) {
2 try{
3 senderLock.lock();
4 SignalMessage signal = peek();
5 if (isNonDeterTransition) {
6 if (signal == null) {
7 sendSignal.lockVSendUnlockV();
8 System.out.println("Transition: " + transitionName);
9 try {

10 receiverLock.lock();
11 c_receiverLock.signalAll();
12 } finally {
13 receiverLock.unlock();
14 }
15 return true;
16 } else {
17 return false;
18 }
19 } else {
20 sendSignal.lockVSendUnlockV();
21 System.out.println("Transition: " + transitionName);
22 try {
23 receiverLock.lock();
24 c_receiverLock.signalAll();
25 } finally{
26 receiverLock.unlock();
27 }
28 return true;
29 }
30 } finally {
31 senderLock.unlock();
32 }
33 }

58 The Implementation of the Model-to-Code Transformation

In the generated implementation of a state machine, the method send (Listing 4.19)
is called when sending a message over a channel. For instance, the transition from
state Com1 to state Com3 in Figure 2.3 is associated with a SendSignal statement
send Q(5) to Out2 and the specific part of its implementation is automatically gener-
ated from the transformation, as shown in Listing 4.20. At line 3, an instance of class
SendSignal, i.e., SendSignal_Com12Com3 is created and it is passed to the method
send. The implementation of class SendSignal_Com12Com3 is shown in Listing 4.15.

Listing 4.20: Generated code for a call of the send method
1 case "Com1":
2 SharedVariableList s_Com12Com3 = new SharedVariableList();
3 slcoClass.getPortName("port_Out2").channel.send(new

SendSignal_Com12Com3(slcoClass, s_Com12Com3, this), "
Com12Com3", false);

4 currentState = "Com3";
5 break;

The Implementation of the put Method The abstract method put at line 13 of
class Channel in Listing 4.12 is implemented in its subclass AsynchronousChannel,
as shown in Listing 4.21. This method wraps the put operation of class ArrayBlockingQueue
which guarantees that send operations associated with deterministic transitions block
when the corresponding buffer is full.

Listing 4.21: The put method of class AsynchronousChannel
1 public boolean put(SignalMessage signal) {
2 try {
3 asynQueue.put(signal);
4 } catch (InterruptedException e) {
5 e.printStackTrace();
6 }
7 return true;
8 }

The Implementation of the receive Method The implementation of the receive
operation of the asynchronous channel is shown in Listing 4.22.

Due to the conditional reception feature of the ReceiveSignal statement of slco, the
content of a signal in the buffer will only be received by a state machine if the conditional
expression over the signal arguments evaluates to true. In the Java code, this requires that
the element is retrieved without taking the element first. To this end, the peek method
which is defined in Listing 4.12 method is called at line 7.

If the signal is not null (line 8) and the conditional expression over signal arguments
evaluates to true as well (line 9), then the signal is taken via the take method (line 11)
and the signal is returned to the caller of the method receive (line 13). Otherwise, the
signal with the value of null is returned to its caller (line 17) or the receive operation
will be blocked for a while (line 19) and the buffer will be checked again until the signal
in the buffer satisfies the conditional expression over the signal arguments. The code

4.5. Channels 59

at lines 16-18 corresponds to the case where the receive operation is associated with a
non-deterministic transition. The code at lines 18-20 corresponds to the case where the
receive operation is associated with a deterministic transition but the current signal in the
buffer does not satisfy the condition. In this case, the lock receiverLock is released
and the current thread waits until it is signaled or the specified waiting time elapses, as
shown at line 19.

Listing 4.22: The receive method of class AsynchronousChannel
1 public SignalMessage receive(ReceiveSignal receiveSignal,

String transitionName, boolean isNonDeterTransition) {
2 boolean isExecuted = false;
3 SignalMessage signal = null;
4 try {
5 receiverLock.lock();
6 while (!isExecuted) {
7 signal = peek();
8 if (signal != null) {
9 isExecuted = receiveSignal.

lockVEvaluateReceiveUnlockV();
10 if (isExecuted) {
11 signal = (SignalMessage) asynQueue.take();
12 System.out.println("Transition: " + transitionName

);
13 return signal;
14 }
15 }
16 if (isNonDeterTransition) {
17 return null;
18 } else {
19 c_receiverLock.await(10, TimeUnit.MILLISECONDS);
20 }
21 }
22 } catch (InterruptedException e) {
23 e.printStackTrace();
24 } finally {
25 receiverLock.unlock();
26 }
27 return null;
28 }

In the generated implementation of a state machine, the method receive (Listing 4.22)
is called when receiving a message over a channel. For instance, the receive method
is called at line 4 in Listing 4.23 which corresponds to the transition from state Rec2a
to state Rec2b of the state machine Rec2 in Figure 2.3. Since the ReceiveSignal
statement receive Q(mjm >= 0) from In2 involves the shared variable m, an instance of
class SharedVariableList is created at line 2 and this list is used to store all involved
shared variables in the statement receive Q(mjm >= 0) from In2 . For instance, the
shared variable m is added to the list at line 3.

60 The Implementation of the Model-to-Code Transformation

Listing 4.23: Generated code for a call of the receive method
1 case "Rec2a":
2 SharedVariableList s_Rec2a2Rec2b = new SharedVariableList

();
3 s_Rec2a2Rec2b.add(slcoClass.getSharedVariableName("m"));
4 SignalMessage signal = slcoClass.getPortName("port_In2").

channel.receive(new ReceiveSignal_Rec2a2Rec2b(slcoClass
, s_Rec2a2Rec2b, this),"Rec2a2Rec2b", false);

5 currentState = "Rec2b";
6 break;

4.5.2 Synchronous Channels
As discussed in Section 3.4.2, the implementation of slco synchronous channels is challeng-
ing because of the combination of synchronous communication with non-determinism. In
such a case, if a receive or send operation is not enabled, the execution of the corresponding
state machine is not blocked at the receive or send operation. This kind of synchronous
communication is difficult to implement, as threads that are executed in parallel do not
have the global overview of the behavior of the program.

To this end, we add a handshake-like synchronization protocol between state ma-
chine threads for synchronous communication in the Java implementation. The implicit
buffer associated with each slco synchronous channel is implemented using two kinds of
Java queue from the package java.util.concurrent, i.e, ArrayBlockingQueue
and SynchronousQueue. When a signal is sent over a synchronous channel, the
signal is added to the corresponding ArrayBlockingQueue queue first, and then is
added to the corresponding SynchronousQueue queue as well. In this way, a thread
is able to check the content of the signal by means of reviewing the signal from the
ArrayBlockingQueue before starting the synchronous communication via the opera-
tion of the SynchronousQueue queue.

As shown in Listing 4.24, the model-generic part of slco synchronous channel is
implemented as a subclass of class Channel. An instance of class SynchronousQueue,
i.e., synQueue, is declared at line 2 and initialized at line 5. asynQueue is an instance
of class ArrayBlockingQueue, which is declared in its superclass Channel. At line
4, asynQueue is initialized with capacity one. The abstract methods of its superclass
Channel, i.e., send, put, and receive, need to be implemented regarding slco
synchronous communication between objects. The implementations are demonstrated in
Listings 4.25, 4.26 and 4.27, respectively.

Listing 4.24: Class SynchronousChannel
1 public class SynchronousChannel extends Channel {
2 protected SynchronousQueue<SignalMessage> synQueue;
3 public SynchronousChannel() {
4 asynQueue = new ArrayBlockingQueue<SignalMessage>(1);
5 synQueue = new SynchronousQueue<SignalMessage>();
6 }
7 @Override

4.5. Channels 61

8 public boolean send(SendSignal sendSignal, String
transitionName, boolean isNonDeterTransition) { ...}

9 @Override
10 public boolean put(SignalMessage signal) { ... }
11 @Override
12 public SignalMessage receive(ReceiveSignal receiveSignal,

String transitionName, boolean isNonDeterTransition) {
... }

13 }

The Implementation of the send Method The implementation of the send method
at line 8 in Listing 4.24 is shown in Listing 4.25. The lock senderLock is acquired
at line 3 to prevent simultaneous access between threads of the send operation of a
synchronous channel. At line 4 the sendSignal statement is evaluated via the method
lockVSendUnlockV. If the sendSignal statement is enabled, a boolean value true
is returned to the caller of the send method at line 7. Otherwise, a boolean value false
is returned at line 9. According to this value, the caller decides whether to take the
corresponding transition that is associated with the sendSignal statement. If this value
is true, the corresponding transition is taken. Otherwise, the caller rechecks whether the
sendSignal statement is enabled.

Listing 4.25: The send method of class SynchronousChannel
1 public boolean send(SendSignal sendSignal, String

transitionName, boolean isNonDeterTransition) {
2 try{
3 senderLock.lock();
4 boolean isExecutedStatement = sendSignal.

lockVSendUnlockV();
5 if (isExecutedStatement) {
6 System.out.println("Transition: " + transitionName);
7 return true;
8 } else {
9 return false;

10 }
11 } finally{
12 senderLock.unlock();
13 }
14 }

The Implementation of the put Method The implementation of the put method
of class SynchronousQueue is shown in Listing 4.26.

As mentioned above, in order to let a thread be able to check the content of a signal
before receiving it, the signal is first added to the asynQueue, as shown at line 4. Since
some threads may be suspended on the receive operation of the channel, a notifying part
is needed to wake all of them up, as shown at lines 5-7. After these steps, the signal is
added to the synQueue via its offer method at line 8. By adding timeout information

62 The Implementation of the Model-to-Code Transformation

to the call of the method offer at line 8, the current thread inserts a signal into the
synQueue and waits, if necessary, up to the specified wait time, for another thread to
take it. Correspondingly, the execution of the current thread will not be blocked at line 8
when the corresponding SendSignal statement is not enabled.

After the execution of the adding operation of synQueue at line 8, the signal in the
asynQueue needs to be removed, as shown at lines 9-11. If the signal is added to the
synQueue, i.e., the return value of the method offer is true, a boolean value true is
returned to the caller of the put method. Otherwise, a boolean value false is returned.

Listing 4.26: The put method of class SynchronousChannel
1 public boolean put(SignalMessage signal) {
2 boolean isTaken = false;
3 try {
4 asynQueue.put(signal);
5 receiverLock.lock();
6 c_receiverLock.signalAll();
7 receiverLock.unlock();
8 isTaken = synQueue.offer(signal, 10, TimeUnit.

MILLISECONDS);
9 receiverLock.lock();

10 asynQueue.take();
11 receiverLock.unlock();
12 } catch (InterruptedException e) {
13 e.printStackTrace();
14 }
15 return isTaken;
16 }

The Implementation of the receive Method The implementation of the receive
operation of the synchronous channel is shown in Listing 4.27. Similar to the imple-
mentation of receive of asynchronous channels, the current thread executing the
receiveSignal statement is blocked at the while loop at lines 4-28 when the value
of isNonDeterTransition is false. To avoid the inefficient busy-waiting loop, the
await method for waiting for the corresponding send operation is used at line 21. If the
value of isNonDeterTransition is true, the while loop will be executed only once
and a value will be returned to the caller of the method receive. It returns the signal
to its caller if the receiveSignal is enabled. Otherwise, it returns null to its caller.

Listing 4.27: The receive method of class SynchronousChannel
1 public SignalMessage receive(ReceiveSignal receiveSignal,

String transitionName, boolean isNonDeterTransition) {
2 boolean isExecuted = false;
3 SignalMessage signal = null;
4 while (!isExecuted) {
5 try {
6 receiverLock.lock();
7 signal = peek();

4.6. Discussion 63

8 if (signal != null) {
9 isExecuted = receiveSignal.

lockVEvaluateReceiveUnlockV();
10 if (isExecuted) {
11 signal = (SignalMessage) synQueue.poll(10,

TimeUnit.MILLISECONDS);
12 if (signal != null) {
13 System.out.println("Transition: " +

transitionName);
14 return signal;
15 }
16 }
17 }
18 if (isNonDeterTransition) {
19 return null;
20 } else {
21 c_receiverLock.await(10, TimeUnit.MILLISECONDS);
22 }
23 } catch (InterruptedException e) {
24 e.printStackTrace();
25 } finally {
26 receiverLock.unlock();
27 }
28 }
29 return null;
30 }

4.6 Discussion
The framework presented in this chapter for transforming slco models has been designed
to cover all the aspects of slco. Our secondary concern is that high performing parallel
programs should be achievable via the transformation. However, addressing both concerns
is challenging, as some language aspects are hard to implement in a way favorable
for high performance. As a result, the transformation of models using those aspects
currently tends to not produce highly efficient programs. For instance, slco supports non-
determinism whereas the target programming language Java is essentially deterministic.
Cases combining non-determinism and potential blocking of statements, i.e., where an
SLCO state has multiple outgoing transitions containing potentially blocking statements,
and a non-deterministic choice has to be made between them, are challenging to transform
to efficient code. Mimicking the non-deterministic choice between transitions is possible in
Java by applying a pseudo-random number generator with a while loop. This solution
is applied in the current framework. A drawback of this approach is that executing the
while loop may lead to waiting arbitrarily long, in particular when in each loop iteration, a
transition with a blocked statement is selected. This, in turn, can lead to potential delays
that depend on the size of the time slices of the preemptive scheduler. In particular, the
potentially long wait in a while loop can lead to low performance when the scheduler is

64 The Implementation of the Model-to-Code Transformation

not preemptive.
Therefore, the model-to-code transformation presented in the current section is a proof

of concept, performance-wise. However, by supporting all aspects of slco, we leave the
option open for a developer to choose one of the following development steps. One can
transform the model as it is, resulting in code that can be run to test the behavior of the
application rather than only focusing on high performance. In case high performance is
required, one can also transform the model via model-to-model transformations to a version
that has a structure that can be straightforwardly transformed to a high performance
program. For instance, as a preprocessing step, non-determinism that currently is not
transformed to efficient code can be removed from the model before code is generated.
Correspondingly, many performance issues can be avoided.

Finally, as an interesting and challenging step of our future research, we are currently
working on a new version of the model-to-code transformation, aiming to further improve
the performance of the generated programs.

4.7 Conclusions
To address several challenges we identified in Chapter 3, we defined a framework for
transforming slco models consisting of concurrent communicating objects to multi-
threaded Java programs in this chapter. By implementing different slco concepts in Java,
we demonstrated concrete behavior gaps between domain-specific modeling languages and
envisaged implementation platforms. Also we presented how to bridge these gaps by finding
patterns in programming languages for correctly capturing concurrent model semantics. By
defining the transformation as well as the corresponding executable Java code in a modular
way, we improve the understandability and re-usability of this framework. Moreover,
the automatic model-to-code transformation we defined not only reduces the cost and
time associated with the manual coding effort but also eliminates possible introduction of
human errors in the transformation process. For instance, the order of locks for accessing
shared variables is fixed during the transformation, which helps to avoid lock-deadlocks.

Model-to-code transformations as well as code produced by them may not be free of
errors, such as simple programming errors and mistakes in the transformation from model
to code. To ensure the correctness of produced code and transformations themselves,
a formal specification logic and proof support is required. The framework presented in
this chapter, as a first attempt to fully preserving the semantics of slco models in the
implementation, provides automatic generation of relatively realistic and efficient code,
which complicates the verification. For instance, taking conditional receive operations and
non-determinism into account, a complicated protocol is needed when implementing slco
channels. Moreover, the wait-notify mechanism introduced to improve the efficiency of
the corresponding concurrent code in Java complicates the verification as well. As a first
step towards verifying the correctness of the code generation, we do not yet consider the
wait-notify mechanism when verifying the preservation of atomicity in Chapter 5. Also, we
verify a simplified version of the slco asynchronous channel implementation in Chapter 6.
These simplifications facilitate the verification of our implementation.

Chapter 5

Verifying Atomicity Preservation and Deadlock
Freedom of Generic Code

A challenging aspect of model-to-code transformations is to ensure that the semantic
behavior of the input model is preserved in the output code. When constructing concurrent
systems, this is mainly difficult due to the non-deterministic potential interaction between
threads. In this chapter, we consider this issue for a framework that implements a
transformation chain from models expressed in the state machine based domain-specific
modeling language slco to Java. In particular, we provide a fine-grained generic mechanism
to preserve atomicity of slco statements in the Java implementation. We give its generic
specification based on separation logic and verify it using the verification tool VeriFast.
The solution can be regarded as a reusable module to safely implement atomic operations
in concurrent systems. Moreover, we also prove with VeriFast that our mechanism does
not introduce deadlocks. The specification formally ensures that the locks are not used
reentrantly which simplifies the formal treatment of the Java locks.

5.1 Introduction
Model transformation is a powerful concept in model-driven software engineering [70].
Starting with an initial model written in a domain-specific modeling language (DSML),
other artifacts such as additional models, source code and test scripts can be produced
via a chain of transformations. The initial model is typically written at a conveniently
high level of abstraction, allowing the user to reason about complex system behavior in
an intuitive way. The model transformations are supposed to preserve the correctness of
the initial model, thereby realising a framework where the generated artifacts are correct
by construction. A question that naturally arises for model-to-code transformations is
how to guarantee that functional properties of the input models are preserved in the
generated code [84]. In particular, this requires semantic conformance between the model
and the generated code. For models in the area of safety-critical concurrent systems,
the main complication to guarantee this equivalence involves the potential of threads to
non-deterministically interact with each other.

66 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

Specifically, when variables are shared among multiple threads, the absence of race
conditions is crucial to guarantee that no undesired updates of those variables can be
performed. This relates to the notion of atomicity of the instructions executed by the
threads. For instance, if two threads both increment the value of a variable x by one,
then it is ensured that the final value of x equals the initial value plus two only when
each of those increments can be performed atomically. Achieving atomicity of program
instructions can be done using various techniques, such as locks, semaphores, mutexes, or
CPU instructions such as compare-and-swap.

Also in modeling languages atomicity is an important concept, to simplify the reasoning
about program instructions by abstracting away the atomicity implementation details.
Hence, an important requirement for model-to-code transformations is that the atomicity
of the statements in the modeling language is preserved in the code. A conceptual solution
would be to map each statement to an atomic block in the implementation language.
Strictly speaking, a block of instructions is atomic if during its execution no instruction
of another thread is allowed to be executed. However, such a definition is too strong for
practical purposes, since it excludes the possibility for threads to run truly concurrently in
cases when they access different variables, and therefore do not interfere with each other.
For this reason, it is usually replaced with weaker notions that still ensure non-interference.
One such version, sometimes called serializability [21], allows instruction blocks to be
executed concurrently as long as their individual results are not affected by the other
blocks.

In this chapter, we demonstrate how one can establish that a model-to-code trans-
formation transforms atomic statements in modeling languages to blocks of program
instructions that are serializable. To illustrate this, we focus on the DSML presented in
Chapter 2, i.e., Simple Language of Communicating Objects (slco), on the one hand, and
the Java programming language on the other hand. It should be stressed, though, that our
approach is suitable for any combination of a modern imperative programming language
with concurrency and a modeling language that is, like slco, based on state machines
that can be placed in parallel composition, and can change state by firing transitions with
atomic statements (for instance, UML state machines).

The solution in this chapter, as a first step towards having completely verified generic
code, addresses the challenge on the preservation of the atomicity property discussed in
Chapter 3.

Contributions. First, we discuss how we have implemented, specified, and verified
a protection mechanism to access shared variables in such a way that the code blocks
implementing atomic DSML statements are guaranteed to be serializable. This generic
mechanism is used in our framework to automatically transform slco models into multi-
threaded Java code, but the solution is general enough to be used in other model-to-code
transformations as well.

The mechanism employs a fine-grained ordered-locking approach. A coarse-grained
approach tends to negatively impact the performance of multi-threaded software, while a
lock-free approach, in particular using atomic instructions such as compare-and-swap, is
necessarily restricted to work only for statements that involve only a single shared variable.

Second, we show the feasibility to verify the atomicity of generic statements by focusing
on the slco assignment statement. We formally prove its implementation against a
specification of non-interference using the VeriFast tool [68]. Being based on separation
logic [86], VeriFast is suitable to deal with aliasing and concurrency in Java, as well

5.2. Implementing SLCO Atomicity 67

as with race conditions by using the concept of ownership of shared resources between
multi-threaded programs.

Third, we introduce a wrapper class pattern to perform modular verification. With
the wrapper class, it is possible to encapsulate data structures that are used in the code,
but are not subjected to verification (for instance, because they have already been verified
at an earlier stage possibly using a different tool).

In addition to the three contributions mentioned above, we also discuss how we can
automatically prove that our mechanism to ensure the atomicity of statements does not
introduce, what we call, lock-deadlocks. A lock-deadlock occurs when each thread in a
set S is blocked trying to acquire a lock which is held by another thread in S. Since
the methods involved in the mechanism are the only ones which manipulate locks, the
mechanism being free of lock-deadlocks implies that our model-to-code transformation
always produces programs that are lock-deadlock free. Lock-deadlock free is informally
ensured by the assumption that the locks are always acquired in a certain fixed order.
Using the implementation in VeriFast [64] of several modular verification techniques [64,76],
we are able to formally specify this requirement in the contracts of the relevant methods
and to verify in a modular way that deadlocks are not introduced.

As an added value, we prove that in our generated programs there is no need for
reentrant locks. This allows us to simplify the formal specification of the locks used in our
mechanism. In [117], our verification already relied on this observation, but the current
specification formally ensures adherence to it.

The remainder of the chapter is structured as follows. Section 5.2 describes the
implementation of atomicity of slco statements in Java, as well as the implementation
of the generic wrapper class. In Section 5.3, we demonstrate how to specify and verify
the Java implementation with regard to the atomicity property. Section 5.4 contains the
specification and verification of the deadlock and reentrance avoidance. Related work is
discussed in Section 5.5, and Section 5.6 contains our conclusions and a discussion about
future work.

5.2 Implementing SLCO Atomicity
In this section, we consider atomicity of slco statements; we provide a semantically com-
parable form of non-interference called serializability [21] for the Java blocks implementing
those statements. Furthermore, to facilitate the transformation of slco statements to
Java code, specifically to handle accessing shared variables, we introduce the generic data
structure SharedVariableList.

In our model-to-code transformation, each slco statement s in a state machine M
is transformed into a block of Java instructions � = s0; s1; : : : ; sn to be executed by a
thread tM . Strictly speaking, preserving atomicity of s in � means that no instruction
s0 of any thread t 6= tM is allowed to be executed between the beginning and end of the
execution of �.

However, implementing atomicity in this strict sense is undesirable when constructing
multi-threaded software, since it disallows true parallelism. That is why we replace this
strong atomicity requirement with serializability. Serializability guarantees that for any
concurrent execution of Java blocks (corresponding to an atomic slco statement) there
exists a sequential execution of those blocks that is indistinguishable from the concurrent

68 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

execution, in terms of the final effect on the global system state. More explicitly, let �
and �0 be two different instruction blocks to be executed by different threads tM , t0M . Let
q0 be a global state in the Java model in which both � and �0 can start a concurrent
execution and let q1 be a state in which the system ends up after the execution of both �
and �0. Then, q1 also is obtained after sequential execution of the sequence ��0 or �0�.
Hence, we may reason about their execution as if � was first completely executed before
�0 was started, or vice versa. (Note that this also covers the case when � may prevent
the execution of �0 or vice versa.) The extension of the concept of serializability to an
arbitrary number of instruction blocks �i is straightforward.

The state of a system is determined by the values of its variables. In slco, statements
may access variables shared by multiple state machines. Therefore, in the corresponding
Java code, multiple threads may access the same shared variables. In order to realize
serializability in such a setting, it must be ensured that an instruction s0 of some thread
t cannot affect the variables accessed by the instructions in a block � of thread tM 6= t
running concurrently.

The way in which shared variables are protected has a significant impact on the overall
performance of concurrent programs. For example, using one single global lock to protect
a list frequently accessed by several threads is likely to scale much worse than when each
element in that list is individually lockable.

slco statements may require access to just a subset of the shared variables of an object.
Therefore, each element in the list of shared variables is assigned its own lock for read and
write access. This gives a better performance than using a single lock for the complete list.
In this way we achieve serializability, as shown in Section 5.3.2.

Individual locking may introduce deadlocks. We use the technique of ordered locking
[57] to prevent them. The ordered locking mechanism guarantees that when multiple
threads compete over a set of variables, one thread is always able to acquire access to all
of them. Of course, other threads requiring access to different shared variables are able to
access these concurrently.

Note that the locks can be released in an arbitrary order. Obviously there is no
deadlock during the releasing since at least one method - namely, unlockV is active.
After the locks are released we again have the situation in which multiple threads compete
for the locks in a fixed order.

Our synchronization mechanism for shared variables is shown in Listing 5.1. The
SharedVariableList at line 2, as a wrapper class, is introduced to abstract away
how the list of shared variables is implemented. It can be used to encapsulate Java data
structures. The methods lockV at lines 4-8 and unlockV at lines 9-13 are used to
acquire and release each lock of the shared variables in the list.

Listing 5.1: Implementation of class Statement
1 public abstract class Statement {
2 protected SharedVariableList variablesList;
3 ...
4 public void lockV() {
5 for (int i = 0; i < variablesList.size(); i++) {
6 variablesList.get(i).lock.lock();
7 }
8 }

5.2. Implementing SLCO Atomicity 69

9 public void unlockV() {
10 for (int i = 0; i < variablesList.size(); i++) {
11 variablesList.get(i).lock.unlock();
12 }
13 }
14 }

As already mentioned, to store shared variables, class SharedVariableList, as a
wrapper class, is introduced. Listing 5.2 shows its declaration. The concept of wrapper
classes is quite common in object-oriented programming and is a pattern in object-oriented
development, namely Decorator (also known as Wrapper) [105] . The wrapper class is used
to hide information of concrete Java data structures, which allows modular implementation,
specification and verification. Parts of the code that use SharedVariableList can
be verified without involving the data structure; in fact, it may not even have been
implemented yet. This helps to scale verification to larger programs, since the wrapper
class needs to be analyzed only once, instead of once per call. Finally, modifying the
implementation of the data structure encapsulated by the wrapper class never breaks
correctness of its callers. This allows for simultaneous development and verification of
code.

Listing 5.2: Declaration of class SharedVariableList
1 public final class SharedVariableList{
2 public SharedVariableList();
3 public int size();
4 public SharedVariable get(int index);
5 boolean add(SharedVariable e);
6 }

A SharedVariableList list contains all shared variables which are involved in the
same slco statement. Each shared variable is an instance of the class SharedVariable
which has three fields name, value and lock, as shown in Listing 5.3. The lock of each
shared variable can be acquired and released via lock() and unlock() methods of
Java class Lock, respectively.

Listing 5.3: Declaration of class SharedVariable
1 public class SharedVariable {
2 private String name;
3 private Object value;
4 protected Lock lock;
5 ...
6 }

The class Assignment as a subclass of class Statement (Listing 5.4) contains a
method called lockAndAssign that can be used to safely (preserving serializability)
assign a new value to a shared variable. The abstract method assign is implemented in
the subclass which is related to a concrete slco assignment. When a thread attempts to
execute the method assign, it will be delayed until all locks in the variablesList
of variables to be accessed by the assign method are not being used anymore by other
threads.

70 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

Listing 5.4: Implementation of class Assignment
1 public abstract class Assignment extends Statement {
2 ...
3 public abstract void assign();
4 public void lockAndAssign() {
5 lockV();
6 assign();
7 unlockV();
8 }
9 }

5.3 Specifying and Verifying SLCO Atomicity
In the previous section, we explained how the atomicity of slco statements can be
implemented using serializability. We can use separation logic in VeriFast to verify the
serializability, i.e., the fact that there is non-interference between different threads.

As described in Section 2.3, separation logic uses the principle of a minimal memory
footprint, meaning that a separation assertion describes a unique heap. For example,
the assertion o:f 7! a � o:g 7! b describes a heap consisting of exactly two entries. This
property together with the requirement that the heaps of two separate threads are disjoint,
makes it possible to give a natural ownership interpretation of a shared resource. If a
separation logic assertion P holds at some program location on a thread, we say that the
thread owns the part of the heap described by P at that location.

When a thread acquires a shared object, it claims the ownership of the state associated
with the variable; when releasing the variable, it must return the ownership of the
corresponding piece of state. At all stages, our use of separation logic ensures that each
piece of the heap is accessed by at most one thread. It thus becomes possible to reason
about concurrent programs in which ownership of a shared variable can be perceived to
transfer dynamically between threads. We achieve this dynamic transfer by associating
invariants to locks of shared objects. The invariant representing the environment of the
thread expresses the ownership of the shared variable.

By acquiring a lock, the verified program component also acquires the lock invariant
representing the heap that corresponds to the shared variables. The invariant ensures a
full permission to change the actual shared variables. By releasing the lock, the component
releases, together with the invariant, also the acquired ownerships. This is expressed by
the following rules for the lock and unlock operations

fempg v.lock() fIv(l)g (L)

fIv(l)g v.unlock() fempg (UL)
where Iv(l) is the invariant associated with lock l of variable v. Note that this rule is only
sound for non-reentrant locks.

The interpretation of correctness depends crucially on rules L and UL for the lock and
unlock operations. In rules L and UL invariant Iv(l) is of the form v 7! _, i.e., expresses
ownership of the variable v. By rule L, Iv(l) is guaranteed to hold after lock, i.e., in the
beginning of the protected code block. This means that the corresponding thread acquires

5.3. Specifying and Verifying SLCO Atomicity 71

the ownership of v. Similarly, at the end of the block, after unlock, the ownership of v is
released and the invariant Iv(l) is no longer guaranteed to hold. Let V be the list of shared
variables associated with the statement implemented in the block. By executing lock for
each variable in V , using a combination of the L and UL rules and the frame rule from
Section 2.3, an assertion IV is established which is the conjunction of the invariants Iv(l),
for all v 2 V . IV can be seen as an invariant of the list V which expresses ownership of all
variables in V by the thread. The concrete setting of our model transformation ensures
that no shared variable in V is acquired or released within the protected code block. This
is achieved by simply not using lock and unlock within the protected block, since these
are the only statements with which one can acquire or release ownership. Together with
the fact that invariant IV holds at the beginning and at the end of the block, this implies
non-interference since all variables are held exclusively by the thread during the execution
of the block.

VeriFast supports modular verification in the sense that each method is verified
separately. In this, each method relies on its environment to comply with the invariant.
This is checked during the verification when several threads are combined. In the following
sections, we specify and verify the atomicity of Java constructs corresponding with slco
statements using separation logic via VeriFast.

5.3.1 Class SharedVariableList Specification
The wrapper class SharedVariableList is specified in separation logic in a way that
is in fact independent of the Java programming language. In Listing 5.5, methods for
modifying and querying instances of the class SharedVariableList are provided, such
as size, add and get.

Listing 5.5: Specification of class SharedVariableList
1 final class SharedVariableList{
2 /*@ predicate List(list<SharedVariable> elements); @*/
3 public SharedVariableList();
4 //@ requires true;
5 //@ ensures List(nil);
6 public int size();
7 //@ requires [?f]List(?es);
8 //@ ensures [f]List(es) &*& result == length(es);
9 public SharedVariable get(int index);

10 //@ requires [?f]List(?es) &*& 0 <= index &*& index <
length(es);

11 //@ ensures [f]List(es) &*& result == nth(index, es);
12 boolean add(SharedVariable e);
13 //@ requires List(?es);
14 //@ ensures List(append(es, cons(e, nil))) &*& result;
15 }

We express the state of the sharedVariableList instances using a mathematical
list predefined in VeriFast as follows: The empty list is denoted by nil and a nonempty
list starting by an element h and a tail t is denoted by cons(h,t). In particular,
predicate List is an abstract predicate that provides an abstract representation of the

72 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

contents of the list of shared variables. More concretely, parameter elements is a
mathematical list containing the actual program variables that are stored in the list. The
actual implementation can be, for instance, a dynamic list or an array. Using the abstract
predicate we can hide such implementation details during the verification.

The pre- and postconditions form the contracts of the methods and they are denoted
by the keywords requires and ensures, respectively, like in lines 4-5 in Listing 5.5.
This contract of the constructor guarantees that an object is created corresponding to an
empty list, regardless of the precondition.

The specification of size in lines 7 and 8 states that the method returns the length
of the list. Component assertions of pre- and postconditions are separated by the spatial
conjunction denoted by &*&. Both [?f] and [f] are fractional ownerships. The question
mark ? in front of a variable means that the matched value is bound to the variable
and all later occurrences of that variable in the contract refer to this matched value. In
our case the value of the fractional permission f in the precondition in line 7 must be
the same as the one in the postcondition in line 8. Hence, the precondition in line 7
[?f]List(?es) expresses both that a fractional ownership with fraction f is required
for the shared variable list corresponding with the mathematical list es, and records f
and es. The postcondition specifies that the method returns the ownership of es to the
caller with the same fraction f and the result that is returned by size is the length of
es. result is a reserved variable name representing the return value of the method.

The precondition of get (line 10) requires that a valid element index is provided as
an input parameter. The postcondition expresses that the element at position index in
list es is returned using the mathematical function nth.

Unlike for other methods, the precondition of add (line 13) requires full ownership of
the list es. As a result, the caller who owns es is allowed to insert an element into the
list. Finally the method add returns the ownership of a new list that combines the list
es with the newly inserted element e using the function append.

5.3.2 Class Statement Specification
The specification of class Statement is shown in Listing 5.6. The predicate constructor
lock_inv in line 2 is essential for the preservation of serializability. It defines the lock
invariant Iv(l) associated with the lock of a variable v passed as a parameter. The assertion
v.value |->_ asserts the full ownership of v:value. The underscore ’_’ denotes an
arbitrary value.

The recursive predicates locks and invariants in lines 3-4 and 5-6, respectively, are
used to specify dynamic data structures with unbounded-size like Lists. The recursive
predicates are defined in VeriFast as ones that invoke themselves. More specifically,
the body of each predicate is a conditional assertion. If vs is null (the base case
of the induction) then the value of predicate locks is true (line 4); otherwise, the
inductive step asserts that the lock of the first element of the list vs, head(vs) is
partially owned. This is given by return [_]head(vs).lock |-> ?lock, where
[_] denotes an unspecified fraction. Besides that, invariant lock_inv(head(vs)) is
associated with the lock of the first element, via the predicate ReentrantLock. Predicate
ReentrantLock is defined by VeriFast as a specification of the ReentrantLock class,
as shown in Listing 5.7. In a similar fashion, the recursive predicate invariants states
that a conjunction of invariants corresponding to the (locks of the) variables in list vs is

5.3. Specifying and Verifying SLCO Atomicity 73

recursively built. As mentioned above, for each variable the corresponding invariant is
given by the specification lock_inv(head(vs)).

Predicate Statement_lock() is actually defined in Listing 5.8 and denotes that
the Statement object is in a valid state corresponding to an abstract value given by the
mathematical object list of shared variable objects vs. The body of method lockV needs
to establish the above mentioned invariant IV of each variable in list vs, which is expressed
by the postcondition invariants(vs). The postcondition invariants(vs) is also
one part of the precondition in the method unlockV. By calling the method unlockV,
invariant Iv of each variable in list vs is not guaranteed to hold anymore. After that,
other threads can acquire the ownership of those variables through the method lockV.

Listing 5.6: Abstract specifications of class Statement
1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = v.value |-> _

;
3 predicate locks(list<SharedVariable> vs;) =
4 vs == nil ? true : [_]head(vs).lock |-> ?lock &*& [_]lock.

ReentrantLock(lock_inv(head(vs))) &*& locks(tail(vs));
5 predicate invariants(list<SharedVariable> vs;) =
6 vs == nil ? true : lock_inv(head(vs))() &*& invariants(

tail(vs));
7 @*/
8 class Statement {
9 //@ predicate Statement_lock(list<SharedVariable> vs);

10 void lockV();
11 //@ requires [_]Statement_lock(?vs);
12 //@ ensures invariants(vs);
13 void unlockV();
14 //@ requires [_]Statement_lock(?vs) &*& invariants(vs);
15 //@ ensures true;
16 }

The specification of class ReentrantLock provided by VeriFast is shown in Listing 5.7.
The abstract predicate ReentrantLock at line 2 associates the invariant inv with the
lock. The precondition for the lock creation (the constructor of class ReentrantLock),
is that the invariant inv holds, as shown in line 5. The postcondition at line 6 ensures
the created lock is associated with its invariant inv. The contract of the lock method is
defined at lines 9-10. Predicate ReentrantLock in the precondition of method lock
expresses the fact that the lock is available with an unspecified fraction. The postcondition
of the method lock states that the invariant inv associated with the lock holds at this
point. The specification of unlock is a mirror image of the contract of lock in the sense
that basically the postcondition of the former is a precondition of the latter. By calling
the method unlock at line 12, the invariant inv of a shared variable is not guaranteed
to hold anymore. After that, other threads can acquire the ownership of this variable
through the method lock at line 8.

Listing 5.7: Abstract specifications of class ReentrantLock to preserve atomicity
1 public class ReentrantLock{

74 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

2 //@ predicate ReentrantLock(predicate() inv);
3

4 public ReentrantLock()
5 //@ requires exists<predicate()>(?inv) &*& inv();
6 //@ ensures [_]ReentrantLock(inv);
7

8 public void lock();
9 //@ requires [_]ReentrantLock(?inv);

10 //@ ensures inv();
11

12 public void unlock();
13 //@ requires [_]ReentrantLock(?inv) &*& inv();
14 //@ ensures true;
15 }

5.3.3 Class Statement Verification
Above we gave the formal specification of the class Statement in an abstract, mathe-
matically precise and implementation-independent way. To verify the implementation of
class Statement against its specification, the specification of SharedVariableList
in Listing 5.5 is a critical factor. Additional predicates and annotations are needed to
verify the implementation of class Statement, as shown in Listing 5.8.

Listing 5.8: Verification annotations for class Statement
1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = ...
3 predicate locks(list<SharedVariable> vs;) = ...
4 predicate invariants(list<SharedVariable> vs;) = ...
5 @*/
6 class Statement {
7 SharedVariableList variablesList;
8 //@ predicate Statement_lock(list<SharedVariable> vs) =

this.variablesList |-> ?a &*& a.List(vs) &*& locks(vs);
9 void lockV()

10 //@ requires [_]Statement_lock(?vs);
11 //@ ensures invariants(vs);
12 {
13 for (int i = 0; i < variablesList.size(); i++)
14 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs)

&*& [_]locks(drop(i,vs)) &*& i >= 0 &*& i <= length(
vs);

15 //@ ensures invariants(drop(old_i, vs));
16 {
17 //@ drop_n_plus_one(i,vs);
18 variablesList.get(i).lock.lock();
19 }
20 }

5.3. Specifying and Verifying SLCO Atomicity 75

21 void unlockV()
22 //@ requires [_]Statement_lock(?vs) &*& invariants(vs);
23 //@ ensures true;
24 {
25 for (int i = 0; i < variablesList.size(); i++)
26 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs)

&*& [_]locks(drop(i,vs)) &*& invariants(drop(i,vs))
&*& i >= 0 &*& i <= length(vs);

27 //@ ensures true;
28 {
29 //@ drop_n_plus_one(i,vs);
30 variablesList.get(i).lock.unlock();
31 }
32 }
33 }

The part in lines 1-5 in Listing 5.8 is identical to lines 1-7 in the specification Listing 5.6.
Line 8 in Listing 5.8 contains the definition of predicate Statement_lock which in
Listing 5.6 is only specified. The part this.variablesList |-> ?a states that field
variablesList is defined. The last two conjuncts a.List(vs) &*& locks(vs)
relate variablesList with the variable vs of type list and moreover the variables
in vs are connected to their corresponding locks. The contract of method lockV in lines
10-11 is the same as the one in Listing 5.6.

To obtain the lock of each element in the SharedVariableList, we use a for loop
in line 13. Besides loop invariants, VeriFast supports also loop verification by specifying
a loop contract consisting of a precondition and a postcondition [100]. Then the loop is
verified as if it were written using a local recursive function. The contract at lines 14-15
specifies the permissions used only by a specific recursive call (i.e., corresponding to a
specific value of the loop counter i). More specifically, the precondition in line 14 matches
variablesList with variable b ([_]variablesList |-> ?b), relates b to variable
vs ([_]b.List(vs)), associates the variables from the i-th to the vs.length-1-
th in list vs ([_]locks(drop(i,vs))) to their locks, and finally limits the range
of the counter i (i >= 0 &*& i <= length(vs)). The segment vs from i to
vs.length-1 is obtained using the built-in function on lists drop. In a similar way in
the postcondition in line 15, the list tail starting with old_i is obtained as an argument
of the predicate invariants. Variable old_i refers to the value of the variable i at the
start of the virtual function call (loop body). After the loop termination, old_i equals
0. This implies the validity of the conjunction of all lock invariants and consequently the
ownership of all variables in vs.

Lemma functions are used to help VeriFast transform one assertion to another. The
contract of a lemma function corresponds to a theorem, its body to a proof, and a call
to an application of the theorem. Lemma function drop_n_plus_one(i,vs) in line
17 tells the verifier that drop(n,vs) is equivalent to the concatenation of the element
nth(n,vs) with the list drop(n+1,vs).

The detailed annotation of unlockV (lines 21-32) uses the same concepts as the
annotation of lockV, therefore we do not discuss unlockV explicitly. It expresses that
in each iteration the loop invariant shrinks instead of grows with the addition of a new

76 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

conjunct, i.e., invariant associated with a lock.
The specification and annotation in the current section is sufficient to prove that

predicate invariants, which corresponds to IV , holds at the beginning and at the end
of the block implementing the statements. In Listing 5.4 this means that invariants
holds immediately after lockV in line 5 and immediately before the unlockV in line 7.
The validity of invariants ensures ownership of the variables in sharedVariables.
As discussed above, by construction of our transformation (i.e., by not using lock and
unlock within the protected block of the statement translation) we ensure that the block
does not release this ownership. For example, in Listing 5.4 methods assign in line 6, as
well as the implementations of all other types of slco statements, satisfies this property.
VeriFast is able to verify that all relevant variables are held by the thread executing
the method corresponding to the implementation of the slco statement. This implies
serializability of the programs as can be seen from the following arguments.

Consider two instruction blocks � and �0 which both implement an slco statement.
Hence, they both contain a lock protected code block. We show that they are serializable.
Let V and V 0 be the set of variables accessed by � and �0, respectively. Consider first the
case when V \ V 0 6= ;. Suppose that � first acquires the ownership of all variables in V .
Then �0 must wait until those variables are released. If there is some prefix �00 of �0 which
has been executed before � acquired the variables in V , then �0 could have modified only
variables which are not in V . So, this prefix could have been executed after � terminated
and therefore the sequence ��0 will produce the same variable changes, i.e., the same state
as the concurrent execution of � and �0.

A similar argument can be used for the case V \ V 0 = ;. In this case the individual
statements in � and �0 are independent of one another and can be permuted in an arbitrary
order. The set of possible sequences includes both ��0 and �0� and they confluently lead
to the same end state.

5.4 Specifying and Verifying Lock-Deadlock Freedom
In this section, we show how in addition to specifying and verifying atomicity preservation,
we can also verify that programs generated by our model-to-code transformation are
guaranteed to be free of lock-deadlocks. We first discuss the theory behind the approach
and after that we present the concrete specification and verification in VeriFast.

5.4.1 Lock-deadlock Freedom for Generated Code
Code generation from models should preserve deadlock freedom: if the model is deadlock
free, the generated code should be deadlock free. This places demands on the generic code
and on the translation.

Here, we consider an important category of deadlocks: lock-deadlock - a set of threads
is lock-deadlocked if all threads in the set are blocked because they try to acquire locks
that are already acquired by some thread in the set [64,76].

In the spirit of model-driven development we treat lock-deadlock freedom as a property
to be ensured by the code generation rather than having to establish this for each specific
instance of generated code.

A well-established way to obtain lock-deadlock freedom is putting an ordering on

5.4. Specifying and Verifying Lock-Deadlock Freedom 77

acquiring locks. To achieve lock ordering at the level of code generation we put requirements
on the order of acquiring locks by means of the specification of the lock, the lock API.
This specification is such that any code (generated or obtained otherwise) that satisfies
the precondition of the lock method of this API is lock-deadlock free. (Note that here the
approach is slco independent and not Java specific.) We show how these requirements
are met by the generic code and the way it is used in the translation from slco to Java.

Conditions for Lock-deadlock Freedom Let the locks be ordered by an anti-reflexive
partial order <. In the API specification of the lock, the auxiliary variable lockset(T)
represents the locks acquired by thread T , which is maintained by the methods lock()
and unlock(). The following assumption is a cornerstone of the lock-deadlock avoidance
approach:

Assumption 1 (Lock Acquire Precondition) . The precondition of method lock of
lock lck which is to be acquired implies that lck < l for any l in lockset(T), where T is
the current thread.

Theorem 1 (Lock-deadlock freedom). Code adhering to the precondition of method lock
as in Assumption 1 is lock-deadlock free.

Proof. Suppose, by contradiction, that we have a lock-deadlock set S. Note that S is finite
and non-empty. Take a thread T1 from S. Then T1 is waiting for, say, lock l1. Since S is
a lock-deadlock set, there is a thread T2 in S holding l1. T2 is in S, so it is also waiting
for a lock, say l2. Since T2 has tried to acquire l2 by a call to the method lock, the
precondition applies (Assumption 1) and l1 > l2. Suppose T3 in S is holding l2, and it is
also waiting for a lock, say l3. With the same reasoning we find l2 > l3. Continuing this
we get an infinite chain l1 > l2 > � � � > ln > : : : All li are different, so we have an infinite
set of locks. As every lock in the chain has a thread in S that is waiting for it and every
thread is waiting for one lock, hence S is infinite. This is in contradiction with the fact
that S is finite.

Lock-deadlock Freedom for Java Code Generated from SLCOModels We show
that code as generated from slco specifications adheres to the precondition of method
lock as in Assumption 1 and hence is, by Theorem 1, lock-deadlock free.

In the following Lemma 2 we need the formal specification of method lockV of class
Statement in Listing 5.10.

Lemma 2. If the precondition of lockV of class Statement in Listing 5.10 is satisfied,
the generic code adheres to the precondition of method lock as in Assumption 1.

Proof. (sketch) The only place where lock is called in the generic code is in the method
lockV. There lock methods are called in the designated order (since the precondition
implies the correct ordering of variables/locks) and hence the locks will be acquired in the
same correct descending order. The only possible problem is the first lock to be acquired
by lockV, if it is greater than some of the locks in lockset(T). As the only place where
lock is called in the generic code is in the method lockV and the precondition of lockV

78 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

requires that all locks that are acquired by lockV are below all locks in lockV, the
problem can be avoided.

In Section 5.4.2, using VeriFast we formally prove that the implementation of method
lockV of class Statement satisfies its specification in Listing 5.10.

Lemma 3. The generated code adheres to the specification of class Statement.

Proof. Inspecting the translator shows that the methods of instance s of class Statement
are called only in the template method lockAndAssign of class Assignment as shown
in Listing 5.4. We give a pseudo-formal annotation, where V is the set of locks that
correspond to the variables of s.

{ lockset(T) == ; }
lockV();

{ lockset(T) == V }
assign();

{ lockset(T) == V }
unlockV();

{ lockset(T) == ; }

Method assign is implemented in the translation according to the specific assignment
statement in the slco model. Inspecting the translator shows that it will not call lock,
hence keeping the lockset invariant. To satisfy the above annotation it is needed that
the precondition of assign is implied by the postcondition of lockV, and that the
postcondition of assign implies the precondition of unlockV, which can be shown
straightforwardly by inspecting the code of the translator.

Lemmas 3 and 2 and Theorem 1 imply lock-deadlock freedom immediately for the
generated code.

5.4.2 Formal Specification and Verification of Lock-Deadlock
Freedom in VeriFast

To implement the theoretical considerations from the previous section we use the feature
of VeriFast that ensures lock-deadlock freedom based on ordered lock acquisition [64].
However, the VeriFast specification of this feature is only defined for a lock struct in C.
To this end we first need to adapt this specification to the one for locks in Java.

5.4.2.1 Class ReentrantLock Specification

Besides the freedom of deadlocks, the specification for locks in Java also needs to guar-
antee absence of lock reentrance. This is because the locks in our mechanism are never
reacquired, i.e., a thread never attempts to acquire the lock again while holding it. The
requirement for absence of lock reentrance also simplifies the formal specification of Java
class ReentrantLock. The specification of this class is given in Listing 5.9.

Listing 5.9: Abstract specifications of class ReentrantLock to avoid deadlock
1 //@ predicate lockset(int threadId, list<ReentrantLock>

lockIds);

5.4. Specifying and Verifying Lock-Deadlock Freedom 79

2 public class ReentrantLock {
3 //@ predicate ReentrantLock(predicate() inv);
4 //@ predicate ReentrantLocked(predicate() inv, int

threadId, real frac);
5 public ReentrantLock()
6 //@ requires create_lock_ghost_args(?inv, ?ls, ?us) &*&

inv() &*& lock_all_below_all(ls, us) == true;
7 //@ ensures [_]ReentrantLock(inv) &*& lock_above_all(this,

ls) == true &*& lock_below_all(this, us) == true;
8

9 public void lock();
10 //@ requires [?f]ReentrantLock(?inv) &*& lockset(

currentThread, ?locks) &*& lock_below_top(this, locks)
== true;

11 //@ ensures ReentrantLocked(inv, currentThread, f) &*& inv
() &*& lockset(currentThread, cons(this, locks));

12

13 public void unlock();
14 //@ requires ReentrantLocked(?inv, currentThread, ?f) &*&

inv() &*& lockset(currentThread, ?locks);
15 //@ ensures [f]ReentrantLock(inv) &*& lockset(

currentThread, remove(this, locks));
16 }

The abstract predicate lockset in line 1 is defined by the client that uses the
specification. It states that the ReentrantLock list lockIds contains the locks held
by thread threadId. The abstract predicate ReentrantLock associates the invariant
inv with the lock. Predicate ReentrantLocked denotes that the lock is associated
with invariant inv and it is held (owned) by threadId with fraction f.

The contract of the constructor ReentrantLock at lines 6-7 associates the created
lock with its invariant inv and places the lock to be created in the partial ordering above
the locks in set ls, i.e., the lower bound of the lock, and below the locks in set us, i.e.,
the upper bound of the lock. The precondition for the lock creation requires that inv
holds and also that the lower and upper bounds of the lock are consistent, i.e., that the
locks in ls are all below all locks in us, as shown at line 6.

As discussed in Section 5.4.1, the assumption to acquire a lock lck for a thread T
is that lck < l for any lock l in lockset(T), where lockset(T) is a set of locks held by T .
Therefore, the precondition of method lock at line 10 needs to express the decreasing
order of lock acquisition, i.e., the requirement that the lock needs to be below all locks
currently held by the current thread. This can be guaranteed by using the fixpoint function
lock_below_top(this, locks) in the precondition. Variable currentThread in
line 10 is a built-in variable in VeriFast to represent the current thread. Note that if
the lock is reacquired, it is already held by the current thread, i.e., included in locks,
therefore an error will be signaled by VeriFast. Hence, the specification also implies absence
of reentrance. Predicate ReentrantLock in the precondition expresses the fact that the
lock is available with fraction f. The postcondition states that the lock is owned (locked)
with fraction f, that the associated invariant holds at this point and that the lock is added

80 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

to the lockset held by the current thread.
The specification of unlock is a mirror image of the contract of lock in the sense

that basically the postcondition of the former is a precondition of the latter and vice versa.

5.4.2.2 Class Statement Specification

The updated specification of class Statement is shown in Listing 5.10. Predicates
lock_inv in line 2 and invariants in lines 5-6 are the same as in Listing 5.6. The
recursive predicate locks in lines 3-4 has an output parameter called ll that is a
ReentrantLock list associated with the SharedVariable list vs. The body of
locks is a conditional assertion. If vs is null then ll is null (line 4) too; otherwise,
the inductive step asserts that the lock of the first element of the list vs, i.e., head(vs),
is added at the head of ll denoted by ll == cons(lock, ll0). Besides that,
lock_above_all is a fixpoint function defined by VeriFast to ensure the level of lock
is above the level of each element in list ll0 which is the tail of ll. In a similar fashion,
the recursive predicate locked in lines 7-8 states that invariant lock_inv(head(vs))
is associated with the lock of the first element, via the predicate ReentrantLocked.
Predicate ReentrantLocked also states that thread t is the current thread holding the
lock of the first element. The semicolon (;) in line 7 in the parameter list of predicate
locked is used to declare locked as a precise predicate [68], which enables VeriFast’s
logic for automatically opening and closing this predicate.

The lemma function extend_upper_bound_at_top in lines 9-14 states that if the
lock list ys is an upper bound of list xs, i.e., the level of each lock in list xs is below
the level of each lock in list ys, and the level of lock x is above the level of locks in list
xs, then we can add x at the top of ys and the new list cons(x,ys) will remain an
upper bound of xs. The lemma_auto function is another type of lemma which can be
implicitly called by VeriFast. locks_inv() in lines 15-20 instructs VeriFast to always
replace the chunk [?f]locks(?vs, ?ls) with [f]locks(vs, ls) &*& vs !=
nil || ls == nil. (The lemma is proved by opening the predicate locks explicitly.)

Predicate Statement_lock() in line 23 is similar to the one defined in Listing 5.6
but has two parameters in its parameter list. The list of ReentrantLock objects ll is
used to extract the list of locks associated with shared variable objects vs.

The precondition of lockV referred to in Lemma 2 is given in line 25. The predicate
lockset states that the list levelList is a list of locks acquired so far by the current
thread. Predicate lock_all_below_all requires that levels of the locks to be acquired
in list ll are below the levels of the locks in levelList, i.e., the locks acquired so far
by the current thread.

The postcondition of method lockV implies the correctness of the annotation in the
proof of Lemma 3. It asserts that all variables in vs are locked by the current thread
and that consequently each element in list ll is added to the list levelList. VeriFast
requires that the order of lock acquisition in list levelList is descending. However, EGL
we used for defining the slco-to-Java transformation only supports a method that sorts the
locks in the list ll into ascending order. Therefore, the order of elements in list ll should
be reversed before appending the list ll to the list levelList. This is expressed by
the predicate lockset(currentThread,append(reverse(ll),levelList)) in
line 26. Actually our transformation ensures that the list of acquired locks levelList is
always empty at the precondition in line 25. So, the requirement that all locks in ll are

5.4. Specifying and Verifying Lock-Deadlock Freedom 81

below all locks in levelList is trivially satisfied.
The predicates lockset(currentThread,?levelList) and invariants(vs)

in the postcondition of the method lockV are also part of the precondition in the method
unlockV. By calling the method unlockV, invariant Iv of each variable in list vs is not
guaranteed to hold anymore and all locks in ll are also removed from the list levelList
as expressed by remove_all(ll,levelList).

Listing 5.10: Abstract specifications of class Statement to avoid deadlock
1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = v.value |-> _

;
3 predicate locks(list<SharedVariable> vs; list<ReentrantLock>

ll) =
4 vs == nil ? ll == nil : [_]head(vs).lock |-> ?lock &*& [_]

lock.ReentrantLock(lock_inv(head(vs))) &*& locks(tail(
vs), ?ll0) &*& ll == cons(lock,ll0) &*& lock_above_all(
lock,ll0) == true;

5 predicate invariants(list<SharedVariable> vs;) =
6 vs == nil ? true : lock_inv(head(vs))() &*& invariants(

tail(vs));
7 predicate locked(list<SharedVariable> vs, int t;) =
8 vs == nil ? true : [_]head(vs).lock |-> ?lock &*& lock.

ReentrantLocked(lock_inv(head(vs)), t, _) &*& locked(
tail(vs),t);

9 lemma void extend_upper_bound_at_top(ReentrantLock x, list<
ReentrantLock> xs, list<ReentrantLock> ys)

10 requires lock_all_below_all(xs, ys) == true &*&
lock_above_all(x,xs)== true;

11 ensures lock_all_below_all(xs, cons(x, ys)) == true;
12 {
13 switch (xs) { case nil: case cons(h, t):

extend_upper_bound_at_top(x, t, ys); }
14 }
15 lemma_auto void locks_inv()
16 requires [?f]locks(?vs, ?ls);
17 ensures [f]locks(vs, ls) &*& vs != nil || ls == nil;
18 {
19 open locks(vs, ls);
20 }
21 @*/
22 class Statement {
23 //@ predicate Statement_lock(list<SharedVariable> vs, list

<ReentrantLock> ll);
24 void lockV();
25 //@ requires [_]Statement_lock(?vs,?ll) &*& lockset(

currentThread,?levelList) &*& lock_all_below_all(ll,
levelsList) == true;

82 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

26 //@ ensures invariants(vs) &*& lockset(currentThread,
append(reverse(ll),levelList)) &*& locked(vs,
currentThread);

27

28 void unlockV();
29 //@ requires [_]Statement_lock(?vs,?ll) &*& invariants(vs)

&*& lockset(currentThread,?levelList) &*& locked(vs,
currentThread);

30 //@ ensures lockset(currentThread, remove_all(ll,levelList
));

31 }

5.4.2.3 Class Statement Verification

Above we provide the formal specification of the class Statement to avoid lock-deadlock
in an abstract and modular way. Here, we verify the implementation of this class, as
shown in Listing 5.11.

The definition of predicates in lines 2-7 in Listing 5.11 can be found in Listing 5.10 in
lines 2-20. Line 11 in Listing 5.11 shows the definition of predicate Statement_lock
in line 23 in Listing 5.10. It states that the field variablesList of class Statement
is defined (this.variablesList |-> ?a) and it is related with the mathematical
variable vs of type list (a.List(vs)). Moreover, the variables in vs are connected
to their corresponding locks which are stored in the list ll (locks(vs, ll)). The
precondition and postcondition of method lockV in lines 13-14 are the same as the ones
in lines 15-26 in Listing 5.10.

Similar to the contract of the for loop for proving atomicity in Listing 5.8, we in-
troduce the level of locks associated with variablesList into the contract of the
for loop in Listing 5.11 to prove lock-deadlock freedom. In the precondition, the con-
junct [_]locks(drop(i,vs),?ll1) associates the variables in vs from index i to
vs.length-1 with their locks and stores them in the list ll1. In a similar way in the
postcondition in line 18, the list tail starting with old_i is obtained as an argument of the
predicates invariants and locked. The predicate invariants in the postcondition
ensures the ownership of all variables in vs. The predicate locked in the postcondition
implies the validity of the postcondition of each lock.lock() of all locks associated
with vs. After the execution of the for loop, levelList1 is updated by appending the
lock list ll1 to it. To ensure that the locks in list levelList1 are placed in descending
order, the order of list ll1 is reversed before appending it to the list levelList1 via
reverse(ll1).

The switch statement in line 21 helps VeriFast to access the list levelList1 even
if it is null. The lemma function extend_upper_bound_at_top in line 23 works as
described in Listing 5.10.

Another lemma function provided by VeriFast append_assoc() states the associative
property of the append operator, which can append one list to another.

Instead of using true as the postcondition of method unlockV, the predicate
lockset(currentThread,remove_all(ll1,levelList1)) is used here for prov-
ing the atomicity property. It expresses that the locks of the variables in the list ll1
are removed from the list levelList1 after the execution of method unlockV. In each

5.4. Specifying and Verifying Lock-Deadlock Freedom 83

iteration of the for loop, the element that is equal to the head of list ll1 is removed from
levelList1. The lemma function remove_all_head(ll1,levelList1) tells Veri-
Fast that remove_all(tail(ll1),remove(head(ll1),levelList1)) is equiva-
lent to remove_all(ll1,levelList1). The fixpoint function remove(head(ll1),
levelList1) removes the element that is equal to the head of ll1 from levelList1
and remove_all(ll1,levelList1) removes all elements that occur in list ll1 from
levelList1.

Listing 5.11: Verification annotations for class Statement to avoid deadlock
1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = ...
3 predicate locks(list<SharedVariable> vs;) = ...
4 predicate invariants(list<SharedVariable> vs;) = ...
5 predicate locked(list<SharedVariable> vs, int t;) = ...
6 lemma void extend_upper_bound_at_top(ReentrantLock x, list<

ReentrantLock> xs, list<ReentrantLock> ys)...
7 lemma_auto void locks_inv()...
8 @*/
9 class Statement {

10 SharedVariableList variablesList;
11 //@ predicate Statement_lock(list<SharedVariable> vs,list<

ReentrantLock> ll) = this.variablesList |-> ?a &*& a !=
null &*& a.List(vs) &*& locks(vs,ll);

12 void lockV()
13 //@ requires [_]Statement_lock(?vs,?ll) &*& lockset(

currentThread,?levelsList) &*& lock_all_below_all(ll,
levelsList) == true;

14 //@ ensures invariants(vs) &*& lockset(currentThread,
append(reverse(ll),levelsList)) &*& locked(vs,
currentThread);

15 {
16 for (int i = 0; i < variablesList.size(); i++)
17 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs)

&*& [_]locks(drop(i,vs),?ll1) &*& i >= 0 &*& i <=
length(vs)&*& lockset(currentThread,?levelsList1) &*&

lock_all_below_all(ll1,levelsList1) == true;
18 //@ ensures invariants(drop(old_i, vs)) &*& lockset(

currentThread,append(reverse(ll1),levelsList1)) &*&
locked(drop(old_i, vs), currentThread);

19 {
20 //@ drop_n_plus_one(i,vs);
21 //@ switch (levelsList1) { case nil: case cons(h,t): }
22 //@open(locks(_,_));
23 //@extend_upper_bound_at_top(head(ll1), tail(ll1),

levelsList1);
24 //@append_assoc(reverse(tail(ll1)), {head(ll1)},

levelsList1);

84 Verifying Atomicity Preservation and Deadlock Freedom of Generic Code

25 variablesList.get(i).lock.lock();
26 }
27 }
28

29 void unlockV()
30 //@ requires [_]Statement_lock(?vs,?ll) &*& invariants(vs)

&*& lockset(currentThread,?levelList) &*& locked(vs,
currentThread);

31 //@ ensures lockset(currentThread, remove_all(ll,levelList
));

32 {
33 for (int i = 0; i < variablesList.size(); i++)
34 //@requires [_]variablesList |-> ?b &*& [_]b.List(vs)

&*& [_]locks(drop(i,vs),?ll1) &*& invariants(drop(i,
vs)) &*& i >= 0 &*& i <= length(vs) &*& lockset(
currentThread,?levelList1) &*& locked(drop(i,vs),
currentThread);

35 //@ ensures lockset(currentThread,remove_all(ll1,
levelList1));

36 {
37 //@ drop_n_plus_one(i,vs);
38 //@ open(locked(_,_));
39 //@ open(locks(_,_));
40 //@ remove_all_head(ll1, levelList1);
41 variablesList.get(i).lock.unlock();
42 }
43 }
44 }

5.5 Related Work
The detection of race condition violations in concurrent code using the lock mechanism
has been addressed by a number of type-based [43], static [9,42] and dynamic analysis [31]
tools. However, as shown in [48], even code free of race conditions may still contain
errors caused by intricate interaction of threads working on shared objects. Therefore,
stronger concepts of non-interference, i.e., atomicity, are needed. In [48], atomicity is
formally defined and an atomic type system was implemented to check it. The tool
DoubleChecker [21] checks for serializability of concurrent programs based on run-time
information about the dependences between threads. The above mentioned works check
the correctness of programs a posteriori, i.e., after they have been fully implemented. In
contrast, our approach statically verifies generic code to be used in the construction of
complete programs, which improve re-usability and scalability of the verification.

5.6. Conclusions and Future Work 85

5.6 Conclusions and Future Work
We have presented an approach for the verification of atomicity preservation in model-to-
code transformations based on separation logic using the tool VeriFast. We applied this
approach in the transformation from the domain-specific modeling language slco to Java.

To improve performance, we replaced the strong atomicity requirement of slco
with the semantically relaxed notion of serializability. This was implemented by a fine-
grained deadlock-free ordered locking mechanism allowing true parallelism. We stated
the serializability in terms of ownership of shared variables expressed by means of lock
invariants. Using VeriFast we verified non-interference in the Java code.

A strong aspect of our approach is that we can also formally prove that our mechanism
does not introduce so-called lock-deadlocks caused by mutual blocking of threads waiting
to acquire locks. We can do this in an automatic and modular fashion using VeriFast. The
same specification for showing absence of lock-deadlocks allows us to prove that the locks
are not reentrant. This simplifies the specification and formal reasoning.

Besides shared variables, slco also allows the use of channels for communication. The
communication channel is extracted as a model independent concept in our framework. In
the next chapter, we present a simple implementation of the slco asynchronous channel
as well as its verification.

As a next step, an interesting direction is to verify that the generic code involving both
locks and message-passing (channels) are free of deadlocks. Another valuable direction
for future work is to address the verification of model-specific code. This would allow us
to conclude that our transformation is guaranteed to produce correct code for any given
correct slco model.

Chapter 6

Modular Verification of SLCO Communication
Channels

Our approach to setting up the model-to-code transformation step is to distinguish between
model-generic parts and model-specific parts of slco models, as discussed in Chapter 3. An
example of a model-generic slco concept is the communication channel. In this chapter,
we demonstrate a simple implementation of slco asynchronous channels and also verify
the implementation in an modular way. In particular, we focus on how to formally specify
the behavior of the communication channel, such that modular verification of code using
such model independent concepts is possible. To this end, we use a parameterized modular
approach; we apply a novel proof schema that supports fine grained concurrency and
procedure-modularity, and use the separation logic based tool VeriFast. Our results show
that such tool-assisted formal verification can be a viable addition to traditional techniques,
supporting object orientation, concurrency via threads, and parameterized verification.

6.1 Introduction
Our approach to implement and verify model-to-code transformations relies on identifying
the model-generic parts, as mentioned in Chapter 3. The model-generic concepts can
be transformed to Java once, and from that moment on can be referred to in all code
generated from specific slco models. An example of a model-generic aspect of slco
models is the fine-grained mechanism for preserving atomicity of slco statements in Java
implementations. This mechanism is generic in the way that it is applicable to all slco
statements. In Chapter 5, we provided its generic specification based on separation logic
and verified it using the verification tool VeriFast. In this chapter, we investigate another
example of model-generic parts of slco models, i.e., the communication channel. This
concept is generic in the sense that it is reused in the translation of all specific slco
models consisting of objects that communicate with each other through channels.

As described in Chapter 2, slco channels are used for communication between slco
objects. In particular, each object is described in terms of a finite number of concurrently
operating state machines that can share variables. State machines in different objects

88 Modular Verification of SLCO Communication Channels

communicate with each other through channels. After a chain of transformations of slco
models [41], in which incrementally more concrete information about the specified system
can be added, multi-threaded Java code can be generated based on the last slco model
as shown in Chapter 4. There each slco state machine is mapped to its own thread.
Channels can be considered as shared data structures between concurrent threads in the
Java implementation.

slco has a coarse granularity that supports reasoning about concurrency at a convenient
high level of abstraction. On the other hand, the generated Java code implements
concurrency through multi-threading, with a level of granularity that is much more fine-
grained. For instance, synchronization of operations on channels shared between concurrent
threads can be achieved via fine-grained internal mechanisms instead of coarse-grained
external ones. This means that each operation acquires and releases access to multiple
critical regions (CR) during its execution, instead of following a coarse-grained approach in
which the complete operation is executed in one big critical region. This approach can offer
better performance [67], which facilitates the development of correct, well-performing,
complex software.

However, the code generation step is challenging to implement, since the transformation
from coarse to fine-grained concurrency needs to be done in a way that correct and well-
performing software is generated. Moreover, our goal is to verify the framework from
slco models to Java code in a modular way, which in turn requires modularly specifying
channel operations that perform fine-grained internal synchronization. In particular, we
focus on procedure-modularity [67], i.e, each group of procedures (or operations) that
cooperate to implement the slco channel construct can be verified separately, again
under a well-defined, concise set of assumptions on its environment that performs proper
abstraction over implementation aspects. However, fully specifying operations that perform
fine-grained internal synchronization in a modular way is still a hard and open problem [67].
Furthermore, proving correctness of a framework that produces programs from models is
fundamentally more complex than verifying an individual program [84].

In view of these observations, we distinguish the model-generic part and the model-
specific part of asynchronous channels for slco models and then present the model-generic
part as one part of generic code in the framework that supports the transformation from
slco models to Java code. By making the distinction, the implementation of the model-
generic part of slco channels can be updated without affecting the overall transformation
machinery. This makes it possible to have different implementations of slco asynchronous
channels, as discussed in Chapter 3. In addition to this, the complexity of proving the
correctness of a channel implementation can be lowered. Generic code for implementing
model-generic parts of slco channels can largely be treated as any other program, apart
from the fact that it raises new concerns regarding the larger program context in which
code constructs can be placed; these concerns are covered in this chapter. As a result, the
remaining proof obligations for the transformation as a whole can be simplified; once we
turn our attention to the specific code, we can directly use the specifications of the generic
code constructs.

Compared to the implementation of slco asynchronous channels presented in Chapter 4,
the one presented in this chapter is simplified as it does not cover all features. For instance,
conditional receiving operations are not supported. The reason for this is to lower the
complexity of fully specifying and verifying the channel operations that perform fine-grained
internal synchronization in a modular way.

6.2. The Modular Specification Schema 89

Additionally, we introduce a new modular specification schema to specify the behavior
of modeling constructs in a setting where 1) fine-grained parallelism is used, and 2) the
environment is general, i.e., we do not need to know anything about the environment to
specify the constructs. Compared to [67], the schema presented in this chapter allows a
better abstraction from the implementation details of the methods being specified.

Finally, we demonstrate our approach by specifying and verifying the presented imple-
mentation of slco asynchronous channels. This shows the feasibility of the approach, but
also that judicious choices of implementation language, specification language, verification
approach and tooling are required.

The remainder of this chapter is structured as follows. In Section 6.2, the new modular
specification schema is described. In Section 6.3 we present the simplified implementation
of slco asynchronous channels and in Section 6.4 we demonstrate how to apply the schema
to specify and verify this simplified implementation, using VeriFast. Section 6.5 discusses
related work. Conclusions and directions for further research are given in Section 6.6.

6.2 The Modular Specification Schema
Our aim is to specify modeling constructs and verify the implementation of those con-
structs in a modular way, meaning that each construct and its implementation should
be independently specifiable and verifiable. The benefits of a modular approach are 1)
that it will scale better than a monolithic approach and 2) that once a construct has been
specified, we can abstract away its implementation details when verifying properties of the
system.

Each construct implemented in a modular way as a procedure needs to be verified
separately under a well-defined, concise set of assumptions on its environment that
performs proper abstraction over implementation aspects. Because of this, and the fine-
grained nature of the generic code, standard methods like the resource-invariant-based
(RI) method [82] proposed by Owicki and Gries do not suffice. The reason for this is that
the RI method in [82] requires auxiliary variable annotations that break the modularity
of each construct. In [67], a modular specification schema was proposed to solve this
problem. In this section, we introduce an improved version of this modular approach
which, compared to [67], provides a better abstraction from the implementation of the
verified method.

6.2.1 Verifying Methods with Fine-grained Parallelism
As already mentioned, the Java methods in our transformation framework implement
fine-grained parallelism via fine-grained internal synchronization. This means that each
method may acquire and release access to multiple CRs during its execution, instead of
following a coarse-grained approach in which the complete method is executed in one
big CR. As CRs tend to create performance bottlenecks in software, using multiple CRs
decreases the level of dependency between threads in a multi-threaded system, and thereby
increases the overall performance.

In order to verify methods with fine-grained parallelism, so-called ghost code must
be inserted as part of the annotations. To see how this mechanism of code insertion
works, we consider a method m belonging to a class C instantiated in an object o. We

90 Modular Verification of SLCO Communication Channels

want to give a specification of m in the form of a standard Hoare logic triple fPgo:mfQg.
Under fine-grained parallelism one cannot formulate P and Q in terms of the actual fields
determining the state of o. For instance, consider method send(msg;G) that sends a
message msg to a channel queue q (q is a field of C), as in Listing 6.1. At line 8, the piece
of code G given as a parameter to send is inserted.

Listing 6.1: A fine-grained send operation
1 class C
2 queue q
3 semaphore s
4 method send(msg,G)
5 begin
6 s.acquire()
7 q := q + msg
8 G
9 s.release()

10 end

In a concurrent setting, multiple threads may send messages to the queue of a single
instance of C like in the example in Listing 6.2. The || at line 2 is used as the parallel
execution operator between threads. We cannot write a specification of method send in
terms of field q, e.g., we cannot claim that once the call of send(a) at line 2 is finished,
the new content of q is q+a, where + indicates concatenation. This is because q may be
changed by the call to send(b) between the execution of send(a) at lines 9 (semaphore
release) and 10 (returning the control to the calling client program). This is analogous to
Owicki-Gries, where global variables altered by multiple modules cannot be used directly
to specify a module.1

To resolve this, ghost variables (also called logical or auxiliary variables) are added to
the program. Ghost variables are write-only, i.e., the instrumented program can change
them, but not read them. Hence, they do not change the control flow of the program and
are only auxiliary verification devices. Each ghost variable is owned by a particular process,
and only this process can potentially change its content. To illustrate the use of ghost
variables, let us assume that send is used by a client program as shown in Listing 6.2.

Listing 6.2: A client using the send method.
1 o := New C()
2 o.send(a) || o.send(b)

Suppose we want to prove that if in the beginning of the program len(q) = 0 holds,
where len gives the length of the queue, then at the end, len(q) = 2. We specify the
two instances of send by introducing ghost variables y and z to capture the local effect
on the length of q in the left and right method call, respectively. Resource invariant
IA � len(q) = y + z captures how these local effects relate to the global resource (A
is a tag which is associated with the resource [67]). Now we can specify send(a) with
fy = 0gsend(a)fy = 1g and send(b) with fz = 0gsend(b)fz = 1g. Finally, we define

1In the classical Owicki-Gries framework this is directly forbidden by the interplay of the syntactic rules
of the usage of the global variable and the side conditions of the axioms for CR and parallel composition.

6.2. The Modular Specification Schema 91

G � y := 1 for send(a) and G � z := 1 for send(b), to update y and z, respectively, at
line 8 in Listing 6.1 when send is executed.

With verification axioms similar to Owicki-Gries, it can be proved that these assertions
indeed confirm the correctness of the client property. In particular, the conjunction of the
postconditions of send(a) and send(b), and IA, i.e., y = 1 ^ z = 1 ^ len(q) = y + z,
implies the desired client postcondition len(q) = 2.

Passing corresponding ghost codes G to instances of m allows for abstraction and
parallelism, but it does not make the approach modular. Each context and/or property
likely requires different ghost variables, and hence different P , Q, IA, and G. Suppose
that we want to verify a property about the content of q using a function cnt mapping
the queue content to a set of messages. Specifically, we want to prove that if in the
beginning, cnt(q) = ;, then at the end, cnt(q) = fa;bg. In this case, our ghost variables
range over sets of messages, and the specifications must be adjusted accordingly, i.e.,
fy = ;gsend(a)fy = fagg, fz = ;gsend(b)fz = fbgg, IA � cnt(q) = y [z, and
G � y := fag and G � z := fbg for send(a) and send(b), respectively. Even if we had
a library of predicate sets and ghost code blocks, in general we would not be able to cover
all possible contexts in which the generic code, i.e., m, could be used.

Greater generality can be achieved by a schema along the lines of [67] in which P , Q,
IA, and G are parameters of the specification of m. The schema imposes some constraints
on these parameters which become proof obligations when verifying code involving m.
Under these constraints, m needs to be verified only once. For each new context, the client
only needs to verify that the constraints hold. We propose a new modular specification
schema (MSS) that allows further abstraction from the implementation details of m, by
supporting parameterization based on CRs. Unlike in [67], the semaphores that implement
the CR as well as the names of the fields that determine the state of the object (s and
q, resp., in the send example) remain absent from the specification. As a result one
retains the flexibility of the OO approach. For example, if the implementation of the CR
is changed such that locks are used instead of semaphores, the specification can remain
the same.

We proceed by giving the intuition behind the MSS. We first establish the relationships
between the parameters P , Q, IA, and G, that need to hold in order for the specification
to be correct. Later we lift these relationships to the level of the whole method m to
formulate the MSS.

Listing 6.3: A semaphore based implementation of a CR
1 {P}
2 s.acquire()
3 {IA(s) * P}
4 {O(v) * I(v) * P}
5 C
6 {O(post(v)) * I(v) * P}
7 G
8 {O(post(v)) * I(post(v)) * Q}
9 {IA(s) * Q}

10 s.release()
11 {Q}

92 Modular Verification of SLCO Communication Channels

Assume that the body of m consists of only a single CR implemented by using
semaphore s. The CR is of the form s.acquire() C s.release() as given in
Listing 6.3. Without loss of generality, let us assume that the CR protects a single field f
of an instance o of class C. Field f can be changed only within the CR.

When establishing the relationships, the separating conjunction operator � introduced
in Section 2.3 is used. We are guided by the correctness requirements for the annotation
of Listing 6.3 in the familiar Hoare logic/Owicki-Gries style. The validity of P and Q
at lines 1 and 11, respectively, implies that IA(s) � P and IA(s) �Q hold at lines 3 and
9, respectively (we write IA(s) instead of just IA to emphasize that it is associated with
s). This is analogous to the proof rule for the CR in Owicki-Gries, which follows from
the rules below (for acquire and release methods of a semaphore combined with the
frame rule)

fempg s.acquire() fIA(s)g (SA)

fIA(s)g s.release() fempg (SR)

and the fact that P and Q do not refer to s and hence only involve parts of the heap
disjoint from the parts affected by acquire and release.

To capture the environment constraints, next to ghost variables, IA(s) may also depend
on o.f. To avoid directly referring to f, we introduce a so-called payload invariant I,
parameterized with a ghost variable v, thereby making the approach modular. In the
example of Listing 6.2, IA(s) � len(q) = y + z would be substituted by I(v) � len(v) =
y+ z. To link the actual field f with its ghost counterpart v we use predicate O(v) (for the
earlier send example, we could define O(v) � q = v). O(v) is an abstract predicate local
to o that is not visible for the client. By defining IA(s) = 9v:O(v) � I(v), we circumvent
the need to refer to o.f in the client invariant.

Line 4 in Listing 6.3 is obtained by substituting O(v) � I(v) for IA(s) at line 3. Since C
affects only actual variables, P holds also in the postcondition of C at line 6. However, since
the actual variables have changed while ghost variable v remains the same, predicate O
holds only for an adjusted value of v given by post(v). In our example, post(v) � len(v)+1.
G only affects y and z, so after G, O(post(v)) remains valid. So, in order to recover
the invariant IA, G at line 7 should be chosen such that it modifies the ghost variables
occurring in I(v) and P in such a way that I(post(v)) becomes true and P is transformed
to Q (line 8). Proving that G indeed has this property remains a proof obligation for the
client program calling m and as such becomes a premise of our schema. It is easy to check
that this constraint is satisfied by all instances of send in the running example for both
client properties. Finally, line 9 follows directly from line 8 by the definition of IA(s).

6.2.2 Formulating the MSS
By summarizing the constraints on the various elements of the annotation, and lifting
them to the level of method m, we obtain the MSS:

8v � fP � I(v)g G fQ(res(v)) � I(post(v))g
f[�]o:A(I) � Pg r := o:m(G) f[�]o:A(I) �Q(r)g

6.3. Implementing the SLCO Channel 93

For simplicity, we assume that m has no parameters besides G. However, additional
parameters can be captured in the usual way for procedure verification rules in Hoare logic.
We also assume that m returns a result res(v) immediately after leaving the CR, that is
assigned to variable r. In general, Q depends on r. Both res(v) and post(v) are fixed by the
supplier of m. Also recall that we define the semaphore invariant IA(s) = 9v:O(v) � I(v),
which allows us to omit the occurrence of v in the schema under the line.

Predicate A links the semaphore used to implement the CR inside method m with
the payload invariant I. A is an abstract predicate in the sense that the client does not
need to know its definition since it is local to o. For the send example, A would state
that there is a semaphore s that is properly initialized and it associates to A a semaphore
invariant IA(s) (formed using I(v) as described earlier). These implementation details,
including s, are hence not visible to the client calling m. Finally, � is an arbitrary fraction
denoting a fractional permission for A.

Like the schema in [67], MSS is not an axiom or a proof rule of the proof system and it
does not affect the soundness of the proof system, since for any correct module it can be
derived from other axioms and rules. Specifically, each module can be specified separately
based on MSS and its implementation can be annotated in a way following from the proof
outline in Listing 6.3. As MSS is a derived proof rule, the implementation of each module
still needs to be verified by a proof system against its specification. In our case, the proof
system is separation logic.

MSS can be seen as a means to divide the proof obligations between the client and
the supplier of m. The schema is implicitly universally quantified over P , Q, I, and G.
Note that post and res are fixed by the supplier and that they implicitly define the effect
of C on o.f in a sequential environment. On the other hand, the client is free to use any
predicates P , Q, I, and G satisfying the premise of MSS. For any such predicates, the
supplier guarantees that the implementation of m satisfies the triple in the consequent of
MSS.

The premise of MSS 8v:fP � I(v)g G fQ(res(v)) � I(post(v))g is analogous to the
premise of the Owicki-Gries CR axiom fP � IA(s)g C fQ(r) � IA(s)g. MSS, however,
shifts the verification from the actual code C and invariant IA to the ghost code G and the
payload invariant I. Although C does not appear in MSS, its specification is reflected in
v, post(v) and res(v). Although G has to reflect all important aspects of each call of o.m,
the method is still to a great extent modular since the implementation and verification of
the program text of o:m remains completely independent of calling of o.m.

6.3 Implementing the SLCO Channel
In Section 3.4 we discussed two possible implementations of slco asynchronous channels.
One implementation covers partial features of slco asynchronous channels while the other
covers all their features. Specifically, the simplified implementation does not support
blocking sending and receiving operations. Also, conditional receiving operations of slco
asynchronous channels are not supported. The advantage of the simplification is that it
facilitates the specification and verification of the implementation.

In this section we present the simplified implementation of slco asynchronous chan-
nels. As shown in Listing 6.4, the model-generic part of slco asynchronous channels is
implemented as a Java class Channel which contains three fields.

94 Modular Verification of SLCO Communication Channels

Listing 6.4: The implementation of the Channel class
1 public final class Channel {
2 List itemList;
3 Semaphore s;
4 int queueMaxSize;
5 public Channel(int queueMaxSize)
6 {
7 itemList = new ArrayList();
8 this.queueMaxSize = queueMaxSize;
9 s = new Semaphore(1);

10 }
11 boolean send(String msg) {
12 ...
13 }
14 String receive() {
15 ...
16 }
17 }

As shown at line 2 in Listing 6.4, the list itemList is used to implement the buffer
which is associated with slco asynchronous channels. Semaphore s at line 3 is used to
implement access to the CR within the operations and queueMaxSize at line 4 defines
the maximum channel capacity. The method send at lines 11-13 is used to wrap sending
operations of slco asynchronous channels while the method receive at lines 14-16 is
used to wrap receiving operations of slco asynchronous channels. The implementations
of methods send and receive are shown in Listing 6.5 and Listing 6.6, respectively.
The messages passed through channels are processed in FIFO order when the maximum
channel capacity is greater than 1, i.e., messages are added to the end and removed from
the front of itemList.

The implementation of the send method of class Channel is shown in Listing 6.5.
The send operation has one parameter msg (in line 1), the message that is being sent.
At line 2, semaphore s is acquired for mutual accesses between multiple threads. At lines
3-4, the channel is checked whether it is full. If it is not full and the current content of
the channel is q, then after execution of send the content of the channel is q + msg,
where + denotes concatenation of sequences of messages. If the channel is already full, the
content is unchanged. Furthermore, send returns a Boolean result (at line 9) indicating
whether or not the operation was successful. The send method either returns true on
successful sending operations or returns false on unsuccessful sending operations to its
caller. Correspondingly, the execution of the caller is not blocked at the execution of any
code within the send operation, which is in line with the simplified implementation of
slco asynchronous channels.

Listing 6.5: The implementation of the send method of class Channel
1 boolean send(String msg) {
2 s.acquire();
3 boolean result = itemList.size() < queueMaxSize;
4 if (result) {

6.4. Specifying and Verifying the SLCO Channel 95

5 itemList.add(msg);
6 result = true;
7 }
8 s.release();
9 return result;

10 }

The implementation of the receive method of class Channel is shown in Listing 6.6.
At line 2 semaphore s is acquired before accessing list itemList, shared between multiple
threads. At line 4, the channel is checked whether it is empty. If the channel is empty,
then the value null is returned to its caller, as shown at lines 4-6. If the channel is not
empty and the channel has contents msg + q, then message msg is removed from the list
itemList at line 7. Specifically, the channel’s new contents after execution of receive
is q, and message msg, i.e., the first element from the front of the list itemList, is
returned as a result. Similar to the send operation in Listing 6.5, the receive operation
is non-blocking operation, as it returns either null or the first element from the front of
the list itemList. As the simplified implementation does not consider the conditional
receiving operations, the content of the message msg is not checked before removing it
from itemList.

Listing 6.6: The implementation of the receive method of class Channel
1 String receive() {
2 s.acquire();
3 String result;
4 if (itemList.size() == 0) {
5 result = null;
6 } else {
7 result = (String)itemList.remove(0);
8 }
9 s.release();

10 return result;
11 }

6.4 Specifying and Verifying the SLCO Channel
In the previous section we demonstrated the simplfied implementation of slco asyn-
chronous channels that can hold a predefined maximum number of messages. In this
section we present its specification and verification for use in a generic, multi-threaded
environment via separation logic in VeriFast. Using VeriFast, we verify the absence of race
conditions. Besides this, we also show how to prove properties of clients using the channel.
Furthermore, our modular approach described in Section 6.2 is applied to the specification
and verification.

The VeriFast specification of the send method in Listing 6.5 following from MSS
is given in Listing 6.7. Predicates A, I, P, and Q correspond to their namesakes in the
MSS, whereas the assertion is_G_S implements the passing of the ghost code G into the
method. Both [?pi] and [pi] correspond to the fractional permission [�]. The question

96 Modular Verification of SLCO Communication Channels

mark ? in front of a variable means that the value of the variable is recorded and that all
later occurrences of that variable in the contract have the same value which is equal to
the value of the first occurrence. For instance, in Listing 6.7, the value of the fractional
permission pi in the precondition must be the same as the one in the postcondition (as
also required in the MSS).

Listing 6.7: Part of the channel specification
1 public final class Channel {
2 //...
3 boolean send(String msg)
4 /*@
5 requires [?pi]A(?I) &*& is_G_S(?G, this, I, msg, ?P, ?Q)

&*& P();
6 ensures [pi]A(I) &*& Q(result);
7 @*/
8 // ...
9 }

Predicates P, Q and is_G_S are left undefined and are supposed to be provided by
the client. More precisely, a lemma function G is supplied by the client based on which
VeriFast automatically creates the predicate is_G_S.

Listing 6.8 contains the specification of a lemma function G that corresponds to the
ghost statement block G. Lemma functions in VeriFast are methods without side effects
which help the verification engine. The contract of a lemma function corresponds to a
theorem, its body to the proof, and a lemma function call to an application of the theorem.
Note that the specification of G in Listing 6.8 corresponds to the premise of MSS, where
post(v) specifies that if res = true, msg has been added to the channel, and otherwise it
has not (line 4).

Listing 6.8: A lemma function specifying the ghost statement block G
1 /*@
2 typedef lemma void G (Channel c, predicate(list<Object>, int

) I, String msg, predicate() P, predicate(boolean) Q) (
boolean res);

3 requires P() &*& I(?items, ?qms);
4 ensures Q(res) &*& I(res ? append(items, cons(msg, nil))

: items, qms);
5 @*/

Method send is part of the class Channel (Listing 6.9), implementing the SLCO
channel construct. Class Channel contains three fields: the list itemList implementing
the FIFO queue, semaphore s that is used to implement access to the CR within the
operations, and queueMaxSize defining the maximum channel capacity. For verification
purposes we add the ghost field inv which is used to keep track of the invariant.

Semaphore invariant I_A, corresponding to IA in Section 6.2, is given at line 2 in
Listing 6.9. The invariant is defined by means of a predicate constructor parameterized
with the payload invariant I. Corresponding to the definition of IA, in I_A, it is checked
that for ghost variables items and qms, i.e., the contents of the item list and the maximum

6.4. Specifying and Verifying the SLCO Channel 97

number of messages, respectively, I holds. The question mark ? is used to record the
value of the variable following it, for use later on in the predicate. Operator 7! is written
in VeriFast as |->, and the expression of the form [f] denotes fractional ownership with
fraction f. When f = 1, the fractions are omitted, and an arbitrary fraction is denoted as
[_].

Listing 6.9: The specification of the Channel class
1 /*@
2 predicate_ctor I_A(Channel channel, predicate(list<Object>,

int) I)() = channel.O(?items, ?qms) &*& I(items, qms);
3 @*/
4

5 public final class Channel {
6 List itemList;
7 Semaphore s;
8 int queueMaxSize;
9 //@ inv inv;

10 //@ predicate O(list<Object> items, int qms) = this.
itemList |-> ?itemList &*& itemList.List(items) &*&
this.queueMaxSize |-> qms &*& length(items) <= qms;

11 //@ predicate A(predicate(list<Object>, int) I) = ... &*&
s |-> ?sem &*& [_]sem.Semaphore(I_A(this, I));

12 }

In predicate O (line 10), the links are established between ghost variables and fields. The
first conjunct in this line channel.itemList |-> ?itemList implies exclusive own-
ership of the field itemList and at the same time that the value of itemList is recorded
for later use in the contract. Expression itemList.List(items) states the fact that
itemList is a list with elements items. The final conjunct links queueMaxSize to
ghost variable qms.

We use the VeriFast ownership concept to implement syntactic restrictions in the
Owicki-Gries approach on the variables. In particular, we need to ensure that the fields
like itemList can be modified only in the CR implemented by semaphore s and that
the ghost variables are modified exclusively by at most one method, in this case send.

Predicate A is given at line 11 in Listing 6.9. Like its MSS counterpart A, it is
parameterized with the payload invariant I (corresponding to I in MSS). Besides some
auxiliary conjuncts, it has two conjuncts to associate I_A with s. The second conjunct is
parameterized with the object itself and the payload invariant.

Listing 6.10 contains the send method with its corresponding full annotation that
further facilitates verification. Since VeriFast does not automatically unfold predicate
definitions, ghost statement open is used to do this, i.e., to replace the predicate with its
definition. In this way the heap chunks of the definition are made visible to the verifier. The
opposite effect is achieved by close which replaces heap chunks with the corresponding
predicate definition. At line 6 predicate A is unfolded to obtain the predicates needed for
acquiring s. After the acquisition of the semaphore also its invariant I_A is opened at
line 9 to get access to the heap chunks related to itemList and queueMaxSize.

The code segment at lines 11-13 corresponds to C in the MSS, and affects the “real”
variables. The code at lines 15-17 is ghost code. The lemma function performing the

98 Modular Verification of SLCO Communication Channels

updates of the ghost variables is called at line 15. Annotation of the receive method
can be done in an analogous way.

Listing 6.10: The annotation of the Channel send method
1 public final class Channel {
2 //...
3 public boolean send(String msg)
4 /*@ requires ... ensures ... @*/
5 {
6 //@ open [pi]A(I);
7 //@ s.makeHandle();
8 s.acquire();
9 //@ open I_A(this, I)();

10

11 boolean result = itemList.size() < queueMaxSize;
12 if (result)
13 itemList.add(msg);
14

15 //@ G(result);
16 //@ length_append(items, cons(msg, nil));
17 //@ close I_A(this, I)();
18 s.release();
19 //@ close [pi]A(I);
20 return result;
21 }
22 //...
23 }

Class Channel annotated as in Listing 6.10 is verifiable against its specification in
VeriFast. This means that it is free of deadlocks and race conditions. Those requirements
are not explicitly specified, but are always checked when VeriFast tries to verify code. The
class is now ready to be used by client programs to verify specific properties, using the
pre- and postconditions and the payload invariant.

Next, we discuss how the property ‘if k messages are sent over the channel, k messages
will be received’ can be specified for a program using the channel via one sending and
one receiving thread. First of all, Listing 6.11 specifies the client program we use. In the
main method (lines 6 and onwards), an instance of the channel is created, and a sending
and a receiving thread are started, one sending k, i.e. messageMaxCount, messages,
and the other one trying to receive them. To specify the property, we introduce two new
ghost variables for counting the number of messages (lines 2 and 3). In the precondition
of main, we require that the class has been properly initialized (conjunct 1 at line 7),
link the messageMaxCount variable to the ghost variable mmc, and have an additional
requirement that it is at least equal to 1. In the postcondition, we link sendCount and
receiveCount respectively to sc and rc, and require that they are both equal to mmc
(line 8).

Listing 6.11: Client program specification
1 public class Program {

6.4. Specifying and Verifying the SLCO Channel 99

2 //@ static int sendCount;
3 //@ static int receiveCount;
4 public static int messageMaxCount; // k
5

6 public static void main(String[] args)
7 //@ requires class_init_token(Program.class) &*&

Program_messageMaxCount(?mmc) &*& 0 < mmc;
8 //@ ensures Program_messageMaxCount(mmc) &*& [_]

Program_sendCount(?sc) &*& [_]Program_receiveCount(?rc)
&*& mmc == sc &*& mmc == rc;

9 {
10 // ...
11 }
12 }

A crucial role in the verification using MSS is played by the client (payload) invariant I
shown in Listing 6.12. The invariant states that at any point of each program execution the
number of received messages cannot exceed the number of sent messages. The signature
of I (line 4) complies with the specification of the corresponding abstract predicate in
Listings 6.8 and 6.9 and it has two arguments. The first argument is a list containing
the messages that are in the channel queue. The second argument, corresponding to the
maximal number of messages in the queue, is actually not used in the definition of this
concrete instance of I. At line 5 the first conjunct states that all messages in the queue
are not null. Lines 6 and 7 are used to link the mathematical variables sc and rc with
the ghost variables sendCount and receiveCount that we added to class Program
in Listing 6.11. Similarly, at line 8 program variable messageMaxCount (Listing 6.11)
is linked to the mathematical variable mmc. In Lines 9-11 various relations between the
mathematical variables are expressed. Finally, at line 12 the main claim of the invariant is
given, i.e., that the number of received messages is not greater than the number of sent
messages.

Listing 6.12: Client (payload) invariant I
1 /*@
2 fixpoint boolean non_null(Object o) { return o != null; }
3

4 predicate I(list<Object> items, int qms) =
5 forall(items, non_null) == true &*&
6 [1/2]Program_sendCount(?sc) &*&
7 [1/2]Program_receiveCount(?rc) &*&
8 [1/3]Program_messageMaxCount(?mmc) &*&
9 0 <= sc &*& sc <= mmc &*&

10 0 <= rc &*& rc <= mmc &*&
11 length(items) == sc - rc &*&
12 rc <= sc ;
13 @*/

To determine that the postcondition holds, we need to specify the thread sending the
messages. In Listing 6.13, at lines 2 and 3, its pre- and postcondition are specified. In the

100 Modular Verification of SLCO Communication Channels

run method, the messages are sent. For the send call at line 27, we need to provide ghost
code G_S. This is done in lemma ghost_send, where the ghost variables are updated.
This lemma is linked to the call at line 25. The pre- and postcondition of send are
specified as two predicates, P and Q, see lines 16 and 17.

Listing 6.13: SenderThread class specification
1 class SenderThread implements Runnable {
2 //@ predicate pre() = this.c |-> ?c &*& [_]c.A(I) &*& [_]

Program_sendCount(0) &*& [_]Program_messageMaxCount(?
mmc) &*& 0 < mmc;

3 //@ predicate post() = this.c |-> ?c &*& [_]c.A(I) &*& [_]
Program_messageMaxCount(?mmc) &*& [_]Program_sendCount
(?sc) &*& mmc == sc;

4

5 Channel c;
6 ...
7

8 public void run()
9 //@ requires pre();

10 //@ ensures post();
11 {
12 for (i = 0; i < Program.messageMaxCount; i++)
13 {
14 for (;;){
15 /*@
16 predicate P() = [1/2]Program_sendCount(i) &*& [1/3]

Program_messageMaxCount(mmc);
17 predicate Q(boolean r) = [1/2]Program_sendCount(r ?

i + 1 : i) &*& [1/3]Program_messageMaxCount(mmc);
18 lemma void ghost_send(boolean r)
19 requires ... ensures ...
20 {
21 open P();
22 ...
23 }
24 @*/
25 //@ produce_lemma_function_pointer_chunk(ghost_send) :

G_S(c, I, m, P, Q)(r) { call(); };
26 //@ close P();
27 boolean success = this.c.send("message");
28 //@ open Q(success);
29 }
30 }
31 //@ close post();
32 }
33 }

VeriFast was able to verify the code against its specification, meaning that the property

6.5. Related Work 101

holds. Besides the environment with two threads, an environment consisting of multiple
senders and receivers was verified in [87] following from the schema in [67]. We adapted
also this work to MSS, but did not include it in this thesis. The definitions of the various
predicates, including the payload invariant, are similar to the ones given above for the
case of one sender and one receiver.

6.5 Related Work
An approach to generate Java code from Communicating Sequential Processes (CSP)
specifications is described in [106]. The authors describe how they have verified that a
CSP model of their implementation of a channel semantically corresponds to a simpler
CSP model describing the desired functionality of that channel. First of all, by working
from a model describing the implementation, as opposed to the implementation itself,
one still needs to prove that the model corresponds exactly to the implementation to
establish that the implementation itself is correct. Moreover, it seems that a fully modular
verification approach in the way we wish to have it is not completely possible; for instance,
although it would be possible to use their simpler CSP model of a channel within detailed
implementation-level CSP models of systems using channels, one could not abstract away
the functionality of a channel to the same extent as when using separation logic if one
would like to prove a functional property referring to communication, but not expressing
how the communication itself should proceed.

Regarding theorem proving, to the best of our knowledge the approach in [67] was the
first one supporting fully general modular specification and verification of fine-grained
concurrent modules and their clients. Compared to the schema in [67], the MSS we
propose imposes conditions on the ghost code instead of the actual code, and abstracts
away the implementation of the protected object better than [67] does, thereby improving
the modular nature of the approach.

An approach comparable to [67] appears in [97] where a new separation logic is presented
with concurrent abstract predicates. Furthermore, in [96] the authors have applied their
approach to prove correctness of some synchronisation primitives of the Joins concurrent
C# library. As far as we know, the authors do not intend to eventually use their approach
to verify model transformations. It remains to be investigated whether theirs can be used
for that as well.

Adding ownership types [49,118] to Java is a very effective technique to verify that Java
threads always access data correctly, i.e. for which they have acquired the proper access
rights. Such a technique offers an alternative way to verify that our channel implementation
is always correctly accessed. However, it cannot be used to verify arbitrary functional
properties that may rely on ownership, but express more than that, such as that some
desired behaviour is guaranteed to always eventually happen. On the other hand, with
separation logic, one can express and verify such properties as well.

6.6 Conclusions and Future Work
In this chapter, we presented a simple Java implementation of slco asynchronous channels
as a generic part of the model-to-code transformation from slco to Java. This implemen-
tation does not cover the condition reception feature, as discussed in Section 3.4. Also,

102 Modular Verification of SLCO Communication Channels

the implementation itself does not support blocking sending and receiving operations that
wait for the corresponding buffer to become non-empty when receiving a message, and
wait for space to become available in the buffer when sending a message. The advantage
of this simplification is that it facilitates the verification of the implementation. A more
complete implementation of slco asynchronous channel as well as slco synchronous
channel was presented in Chapter 4, which incorporates more advanced features of Java.
For future research, the specification and verification of the implementation of slco
asynchronous channels presented in this chapter can be extended to support the more
complete implementation.

We also provided the verification of the simple implementation of slco asynchronous
channels via a modular approach for the verification of fine grained concurrent code. The
ideas behind and the feasibility of such an approach is demonstrated as well. With its
support of parameterized verification, concurrency via threads, object-oriented code, and
fast verification results, VeriFast was up to the task - though an experienced user is
required. This underlines the relevance of the idea of re-using generic code that has to be
verified only once.

Additionally, we proposed a novel modular specification schema which improves the
modularity of the VeriFast approach. Although our schema was developed using separation
logic and VeriFast, it can be straightforwardly adapted for the standard Owicki-Gries
method (assuming extensions with modules) or similar formalisms for concurrent verifica-
tion.

Besides verifying the correctness of slco channel implementations, an important
robustness criterion of dependency safety regarding sending and receiving operations of a
channel also needs to be considered in the implementation. That is, when a thread fails
when executing the sending operation of a channel, it is desired that its corresponding
receiving operation operated by another thread is not executed anymore nor will wait
for the completion of the sending operation. To this end, we will introduce a language
extension called failbox in the next chapter. This language extension helps to ensure that
a program satisfies the important robustness criterion of dependency safety.

Chapter 7

Increasing Robustness via Failboxes

During execution of a multi-threaded program generated from an slco model, when a thread
fails when executing a send operation of a channel, it is desired that the corresponding
receive operation operated by another thread is not executed anymore, and that receive
operation currently executing no longer waits for the completion of the send operation.
This can be achieved by using a language extension called failbox. It helps to ensure that a
program satisfies the important robustness criterion of dependency safety: if an operation
fails, no code that depends on the operation’s successful completion is executed anymore or
will wait for the completion of that operation. However, the original implementation of
failbox is in Scala, whereas for our setting, we require a Java implementation. Moreover,
it requires the assumption of absence of asynchronous exceptions inside the failbox code.
To address these issues, in this chapter we provide a Java implementation without this
assumption. The assumption is eliminated in an incremental manner through several
increasingly more robust implementations which are all presented in this chapter.

7.1 Introduction
In Chapter 6, we indicated that during execution of a multi-threaded program generated
from an slco model some operations, such as send and receive operations of a channel,
may fail. A way to mitigate the effect of such failures is to ensure that the program has
the property of dependency safety [66]: if an operation fails, no code that depends on the
operation’s successful completion is executed anymore or will wait for the completion of
that operation.

As argued in detail in [66], the exception handling mechanisms available in languages
like Java [51] do not provide a direct way to achieve, let alone verify, dependency safety.
Problems on the safety side [66] are that exiting a try block (as part of a try-catch
statement) may leave a data source in a corrupted state. Problems on the liveness side
[63] are that a wait statement may wait on the successful return of a failing operation,
causing that thread to wait indefinitely. An example of the latter, taken from [63], is the
Scala [4] program in Listing 7.1. There, the main thread indefinitely blocks on take (line

104 Increasing Robustness via Failboxes

3) if the forked thread, launched at line 2, fails.

Listing 7.1: Motivating example
1 val queue = new LinkedBlockingQueue[String]()
2 fork { queue.put("Hello, world") }
3 queue.take()

A concept to achieve dependency safety in Java, called failbox, is introduced in [66].
This language extension allows dealing with exceptions compositionally. The mechanism
of failboxes is as follows. All threads that depend on each other’s successful execution of
instructions are forced to run in the same failbox. As soon as an instruction executing in a
failbox fails (leading, e.g., to its thread terminating abruptly with an unchecked exception),
all threads in the same failbox will be notified, and terminated.

To achieve dependency safety, if an operation B depends on an operation A it must be
ensured that they execute in the same failbox.

An example how one can use the failbox mechanism to fix the problem with the
program in Listing 7.1 is given in Listing 7.2.

Listing 7.2: Proposed fix with Failbox
1 fb = new Failbox()
2 fb.enter {
3 val queue = new LinkedBlockingQueue[String]()
4 fork { fb.enter{queue.put("Hello, world")} }
5 queue.take()
6 }

Since the main and the forked thread run in the same failbox, if the forked thread
crashes the failbox mechanism ensures that the main thread is notified about it. As a
result, unlike in Listing 7.1, the main thread no longer blocks on take. Instead, it will be
informed about the failure and terminate.

There are several technical limiting assumptions with respect to the actual failbox
implementations provided in [63,66] which are related to the occurrence of asynchronous
exceptions. Unlike synchronous exceptions (such as null pointer and array out of bounds)
that occur when executing a specific statement, asynchronous exceptions can happen
anywhere in the program. Hence, asynchronous exceptions cannot be completely dealt
with by try-catch statements. These exceptions are caused by external factors, like
the user interrupting (a part of) the program or another thread sending a stop signal.

The issues with asynchronous exceptions need to be resolved to guarantee dependency
safety without limiting assumptions. This chapter presents solutions to these problems in
an incremental manner, and provides better insight into the subtle issues involved.

Our main contributions are as follows:
1. In [63] a failbox implementation in Scala was provided, which is used to translate to

Java in this chapter. This implementation is very intuitive because Scala turned out
to be particularly amenable to implementing the failbox concept. As stated in [63],
this implementation provides the failbox functionality under the assumption that no
asynchronous exceptions occur in certain parts of the code implementing the failbox.
To better connect to Java and Java-tooling, a Java implementation is desirable. This
is not a straightforward matter, because Java differs in various aspects from Scala

7.2. A Basic Failbox Implementation 105

that make the latter so suitable for implementing the failbox. A Java implementation
that matches the Scala implementation, with the same limiting assumptions, is
presented in Section 7.2.

2. It turns out that using Java’s mechanism of uncaught exception handlers, the
assumptions can be weakened to only concern the handlers of the failbox code. An
analysis concerning this observation and an implementation based on it is presented
in Section 7.3. The analysis leads to the conclusion that, to further lift the limiting
assumption, it might be necessary to use the Java Native Interface (JNI) [3].

3. An implementation pushing the uncaught exception handler approach to its limits,
using JNI, that almost completely removes the assumption is provided in Section 7.4.

4. Finally, a precise analysis of the remaining restriction leads to a JNI level solution
that does not use the uncaught exception handler and which is fully hardened against
asynchronous interrupts; this is provided in Section 7.5.

In Section 7.6 we discuss the related work, and in Section 7.7 we draw conclusions
and give directions for further research. In this chapter, we focus on implementations of
failboxes. In Chapter 8, we present a testing approach for demonstrating the dependency
safety weaknesses of the different failbox implementations in this chapter. Besides that,
a further interesting step which is not included in this thesis is to specify and verify the
last and most robust implementation. Currently, we have been working on specifying and
verifying its simplified version. The implementation is simplified in the sense that the code
for notifying other threads has not been considered yet. This simplification facilitates the
verification of the failbox’s implementation. The next step is to specify and verify the full
implementation.

7.2 A Basic Failbox Implementation
In this section, we describe the first iteration of our failbox implementation. It is based
on the Scala implementation from [63]. Like its Scala counterpart, it is still vulnerable
to asynchronous interrupts. It can be seen as a stepping stone towards the more robust
implementations presented in subsequent sections.

A failbox is basically an object with a boolean variable, telling whether the failbox is
operational (i.e., has failed or not), and a list of threads. Furthermore, it provides the
method enter, which is called by a thread to add itself to the failbox, passing as an
argument the code to be executed. If this code fails, the enter method notifies all other
threads in the failbox. The Java implementation is shown in Listing 7.3.

Listing 7.3: Java implementation of a Failbox
1 class FailboxException extends RuntimeException {}
2 class Failbox {
3 private boolean failed;
4 private ArrayList<Thread> threads;
5 public void enter(Thread currentThread, Runnable body){
6 synchronized (this) {
7 if (failed) throw new FailboxException();

106 Increasing Robustness via Failboxes

8 threads.add(currentThread);
9 }

10 try {
11 try {
12 body.run();
13 } finally {
14 synchronized (this) {
15 threads.remove(currentThread);
16 }
17 }
18 } catch (Throwable t) {
19 synchronized (this) {
20 failed = true;
21 for (Thread tr : threads) {
22 tr.interrupt();
23 }
24 }
25 throw t;
26 }
27 }
28 }

In Listing 7.3, the boolean variable failed (line 3) has initial value false indicating
that the failbox is operational. The ArrayList threads (line 4) contains all threads that
are running within the same failbox.

Whenever a thread t needs to execute a code block and other threads depend on this
succeeding, t calls the method enter of the failbox containing the other threads, passing
the code block as a parameter wrapped in a Runnable object body (line 5). The method
(lines 5-27) first checks the state of Failbox (line 7). If the Failbox has already failed
for some reason, a FailboxException is immediately thrown. Otherwise, the current
thread is added to the list threads (line 8). When t has finished executing the code
block, either in a regular way or due to an error, it is removed from the list threads (lines
14-16). If an exception occurs while executing the code block, all threads in threads are
notified (lines 19-24). Consistency of field threads is ensured via the synchronized
mechanism.

Limitations analysis This basic implementation is not fully resistant to asynchronous
exceptions. It may fail to notify its threads about crashes in two cases:

1. If an asynchronous exception happens when in enter before the outer try block is
entered (lines 6-9) the catch part, which would notify the other threads, will not
be executed.

2. If an asynchronous exception occurs in the catch part the notification may be
interrupted.

Hence the limiting assumption: no asynchronous exceptions occur when execution in a
failbox’s enter method is before the outer try block or in the catch block.

7.3. An Implementation using Uncaught Exception Handler 107

7.3 An Implementation using Uncaught Exception
Handler

The above mentioned vulnerabilities can be alleviated by using the mechanism of Uncaught
Exception Handlers that was introduced in Java 1.5. Before terminating because of
an uncaught exception the method getUncaughtExceptionHandler is called on
the thread and the uncaughtException method is invoked with the thread and the
exception as arguments.

The new Failbox class definition given in Listing 7.4 is an implementation of the
Thread.UncaughtExceptionHandler interface.

Listing 7.4: Failbox class definition and construction
1 public class Failbox implements Thread.

UncaughtExceptionHandler {
2 private boolean failed;
3 private ArrayList<Thread> threads;
4 Failbox() {
5 this.threads = new ArrayList<Thread>();
6 this.failed = false;
7 }
8 }

The fields threads and failed have the same meaning as before.
The enter method remains the core of the failbox implementation. In our context an

important feature of the uncaught exception handler is that the method is executed no
matter what happens with the thread that has set the handler. This is the last method
that is being called before the thread is deleted. We use this feature to provide additional
robustness to the failbox implementation. The code of the enter method is given in
Listing 7.5.

Listing 7.5: The Failbox.enter method
1 public void enter(Thread currentThread, Runnable code){
2 currentThread.setUncaughtExceptionHandler(this);
3 synchronized (this) {
4 if (failed) throw new FailboxException();
5 threads.add(currentThread);
6 }
7 code.run();
8 currentThread.setUncaughtExceptionHandler(null);
9 }

The association between the thread and the failbox, the latter becoming its uncaught
exception handler, is made in line 2 in Listing 7.5. We assume that this is the only way for
each thread to set its handler, i.e., no other method except enter sets it. The part of the
previous implementation of enter that notifies all other threads in the failbox is moved
to the exception handler which we discuss shortly. This means that the processing of an
interrupt is no longer confined to try-catch statements. Instead, the interrupts can be
caught and processed as soon as they happen. Besides improving robustness, this makes

108 Increasing Robustness via Failboxes

the implementation more efficient than the implementation in Listing 7.3 (and than its
Scala counterpart in [63]). Note that enter should never be called within the scope of an
exception handler.

The definition in Listing 7.4 requires an implementation of an uncaught exception
handler method. Therefore, we provide one implementation of an uncaught exception
handler method, as shown in Listing 7.6.

Listing 7.6: An Uncaught Exception Handler method
1 public void uncaughtException(Thread th, Throwable t) {
2 fail();
3 }

This simple method in Listing 7.6 forwards all occurrences of uncaught exceptions to
the fail method provided in Listing 7.7.

Listing 7.7: The Failbox.fail method
1 public synchronized void fail() {
2 for (Thread tr : threads) { tr.interrupt(); }
3 threads.clear();
4 failed = true;
5 }

Similarly to the previous Java implementation, the Java version needs to interrupt all
the threads inside the failbox.

Limitations analysis For the handler-based implementation, there are two cases where
asynchronous exceptions can still cause problems.

1. The robustness of the failbox is improved, since crashes occurring while executing
the statements at lines 6-9 in Listing 7.3 are now handled correctly. However, if an
asynchronous exception happens in enter before the exception handler is set (line
2 in Listing 7.5) we have again the problem that the exception will be missed.

2. If an asynchronous exception occurs in the handler itself, the problem with the
incomplete notification remains.

According to the above observations, the following assumption is still required: asyn-
chronous exceptions do not occur when a thread is executing the code in the failbox enter
method but has not yet set the exception handler, or when the handler is being executed.

7.4 An Implementation using Uncaught Exception
Handler and JNI

The limitations mentioned at the end of the previous section can be partially removed by
using native code (C or C++). Java supports native code via the Java Native Interface
(JNI). Using the JNI framework, Java methods of an application running in a Java Virtual
Machine (JVM) can call or be called by JNI functions.

7.4. An Implementation using Uncaught Exception Handler and JNI 109

By using the JNI, we can further improve the failbox. This is because the execution
of JNI instructions is completely independent of the JVM execution. This means that
the JVM cannot stop JNI methods in the middle of execution. By reimplementing the
enter method in JNI, we obtain the guarantee that this method is executed regardless
of the occurrence of uncaught interrupts. The code of the new enter method given in
Listing 7.8 is a direct translation of the Java method in Listing 7.5, i.e., the corresponding
Java calls are mapped to JNI calls.

The wrapper method calls with self-explanatory names in Listing 7.8 are used to
retrieve the various class types, as well as the methods, fields, and field values of
Java classes which were defined at the Java level. The retrieved elements are stored
in variables of corresponding JNI types, like jboolean at line 5. For instance, the
method do_SetUncaughtExceptionHandler_method at line 3 is used to wrap
the call of Java method setUncaughtExceptionHandler. At line 5 the method
do_get_FailboxField_failed is used to retrieve the value of the field failed of
failbox and its return value is assigned to the variable failed_value which is defined
as a jboolean type in JNI.

Listing 7.8: The Java_Failbox_enter C method
1 JNIEXPORT void JNICALL Java_Failbox_enter(JNIEnv* env,

jobject failbox, jobject currentThread, jobject body)
2 {
3 do_SetUncaughtExceptionHandler_method(env, currentThread,

failbox);
4 do_MonitorEnter(env, failbox);
5 jboolean failed_value = do_get_FailboxField_failed(env,

failbox);
6 if (failed_value == JNI_TRUE) {
7 do_Throw_FailboxException(env, "FailboxFailed");
8 }
9 jobject threads = do_get_FailboxField_threads(env, failbox

);
10 do_ArrayList_add(env, threads, currentThread);
11 do_MonitorExit(env, failbox);
12 if ((*env)->ExceptionCheck(env) == JNI_TRUE)
13 do_Failbox_fail(env, failbox);
14 do_Runnable_run(env, body);
15 if ((*env)->ExceptionCheck(env) == JNI_FALSE)
16 do_SetUncaughtExceptionHandler_method(env, currentThread

, NULL);
17 }

The Java synchronized mechanism (line 6 in Listing 7.3) is replaced with JNI
monitors to implement critical sections. A monitor is entered and exited by calling
functions do_MonitorEnter (line 4 in Listing 7.8) and do_MonitorExit (line 11 in
Listing 7.8), respectively. Within the monitor, the status of failed is checked and a
possible exception is thrown. Furthermore, the current thread is added to the failbox.
These operations are done in lines 4-11, corresponding to lines 3-6 in Listing 7.5.

Crucial for this implementation is the ExceptionCheck() method in line 12 in

110 Increasing Robustness via Failboxes

Listing 7.8. It is responsible for checking in the JVM whether any exceptions have occurred
during the execution. In this way, we can check if an asynchronous exception occurred
before setting the exception handler.

The aforementioned functions do_MonitorEnter and do_MonitorExit are wrap-
pers for the corresponding JNI functions MonitorEnter and MonitorExit. In the
remainder of this chapter, we use the convention that a method named do_name is a
wrapper for the corresponding JNI method name. All wrapper methods follow the pattern
of the do_MonitorEnter method given in Listing 7.9.

If the call to the original JNI function name is unsuccessful, the native code will cause a
crash. The abort method is called to terminate the whole program when the original JNI
method name fails. For instance, the method abort is called in line 3 in Listing 7.9 when
the call of JNI method MonitorEnter fails. If the call to the method MonitorEnter
is successful, its return value is 0. Otherwise, its return value is a negative value.

Listing 7.9: The do_MonitorEnter method
1 void do_MonitorEnter(JNIEnv *env, jobject failbox){
2 jint result = MonitorEnter(env, failbox);
3 if (result != 0) abort();
4 }

In an analogous way, the code of the exception handler is implemented in JNI, see
Listing 7.10, thereby further improving robustness. Compared to the Java version in
Listing 7.7, the JNI implementation replaces the synchronized qualifier with the JNI
do_Monitor to protect the shared fields. Also, after sending a notification to each thread
in the failbox at line 8, its uncaught exception handler is unset at line 9.

Listing 7.10: The Java_Failbox_fail C method
1 JNIEXPORT void JNICALL Java_Failbox_fail(JNIEnv* env,

jobject failbox)
2 {
3 do_MonitorEnter(env, failbox);
4 jobject threads = do_get_FailboxField_threads(env, failbox

);
5 int arrayListSize = do_ArrayList_size(env, threads);
6 for (int i = 0; i < arrayListSize; i++) {
7 jobject arrayElement = do_ArrayList_get(env, threads, i)

;
8 do_Thread_interrupt(env, arrayElement);
9 do_SetUncaughtExceptionHandler_method(env, arrayElement,

NULL);
10 }
11 do_ArrayList_clear(env, threads);
12 do_set_FailboxField_failed(env, failbox, JNI_TRUE);
13 do_MonitorExit(env, failbox);
14 }

Limitations analysis

7.5. A JNI Implementation without Uncaught Exception Handler 111

1. The above discussion shows how Case 1 from the limitations analysis of the previous
section is remedied.

2. Case 2 of the previous section is also covered to a significant extent. However, the
JNI level approach presented in this section still retains one weak spot. To call the
uncaught exception handler, one needs to briefly go back to Java, i.e., back to the
JVM. This is because the uncaught exception handler, which calls the native code
of fail, has to be written in Java, see Listing 7.6. If an asynchronous exception
occurs in this method before the native implementation of fail has been started
(line 2 in Listing 7.6), the remaining threads will not be properly notified.

Hence the limiting assumption: no asynchronous exceptions occur when executing the
(Java) uncaught exception handler, before the native method fail has been started.

7.5 A JNI Implementation without Uncaught Excep-
tion Handler

To resolve the last remaining vulnerability of the JNI implementation with the uncaught
exception handler, proposed in the previous section, we reconsider the incomplete initial
solution in Java given in Listing 7.3. We translate the enter method of this Java
implementation into JNI as given in Listing 7.11.

Listing 7.11: The enter JNI method of Class Failbox
1 JNIEXPORT void JNICALL Java_Failbox_enter(JNIEnv *env,

jobject failbox, jobject currentThread, jobject body) {
2 do_MonitorEnter(env, failbox);
3 jboolean failed_value = do_get_FailboxField_failed(env,

failbox);
4 if (failed_value == JNI_TRUE) {
5 do_Throw_FailboxException(env, "FailboxFailed");
6 }
7 jobject threads = do_get_FailboxField_threads(env, failbox

);
8 do_ArrayList_add(env, threads, currentThread);
9 do_MonitorExit(env, failbox);

10 do_Runnable_run(env, body);
11 jthrowable exception = (*env)->ExceptionOccurred(env);
12 (*env)->ExceptionClear(env);
13 do_MonitorEnter(env, failbox);
14 do_ArrayList_remove(env, threads, currentThread);
15 if (exception != NULL) {
16 do_set_FailboxField_failed(env, failbox, JNI_TRUE);
17 int arrayListSize = do_ArrayList_size(env, threads);
18 for (int i = 0; i < arrayListSize; i++) {
19 jobject arrayElement = do_ArrayList_get(env, threads,

i);
20 do_Thread_interrupt(env, arrayElement);

112 Increasing Robustness via Failboxes

21 }
22 }
23 do_MonitorExit(env, failbox);
24 if (exception != NULL)
25 do_Throw(env, exception);
26 }

This JNI implementation closely follows its Java counterpart from Listing 7.3.
The try-catch statement is replaced by an exception check by means of the JNI

method ExceptionOccurred (line 11) and a conditional statement (line 15). In particu-
lar, the inner try part (line 13) in Listing 7.3 is translated using the do_Runnable_run
wrapper method (line 10). After checking exceptions, the exception flag is cleared (line
12) such that new exceptions can be registered. The finally part (lines 14-18) in
Listing 7.3 is merged with the catch part of the try-catch statement into a critical
section implemented using the wrapper methods already discussed in Section 7.4. In the
critical section the current thread is removed unconditionally from the failbox (line 14).
After that, if an exception has occurred (line 15), the original catch part is performed
to set the failed flag (line 16) and the interrupts are sent to each of the threads of the
current failbox (lines 18-21).

Since the native code cannot be interrupted by JVM (asynchronous) interrupts, this
code ensures the correct termination of all threads in the failbox. Of course, a logical
question that arises is “What if the execution of the native C code fails?”. For example, if
the execution dereferences a null pointer or if it overflows the C stack. This can cause
problems if such a native exception is caught by the JVM and turned into a Java exception.
However, the Java documentation does not mention such a transformation of exceptions.
We reason that assuming the absence of “machine” exceptions in the C code is more
acceptable than assuming that no exceptions occur while executing Java instructions. In
any case, it seems inevitable that one must assume reliable execution at some level of the
application.

7.6 Related Work
The failbox mechanism offers a solution to the dependency safety problem which is less
involving in terms of programming effort, and induces less run-time overhead compared to
manually guarding dependent code [65] and the technique based on the use of separate
threads [13]. Our approach requires less effort than the alternatives requiring to always
maintain consistency [46,90] or never fail during critical sections [99]. For more elaborate
arguments on this subject we refer the reader to [66]. Recent alternative approaches are
the following. [17] specifies the flow of exceptions between modules with implicit invocation
relations. [85] presents an error recovery technique that enables to apply runtime assertion
checkers. [45] focuses on recovering to or achieving a consistent state using the transactional
memory technique from [90]. [74] deals with single threaded programs strong exception
safety, requiring recovery to the state before the unsuccessful operation started; extension
to multi-threading is identified as challenging. [77] rather than grouping dependent
threads as in our approach, uses intervals and happens-before relations to reason about
which work belongs to the current phase of computation and which work belongs to the
next phase of computation.

7.7. Conclusions and Future Work 113

7.7 Conclusions and Future Work
We presented a Java implementation of the concept of failbox from [63]. Failboxes allow
a simple way to deal with dependency safety problems in multithreaded programs. We
presented four versions of the failbox implementation - two in Java and two in a combination
of Java and C, using JNI. The assumption required in the original failbox implementation,
i.e., absence of asynchronous exceptions inside the failbox code, is eliminated in an
increasing manner through these four increasingly more robust implementations. For
each implementation we analyzed the vulnerabilities and argue the remedies in the next
implementation.

Translating the failbox to JNI and C also paves the way for an automated verification
of the last and most robust implementation. In particular, this can be done using
VeriFast.VeriFast does not currently support exception statements like try-catch in
Java. However, they are not present in the C translation, which makes it possible to
verify the C translation against its specification via VeriFast. The specification can also be
used to prove dependency safety of code that uses the failbox. Also, the new capabilities
of VeriFast [64] allow to verify absence of deadlocks, which is an important aspect of
dependency safety [63].

The work presented in this chapter does not show the application of the failbox concept
in our framework that transforms slco models to Java code. To be able to apply the
failbox mechanism in the implementation, one needs to give a definition of all kinds
of dependent operations including send and receive operations of channels at the slco
model level. Based on the definition, an approach to analyze dependent operations of
an slco model needs to be introduced when transforming the slco model to Java code.
Correspondingly, dependent operations will be executed in the same failbox during the
execution of the implementation.

Besides applying the failbox concept in the implementation, future work also involves
formally verifying the proposed failbox implementations, and comparing the failbox
approach to other mechanisms guaranteeing dependency safety. By setting objective
criteria, a full evaluation of usability and performance could be performed.

In this chapter, for each implementation we analyzed the vulnerabilities and argued
the remedies in the next implementation. A question that naturally arises for these
incremental implementations is whether the vulnerabilities are realistic and also whether
the remedies proposed are effective. In Chapter 7, we present a testing approach for
demonstrating the dependency safety weaknesses of the different failbox implementations,
thereby substantiating the claims in the current chapter.

Chapter 8

Test-Driven Evolution of Failboxes

In Chapter 7, we presented several possible implementations of the failbox concept, and
claimed that they differ in the guarantees they provide regarding dependency safety. In this
chapter, we present a testing approach for concurrent programs that enables to generate
asynchronous exceptions in a controlled manner. The approach enables us to develop tests
that demonstrate the dependency safety weaknesses of the different failbox implementations,
thereby substantiating the earlier claims in Chapter 7. Furthermore, the tests are repeatable
in that they give the same results for runs that may differ in scheduling, even on different
platforms.

8.1 Introduction
An important requirement for concurrent programs is dependency safety [66]: if an operation
fails, no code that depends on the operation’s successful completion is executed anymore
or will wait for the completion of that operation.

The failbox [66] is a language mechanism to achieve dependency safety for sets of
threads in a modular manner. If a thread in a failbox fails, the failure will be detected
and all other threads in the failbox will be notified. Failboxes themselves must be robust
against asynchronous exceptions, requiring a quite intricate implementation. In Chapter 7,
we incrementally developed increasingly more robust failbox implementations. For each
implementation we analyzed the vulnerabilities and argued the remedies in the next
implementation.

We now investigate whether the vulnerabilities are realistic in the sense that there are
tests for them that give a positive result, and also whether the remedies proposed are
effective in the sense that these tests turn out negative on the improved version. This is
challenging, as the properties to be tested involve subtle coordination issues, requiring
instrumentation of Java and also Java Native Interface (JNI) [3] code. We introduce
incrementally more powerful tests, guided by the demands of testing incrementally more
robust failbox implementations.

As discussed in Chapter 7, the challenge of improving the basic failbox implementation

116 Test-Driven Evolution of Failboxes

is to achieve correct behavior of the failbox mechanism in the presence of asynchronous
exceptions. Since asynchronous exceptions can occur at any moment during program
execution, and hence at any stage of executing the failbox code, both the detection and
notification phases of a failbox can be jeopardized. To be able to test the robustness
of each failbox implementations in Chapter 7, we need to enforce a scenario in which
asynchronous exceptions generating threads are involved and asynchronous exceptions
need to be generated in a controlled manner as well.

Our testing approach is based on the delayed execution and the wait-notify patterns as
discussed in [98]; we also took inspiration from [5] for the application of countdown latches
for synchronization in testing. We extend the wait-notify approach to include handshaking
and then apply it to our testing approach, thus improving the precision of the coordination.
We also show that the testing approach does not introduce deadlocks as a side effect.
The testing approach enables us to develop tests that demonstrate the dependency safety
weaknesses of the different failbox implementations, thereby substantiating the earlier
claims in Chapter 7. We also consider the generality of the test setup for dependency
safety and to what extent tests can be used to provide information about correctness.

This chapter is organized as follows. Section 8.2 introduces the general test setup for
testing failboxes on providing dependency safety. Sections 8.3 to 8.7 show how to use
delays and latches in tests and tested code to test for dependency safety. Section 8.8
provides an overview of the tests and test results. Section 8.9 contains conclusions and
future work.

8.2 Testing Failboxes in the Context of Dependency
Safety

In this section we discuss some formal aspects of the test framework that we use in the
rest of this chapter. We first give definitions based on [66]. According to the definitions,
we provide a test setup that is representative for the dependency safety property in the
presence of asynchronous exceptions.

8.2.1 Basic Definitions
We provide some basic definitions for our test setup. We assume that a program state
C is defined containing all necessary information about a program execution and the
corresponding thread states, e.g., a mapping of program variables (including the pro-
gram/location counters) to their values, the sequences of statements to be executed by
each of the threads, activation records, etc. We assume that the semantics of the language
is defined by means of transitions between states of the form Ck

t:st! Ck+1, where statement
st is executed by a thread with the thread identifier t. An execution E = C0C1 : : : is a
finite or countably infinite sequence of program states. The states in E are indexed by
a non-negative integer, and they are referred to as execution points. A thread execution
point is a pair (k; t), where k is an execution point and t is a thread identifier of the thread
associated with the execution containing k. Since we assume deterministic threads, any
execution of a thread through execution point k leads to the same next execution point
k + 1. Therefore, we can also refer to k as an execution step taken from Ck.

8.2. Testing Failboxes in the Context of Dependency Safety 117

We assume that a happens-before relation, denoted as hbE! , is defined for any given
execution E. The happens-before relation is a transitive relation that captures in an
intuitive way the causality between operations. For instance, any execution point of a
thread happens-before any subsequent execution point of the same thread, i.e., for two
execution points of the same thread t, (k1; t)

hbE! (k2; t) iff k1 < k2. Also, assuming k1 < k2,
a thread execution point (k1; t1) corresponding to a lock release operation by thread t1
in state Ck1 , happens-before (k2; t2) corresponding to an acquire operation on the same
lock. Similarly, a (k; t) corresponding to a fork operation by thread t creating a new
thread t0, happens-before any thread execution point (k0; t0) of thread t0 (where k < k0 is
implied). The relation is partial in the sense that, e.g., two different locks may be acquired
by two different threads at execution points (k1; t1) and (k2; t2) that are not related by the
happens-before relation. If no other dependencies between these execution points exist,
there will be executions in which the corresponding operations occur in both orders. For a
precise formal definition see [66].

A failing of a thread is modeled by having a special operation throw. We say that a
thread t fails in an execution point k if an exception is thrown, i.e., the next statement to
be executed by t (its continuation) at k is throw. Dependency safety is the property that
if an operation fails, all other operations depending on its successful completion fail as
well. More formally, assuming a given dependency relation D on execution points, we have
the following: A program � is dependency safe iff for any execution E of � and two thread
execution points (k1; t1) and (k2; t2) of E such that (k1; t1)

hbE! (k2; t2) and (k1; k2) 2 D it
holds that if t1 is failing in k1, then t2 is failing in k2.

By different instantiations of the dependency relation D we can obtain different kinds
of dependency safety relationships. For instance, by designing the dependency relation
such that it expresses dependency between updates of global objects (e.g., variables, arrays,
database entries) we can ensure consistency dependency safety. It ensures that for each
operation B that depends on operation A in the sense that they access the same object,
when A fails, B does not operate on an inconsistent state of the object.

Wait dependency safety can be obtained by defining another instance of D. It needs to
capture the fact that a wait operation B depends on an operation A since B is blocked
waiting for a signal from A. For instance, in Java the case when methods wait and notifyAll
are called on the same object is an example of such a dependency. Wait dependency safety
implies for each execution program execution E of a program � the following: if (i) a wait
operation B depends on a computation A, and (ii) B terminates if A does not fail, then
B terminates.

The consistency dependency safety as well as the wait dependency safety of a program
can be ensured using the failbox mechanism [63,66] under the assumption of absence of
asynchronous exceptions while executing inside the failbox code. To achieve the consistency
dependency safety by using the failbox mechanism, existing synchronizing mechanisms like
locks and semaphores in Java need to be adapted to check the state of the failbox [66]. To
eliminate the assumption, we provide several failbox implementations in an incremental
way in Chapter 7. To test these failbox implementations, we provide a test setup that
is representative for the dependency safety property in the presence of asynchronous
exceptions. In what follows we only consider wait dependency safety. The test setup
can be adapted for checking whether the consistency dependency safety of a program is
ensured as well.

118 Test-Driven Evolution of Failboxes

8.2.2 Test Setup
Based on the definitions defined in Section 8.2.1, we provide a test setup that is represen-
tative for the dependency safety property in the presence of asynchronous exceptions. In
particular, we focus on the wait dependency safety of programs.

The setup consists of two threads tA and tB that execute operations A and B, respec-
tively. The operations are dependent, i.e., (A;B) 2 D and A happens-before B. We refer
to this code as the tested program. For the test, we also need one thread i which generates
asynchronous exceptions. The code corresponding to i we call test program. (Later we
use two such exception generating threads, but the discussion in the rest of this section
applies also to this case without loss of generality.)

Testing in a concurrent setting is challenging because scheduling of threads may
influence the outcomes. To enforce a particular testing scenario, i.e., occurrence of
asynchronous exceptions in particular program states, synchronization is needed. This
is done by preceding the critical operations (locations) with dummy synchronization
operations.

For our tests we need to enforce a scenario in which operation A fails, and if as a result
operation B fails too, we say that the test is negative, otherwise the test is positive, in
the sense that it was able to demonstrate that the implementation is not correct, i.e.,
dependency safety does not hold.

To enforce that operation A fails due to an asynchronous exception, we need to execute
an operation I triggering such an exception. Furthermore, we want to ensure a happens-
before relation between A and I, which may not exist if A and I are performed by different
threads. (Note that A and I need not be dependent.) To this end, as shown in Figure 8.1
we instrument the code by replacing operation I by the sequence Wi; I;Si, where Wi and
Si are blocking and unblocking operations, respectively. Also a sequence of operations
S;W is added immediately before the operation A. S unblocksWi whereasW is a blocking
operation which can be unblocked only by Si.

Figure 8.1: Instrumentation

Now, using the definition of happens-before and its transitivity, it is easy to establish
for an arbitrary execution E that S hbE! Wi

hbE! I hbE! Si
hbE! W hbE! A in Figure 8.2. This is

because operation S executed by thread tA unblocks Wi executed by thread ti, implying S
hbE! Wi; operations Wi, I and Si are executed by thread ti, implying that Wi

hbE! I hbE! Si.
Similarly, we can obtain relations Si

hbE! W and W hbE! A. Obviously, the above implies I

8.2. Testing Failboxes in the Context of Dependency Safety 119

happens-before A. Moreover, since S hbE! I hbE! A, we achieve that the execution occurs in
E between S and A, corresponding to the location in the original code immediately before
A.

Figure 8.2: The happens-before sequence

Note that the synchronization scheme introduced above does not introduce a deadlock
as a side effect. This is because there is never circular waiting between the synchronized
threads. From the happens-before sequence established for an arbitrary execution E, it is
easy to establish such a sub happens-before relation, i.e., S hbE! Wi

hbE! Si
hbE! W , as shown

in Figure 8.3. Since W does not happen-before S, there is no circular waiting between
threads tA and ti, implying no deadlock introduced by the synchronization scheme. The
above construct can be simplified taking into account that thread tA is interrupted and
stopped while being blocked on W , as in this case W is never executed, and therefore Si
might be omitted.

Figure 8.3: Non-circular waiting

We conjecture that our experimental setup is sufficient to ensure that if the implementa-
tion passes the test for dependency safety, it will pass that test for any program. We assume
that threads t1 and t2 run in the same failbox. Threads t1 and t2 with the corresponding
dependent operations A and B are sufficient abstractions of any thread and dependent
operations that can be present in an arbitrary program. So, if the implementation works
within our test setup, the dependency safety definition will be satisfied for any set of
threads executed in a program.

Based on the test framework presented in this section, we develop tests in a controller
manner to demonstrate the wait dependency safety weakness of the different failbox
implementations in the rest of this chapter.

From Sections 8.3 to 8.7, the first part of each title indicates how the tests are made
more precise by repositioning the occurrence of asynchronous exception inside failbox
code. For instance, Delays within the Try Block in the title of Section 8.3 indicates
that the asynchronous exception occurs during the execution of a thread when it executes

120 Test-Driven Evolution of Failboxes

the code inside the Try Block of the corresponding failbox implementation and the
synchronization mechanism is implemented by using delays. Similarly, Latches within
the Try Block in the title of Section 8.4 indicates that the asynchronous exception occurs
during the execution of a thread when executing the code inside the Try Block of the
failbox implementation as well. However, the synchronization mechanism is implemented
by using Latches. Using Latches to synchronize executions of different threads is more
robust, as Latches are no longer sensitive to external influences, such as workload on the
test machine. As a result, the rest of tests in Sections 8.5, 8.6, and 8.7 are carried out by
Latches.

The second part of each title from Sections 8.3 to 8.7 indicates the evolving failbox
implementation. For example, in the title of Section 8.3, NBF (Non Basic Failbox)
indicates the setup do not apply the basic failbox implementation while BF (Basic Failbox)
represents the basic failbox implementation which is applied to the setup. In a similar
way, UEHF (Uncaught Exception Handler Failbox) (Java/JNI) in the title of Section 8.6
represents the failbox implementation either in Java or in JNI using the Java uncaught
exception handler while NUEHF (Non Uncaught Exception Handler Failbox) (JNI)
indicates the failbox implementation in JNI without using the Java uncaught exception
handler.

8.3 Delays within the Try Block: NBF to BF
In this section, we apply the dependency safety test setup from Section 8.2 using the basic
failbox implementation presented in Chapter 7 in the presence of asynchronous exceptions.
Before that, we show that the setup without failboxes is not dependency safe. To achieve
the required order in which instructions are executed, we use delays.

8.3.1 Testing without failboxes
Test program The interrupting thread i from the abstract setup in Section 8.2 is imple-
mented by the class InterruptingThread in Listing 8.1. Operation I is implemented
using method stop of class Thread. This method generates an asynchronous exception
in thread tA (threadPut).

Listing 8.1: Class InterruptingThread
1 class InterruptingThread extends Thread {
2 Thread interruptedThreadId;
3 InterruptingThread(Thread interruptedThreadId) {
4 this.interruptedThreadId = interruptedThreadId;
5 }
6 @Override
7 public void run() {
8 interruptedThreadId.stop();
9 System.out.println(Thread.currentThread().getName() + "

stops "+interruptedThreadId.getName());
10 }
11 }

8.3. Delays within the Try Block: NBF to BF 121

Tested program Thread tA is implemented using class RunnableBlockPut in List-
ing 8.2. The put statement (line 10) corresponds to operation A from the setup whose
execution needs to be prevented. Instead of the signaling and blocking operations from the
abstract test setup we use delays. More precisely, operation W is replaced with sleep
in line 9. The signaling operation S is simply omitted since we rely on time passage for
synchronization.

Listing 8.2: Class RunnableBlockPut with Delay
1 class RunnableBlockPut implements Runnable {
2 LinkedBlockingQueue<String> queue;
3 RunnableBlockPut(LinkedBlockingQueue<String> queue) {
4 this.queue = queue;
5 }
6 @Override
7 public void run() {
8 try {
9 Thread.currentThread().sleep(16);

10 queue.put("hello");
11 } catch (InterruptedException e) {
12 //e.printStackTrace();
13 }
14 }
15 }

Thread tB is implemented by class RunnableBlockTake in Listing 8.3. Operation
B which depends on A (put) corresponds to method take (line 9).

Listing 8.3: Class RunnableBlockTake
1 class RunnableBlockTake implements Runnable {
2 LinkedBlockingQueue<String> queue;
3 RunnableBlockTake(LinkedBlockingQueue<String> queue) {
4 this.queue = queue;
5 }
6 @Override
7 public void run() {
8 try {
9 queue.take();

10 } catch (InterruptedException e) {
11 System.out.println(Thread.currentThread().getName() +

" is interrputed");
12 //e.printStackTrace();
13 }
14 }
15 }

The components of the test and tested program are run from the main program in
Listing 8.4. We aim to check if the thread threadTake (Listing 8.4 line 6) will be notified
when the threadPut (Listing 8.4 line 4) crashes before reaching the put operation.

122 Test-Driven Evolution of Failboxes

Listing 8.4: Class QueueExample without Failbox
1 public class QueueExample {
2 public static void main(String[] args) {
3 LinkedBlockingQueue<String> queue = new

LinkedBlockingQueue<String>();
4 Thread threadPut = new Thread(new RunnableBlockPut(queue

));
5 threadPut.start();
6 Thread threadTake = new Thread(new RunnableBlockTake(

queue));
7 threadTake.start();
8 new InterruptingThread(threadPut).start();
9 }

10 }

Output and results To observe sequences of the execution of the program, we add
calls of the println method at critical places to show its outputs. For instance, a
println method call is added at line 9 in Listing 8.1 to indicate whether thread
InterruptingThread sends a "stop" signal to thread threadPut and another println
method call is added at line 11 in Listing 8.3 to indicate whether thread threadTake is
interrupted. In outputs of all tests demonstrated in this chapter, Thread-0, Thread-1,
and Thread-2 are strings denoting the names of threads threadPut, threadTake,
and InterruptingThread, respectively.

The test produces the following output, as shown in Figure 8.4. If the line "Thread-1
is interrupted" is shown as output, we say that the test result is negative; if we do
not get this line as output, the test result is positive, i.e., the dependency safety of this
program is violated. As output of this test we only get "Thread-2 stops Thread-0",
Hence the test result in this section is positive, i.e., the tested program is not dependency
safe. In the next section we apply the basic failbox implementation to the tested program
and also test whether the dependency safety of the tested program can be ensured via the
basic failbox.

Figure 8.4: The output of the testing without failboxes

Note that we summarize the outputs and results of this and all subsequent tests in
Table 8.2. Table 8.1 provides an overview of vulnerability points of different failbox imple-
mentations tested through our testing approach by using the synchronization mechanism
with Latches which is introduced in Section 8.4.

8.3. Delays within the Try Block: NBF to BF 123

8.3.2 Testing with basic failbox implementation
To remove the positive test outcome in Section 8.3.1, in an attempt to improve dependency
safety, we modify the program by adding the basic implementation of failboxes in Listing 7.3
in Chapter 7. The components of the test setup are modified as follows:

Test program In the new version the interrupting thread (Listing 8.1) remains un-
changed.

Tested program The implementations of both threads threadPut (Listing 8.2) and
threadTake (Listing 8.3) remain unchanged.

The class QueueExample corresponding to the main program needs to be updated with
classes Failbox and FailboxedThread (as shown in Listing 8.5). A failbox is created
(line 3) and is passed to threadPut (line 5) and threadTake (line 7), respectively.
Note that threadPut and threadTake are instances of class FailboxedThread.

Listing 8.5: Class QueueExample with Failbox
1 public class QueueExample {
2 public static void main(String[] args) {
3 Failbox failbox = new Failbox();
4 LinkedBlockingQueue<String> queue = new

LinkedBlockingQueue<String>();
5 Thread threadPut = new FailboxedThread(failbox, new

RunnableBlockPut(queue));
6 threadPut.start();
7 Thread threadTake = new FailboxedThread(failbox, new

RunnableBlockTake(queue));
8 threadTake.start();
9 new InterruptingThread(threadPut).start();

10 }
11 }

A new class FailboxedThread (Listing 8.6) is added to wrap the invocation of the
enter method of class Failbox in Listing 7.3 in Chapter 7. Via the run method of
class FailboxedThread, the two dependent operations, i.e. put and take, are passed
to the enter method of the same failbox.

Listing 8.6: Class FailboxedThread with Failbox
1 class FailboxedThread extends Thread {
2 Runnable runnable;
3 Failbox failbox;
4 public FailboxedThread(Failbox failbox, Runnable runnable)

{
5 this.runnable = runnable;
6 this.failbox = failbox;
7 }
8 @Override
9 public void run() {

124 Test-Driven Evolution of Failboxes

10 failbox.enter(this, runnable);
11 }
12 }

The instrumented basic failbox implementation is shown in Listing 8.7 with added
println method calls at lines 3, 21, respectively. The output of the println method
call at line 3 prints names of threads which enter the failbox. The println method call
at line 21 indicates whether thread threadPut interrupts all other threads running inside
the same failbox when thread InterruptingThread sends a "stop" signal to thread
threadPut.

Listing 8.7: The basic implementation – Failbox.enter with println method calls
1 public void enter(FailboxedThread thread, Runnable block)
2 {
3 System.out.println(thread.getName() + " enters the failbox

");
4 synchronized (this) {
5 if (failed) throw new FailboxException("FailboxFailed");
6 threads.add(thread);
7 }
8 try {
9 try {

10 block.run();
11 } finally {
12 synchronized (this) {
13 threads.remove(thread);
14 }
15 }
16 } catch (Throwable t) {
17 synchronized (this) {
18 failed = true;
19 for (Thread tr : threads) {
20 tr.interrupt();
21 System.out.println(thread.getName() + " interrputs "

+ tr.getName() + " inside the failbox");
22 }
23 }
24 throw t;
25 }
26 }

Output and results The test produces the following output, as shown in Figure 8.5.
This output of the program shows that threadPut called the interrupt method of

threadTake inside the failbox after the InterruptingThread stopped threadPut.
Therefore, the result of this test is negative, i.e. the basic implementation of failboxes
helps to preserve the dependency safety of the program.

8.4. Latches within the Try Block: NBF to BF 125

Figure 8.5: The output of the testing with basic failbox implementation

Limitation analysis of the tests Whether or not a desired sequence of executions of
the program (in Listings 8.2, 8.3, 8.5 and 8.6) is produced is dependent on many factors.
For example, when a machine running this program is under high load, the stop method
may be called after the delay of 16 milliseconds at line 9 in Listing 8.2 has run out and
the put has been completed. In that case threadTake will finish normally.

8.4 Latches within the Try Block: NBF to BF
To remove the limitations of the test introduced in the previous section, instead of the
delays, we use countdown latches in this section to implement the blocking and signaling
operations that we referred to in the abstract setup of Section 8.2.

Class CountDownLatch from the Java concurrency API is a construct that implements
countdown latches. The construct allows one or more threads to wait for a given set of
operations to complete. A CountDownLatch is initialized with a given count. This count
is decremented by calls to the countDown method of class CountDownLatch. Threads
that need to wait for this count to reach zero can do so by calling one of the await
methods of a CountDownLatch. That is, invocation of the await method blocks the
thread until the count reaches zero.

By using this mechanism, a specific ordering of operations between multiple threads
can be forced to occur. This way to achieve a deterministic ordering can make tests
more reliable compared to using delays, as it is not sensitive to the current workload
of the machine or particular scheduler behavior. Moreover, this approach helps to get
fast running tests because the additional synchronisation operations do not take more
time than strictly necessary, whereas when using delays, one must estimate how long they
actually need to take.

Next, we upgrade the test setup from the previous section using the CountDownLatch
based synchronization. More precisely, we use two latches latchA and latchB to this
end.

8.4.1 Testing without failboxes
We first test the program without failboxes using Latches instead of delays.

Test program As mentioned above, the blocking and releasing/signaling operations
from the abstract setup in Section 8.2 are replaced with operations on countdown Latches.

126 Test-Driven Evolution of Failboxes

In particular, we instrument the interrupting thread (Listing 8.8) by adding the call
latchA.await() corresponding to the Wi operation.

Listing 8.8: Class InterruptingThread with Latch
1 class InterruptingThread extends Thread {
2 Thread interruptedThreadId;
3 CountDownLatch latchA;
4 InterruptingThread(Thread interruptedThreadId,

CountDownLatch latchA) {
5 this.interruptedThreadId = interruptedThreadId;
6 this.latchA = latchA;
7 }
8 @Override
9 public void run() {

10 try {
11 latchA.await();
12 } catch (InterruptedException e) {
13 //e.printStackTrace();
14 }
15 interruptedThreadId.stop();
16 System.out.println(Thread.currentThread().getName() + "

stops "+interruptedThreadId.getName());
17 }
18 }

Tested program In an analogous way, we modify the failing thread threadPut
(Listing 8.9) by adding the method calls latchA.countDown() and latchB.await()
corresponding to the signaling operation S and the blocking operationW from the abstract
setup, respectively. Note that latchB is not decreased by any thread.

Listing 8.9: Class RunnableBlockPut with Latch
1 class RunnableBlockPut implements Runnable {
2 LinkedBlockingQueue<String> queue;
3 CountDownLatch latchA;
4 CountDownLatch latchB;
5 RunnableBlockPut(LinkedBlockingQueue<String> queue,

CountDownLatch latchA, CountDownLatch latchB) {
6 this.queue = queue;
7 this.latchA = latchA;
8 this.latchB = latchB;
9 }

10 @Override
11 public void run() {
12 try {
13 latchA.countDown();
14 latchB.await();
15 queue.put("hello");

8.4. Latches within the Try Block: NBF to BF 127

16 } catch (InterruptedException e) {
17 //e.printStackTrace();
18 }
19 }
20 }

The receiving thread threadTake remains unchanged.
The updated class QueueExample with Latches but without failboxes is shown

in Listing 8.10. Two instances of class CountDownLatch, latchA and latchB, are
initialized with a given count 1 repectively at lines 4-5, and passed to the constructor of
class RunnableBlockPut at line 6. The latchA is passed to the constructor of class
InterruptingThread at line 10.

Listing 8.10: Class QueueExample with Latch
1 public class QueueExample {
2 public static void main(String[] args) {
3 LinkedBlockingQueue<String> queue = new

LinkedBlockingQueue<String>();
4 CountDownLatch latchA = new CountDownLatch(1);
5 CountDownLatch latchB = new CountDownLatch(1);
6 Thread threadPut = new Thread(new RunnableBlockPut(queue

, latchA, latchB));
7 threadPut.start();
8 Thread threadTake = new Thread(new RunnableBlockTake(

queue));
9 threadTake.start();

10 new InterruptingThread(threadPut, latchA).start();
11 }
12 }

The above mentioned classes implement the abstract setup. The interrupting thread
awaits a release signal via the countdown latch from the put thread. Immediately
before executing the put operation the thread decreases the latch, thereby releasing the
interrupting thread – and subsequently blocks, awaiting a signal from the interrupting
thread. The interrupting thread sends a stop message to the put thread which arrives
while the put thread is blocked. Therefore, put is actually never executed. This simple
handshaking protocol guarantees that an asynchronous exception always occurs before the
put operation has completed.

Output and results As expected, the test returns a positive result, i.e., dependency
safety does not hold. This is the same result as the one obtained in Section 8.3.1.

8.4.2 Testing with failboxes
Next, we apply the test with Latches on the program with the basic failbox implementation.

Test program The code of the interrupting thread remains the same as in the previous
section.

128 Test-Driven Evolution of Failboxes

Tested program The two thread implementations remain the same as in the previous
section.

As in Section 8.3 we use class FailboxedThread to wrap the invocation of the enter
method of class Failbox in Listing 7.3 in Chapter 7. The updated class QueueExample
with the failbox and Latches is shown in Listing 8.11.

Listing 8.11: Class QueueExample with Failbox and Latches
1 public class QueueExample {
2 public static void main(String[] args) {
3 Failbox failbox = new Failbox();
4 LinkedBlockingQueue<String> queue = new

LinkedBlockingQueue<String>();
5 CountDownLatch latchA = new CountDownLatch(1);
6 CountDownLatch latchB = new CountDownLatch(1);
7 Thread threadPut = new FailboxedThread(failbox, new

RunnableBlockPut(queue, latchA, latchB));
8 threadPut.start();
9 Thread threadTake = new FailboxedThread(failbox, new

RunnableBlockTake(queue));
10 threadTake.start();
11 new InterruptingThread(threadPut, latchA).start();
12 }
13 }

In this test case, threads threadPut and threadTake run inside the same failbox,
and the synchronization between threads InterruptingThread and threadPut is
implemented by Latches latchA and latchB, as before.

Output and results As expected, we obtain a negative result, threadPut called the
interrupt method of threadTake inside the failbox after the InterruptingThread
stopped threadPut, i.e. the basic implementation of failboxes helps to preserve the
dependency safety of the program. However, in contrast to the result in the previous
section, this time, the outcome of the test is more robust, as it is no longer sensitive to
external influences, such as the workload on the test machine.

Limitations of the failbox implementation According to the analysis in Chapter 7,
the basic implementation of failboxes (Listing 7.3 in Chapter 7) may still crash, i.e., not
function as intended, in two cases:

1. If an asynchronous exception happens when enter is executed, but before the outer
try block is entered, the catch part, which would notify the other threads, will
never be executed.

2. If an asynchronous exception occurs in the catch, part of the notification may be
interrupted.

In the following sections we will consider incremental improvements of the failbox
implementation in Chapter 7 and adjust our tests accordingly to point to the possible
vulnerabilities of those implementations.

8.5. Before the Synchronized Statement: BF to UEHF (Java) 129

8.5 Before the Synchronized Statement: BF to UEHF
(Java)

In this section, we demonstrate how to adjust the test to point out the vulnerabilities of
the basic implementation of failbox. After establishing that those vulnerabilities exist, to
remove them we use an improved failbox implementation using an uncaught exception
handler in Section 7.3. We show that the adapted test can distinguish between the basic
implementation of failbox and the one that uses the uncaught exception handler.

8.5.1 Testing the basic failbox implementation
Test program We take over the implementation of the interrupting thread from Sec-
tion 8.4 (Listing 8.8).

Tested program The implementations of the threads remain the same, except for the
Latch operations, which are now moved to the basic failbox code.

The instrumented basic failbox implementation is shown in Listing 8.12 with the
added synchronisation code (lines 3-11 and line 34). If a thread’s string name equals to
Thread-0 (line 4), then statements at lines 5-10 will be executed. Here, Thread-0 is
the string name of thread threadPut in the previous test case. The synchronization
protocol with Latches works as in the previous section. It ensures that an asynchronous
exception occurs in threadPut before it enters the outer try block. In this way, the
test execution sequence, revealing the failbox crash case, can be enforced.

Listing 8.12: The basic implementation – Failbox.enter with test code
1 public void enter(FailboxedThread thread, Runnable block)
2 {
3 System.out.println(thread.getName() + " enters the failbox

");
4 if (thread.getName().equals("Thread-0")) {
5 try {
6 thread.latchA.countDown();
7 thread.latchB.await();
8 } catch (InterruptedException e) {
9 //e.printStackTrace();

10 }
11 }
12 synchronized (this) {
13 if (failed) throw new FailboxException("FailboxFailed");
14 threads.add(thread);
15 }
16 try {
17 try {
18 block.run();
19 } finally {
20 synchronized (this) {
21 threads.remove(thread);

130 Test-Driven Evolution of Failboxes

22 }
23 }
24 } catch (Throwable t) {
25 synchronized (this) {
26 failed = true;
27 for (Thread tr : threads) {
28 tr.interrupt();
29 System.out.println(thread.getName() + " interrputs "

+ tr.getName() + " inside the failbox");
30 }
31 }
32 throw t;
33 }
34 }

The class QueueExample in this test is similar to the one with the failbox and Latches
in Listing 8.11. We only need to pass the latchA and latchB as the constructor of class
FailboxedThread instead of the one of class RunnableBlockPut, as shown at line
7 in Listing 8.13. This is because the synchronization in Listing 8.9 is moved to inside
the enter method of class Failbox (lines 4-11 in Listing 8.12) to simulate the failing
scenario above. The class FailboxedThread is updated as shown in Listing 8.14.

Listing 8.13: Positive testing: Class QueueExample with Failbox and Latch
1 public class QueueExample {
2 public static void main(String[] args) {
3 Failbox failbox = new Failbox();
4 LinkedBlockingQueue<String> queue = new

LinkedBlockingQueue<String>();
5 CountDownLatch latchA = new CountDownLatch(1);
6 CountDownLatch latchB = new CountDownLatch(1);
7 Thread threadPut = new FailboxedThread(failbox, new

RunnableBlockPut(queue), latchA, latchB);
8 threadPut.start();
9 Thread threadTake = new FailboxedThread(failbox, new

RunnableBlockTake(queue), null, null);
10 threadTake.start();
11 new InterruptingThread(threadPut, latchA).start();
12 }
13 }

Listing 8.14: Class FailboxedThread with Failbox and Latch
1 class FailboxedThread extends Thread {
2 Runnable runnable;
3 Failbox failbox;
4 CountDownLatch latchA;
5 CountDownLatch latchB;

8.5. Before the Synchronized Statement: BF to UEHF (Java) 131

6 public FailboxedThread(Failbox failbox, Runnable runnable,
CountDownLatch latchA, CountDownLatch latchB) {

7 this.runnable = runnable;
8 this.failbox = failbox;
9 this.latchA = latchA;

10 this.latchB = latchB;
11 }
12 @Override
13 public void run() {
14 failbox.enter(this, runnable);
15 }
16 }

Output and results In this test, the execution of threadPut fails immediately before
the synchronized statement inside the basic failbox implementation. The output shows
that threadTake running inside the same failbox is not notified when threadPut fails.
So, the result of the test is positive.

Some of the vulnerabilities of the basic failbox implementation can be alleviated by
using the mechanism of uncaught exception handlers in Java.

When a thread needs to be terminated because of an uncaught exception, the method
getUncaughtExceptionHandler of class Thread is called on the thread and the
uncaughtException method is invoked with the thread and the exception as arguments.

In our context, an important feature of the uncaught exception handler is that the
method is executed no matter what happens with the thread that has set the handler. This
is the last method that is being called before the thread is terminated. We use this feature
to provide additional robustness to the failbox implementation. The (instrumented) code
of the enter method is given in Listing 8.15.

The association between the thread and the failbox, the latter becoming the former’s
uncaught exception handler, is made in line 3 in Listing 8.15. The part of the previous
implementation that notifies all other threads in the failbox is moved to the exception
handler in Listing 8.16 via method uncaughtException in Listing 8.17. Because now
the exceptions can be caught and processed as soon as they happen, the dependence on
the vulnerable try part is removed.

8.5.2 Testing the failbox implementation with uncaught excep-
tion handler

Compared with the basic implementation, the robustness of the implementation of failboxes
with uncaught exception handler is improved. So the above test case should also be able
to distinguish between the basic implementation of Failboxes and the one that uses the
uncaught exception handler.

Test and tested programs All programs remain the same as in the previous section,
except for the already mentioned new failbox implementation (Listings 8.15, 8.16, and
8.17). In order to compare these two implementations, we need to choose the fixed
location to add the same test code. In this way, the location of the test code does not

132 Test-Driven Evolution of Failboxes

influence the distinguishing capability of the test. In the enter method of the basic
implementation, the test codes (lines 4-11) are added before the synchronized statement
at line 12 in Listing 8.12. Therefore, we also add the same test codes at lines 4-11 before
the synchronized statement at line 12 in Listing 8.15.

Listing 8.15: The improved test– Failbox.enter method with Uncaught Exception Handler
1 public void enter(FailboxedThread thread, Runnable code){
2 System.out.println(thread.getName() + " enters the failbox

");
3 thread.setUncaughtExceptionHandler(this);
4 if (thread.getName().equals("Thread-0")) {
5 try {
6 thread.latchA.countDown();
7 thread.latchB.await();
8 } catch (InterruptedException e) {
9 //e.printStackTrace();

10 }
11 }
12 synchronized (this) {
13 if (failed) throw new FailboxException();
14 threads.add(thread);
15 }
16 code.run();
17 thread.setUncaughtExceptionHandler(null);
18 }

The call of println method is added at line 4 in Listing 8.16 after the interrupt
method of each thread running inside the failbox is called at line 3.

Listing 8.16: The Failbox.fail method
1 public synchronized void fail() {
2 for (Thread tr : threads) {
3 tr.interrupt();
4 System.out.println(tr.getName() + " is interrputed

inside the failbox");
5 }
6 threads.clear();
7 failed = true;
8 }

The implementation of method uncaughtException in Listing 8.17 remains the
same as in Listing 7.6 in Section 7.3.

Listing 8.17: An Uncaught Exception Handler method
1 public void uncaughtException(Thread th, Throwable t) {
2 fail();
3 }

8.6. At the Start of the Enter Method: UEHF (Java) to UEHF (JNI) 133

Output and results Like the test in the previous Section 8.5.1, the execution of
threadPut fails at the same vulnerable place, i.e., immediately before the synchronized
statement inside the failbox code of the new implementation. However, the output of
the test case in this section shows that threadTake is interrupted by threadPut
when it crashes. So the result of the test in this section is negative. Different results in
Section 8.5.1 and Section 8.5.2 imply that the new failbox implementation that uses the
uncaught exception handler is more robust than the basic one, thereby substantiating the
earlier claim in Section 7.3.

Limitation analysis of the failbox implementation As discussed in Section 7.3,
also with the new implementation, asynchronous exceptions can still cause problems. The
first case in which this can happen is when the exception occurs before the handler is
set. The second weak point is when the exception occurs when the handler itself is being
executed.

8.6 At the Start of the Enter Method: UEHF (Java)
to UEHF (JNI)

In this section, we give a test that produces a positive result with the uncaught exception
handler. After that we test an improved version of the uncaught exception handler that is
partially implemented in JNI in Section 7.4. The test can also distinguish between these
two versions of the uncaught exception handler.

8.6.1 Testing with failbox implementation
Test and tested programs The implementation of the failbox with uncaught exception
handler in Java may crash if an asynchronous exception happens in enter before the
exception handler is set (line 3 in Listing 8.15). The only modification that we need to
test this crashing point is to shift the synchronization code from lines 4-9 to line 3 before
the exception handler is set. Besides this modification, the rest of the setup is the same as
in the previous section.

Output and results The output of the test shows thread threadTake running inside
the same failbox is not interrupted, i.e., the notification part at lines 2-5 in Listing 8.16 is
not executed by threadPut.

8.6.2 Testing with improved failbox implementation
The positive test result of the previous section can be remedied by introducing native
C code via the Java Native Interface (JNI) to the implementation of the failbox with
uncaught exception handler, as shown in Listings 8.18 and 8.19. This implementation is
completely analogous to the previous one. In order to keep the implementation of failbox
with native C code readable, we wrap all invocations of Java methods as separated C
functions. For example, the call of the getName method of class Thread is wrapped as
the function do_Thread_getName_method at line 2.

134 Test-Driven Evolution of Failboxes

Test and tested programs The only modification that we need to make is to add the
same synchronization code (lines 6-9) to the potential crashing point before the exception
handler is set at line 11, as shown in Listing 8.18.

Output and results The thread threadPut calls the method Java_Failbox_fail
in Listing 8.19 via the method uncaughtException in Listing 8.17 when an asyn-
chronous exception occurs during its execution. That is, threadTake is notified by
threadPut inside the failbox.

Listing 8.18: The Java_Failbox_enter method in C with test code
1 JNIEXPORT void JNICALL Java_Failbox_enter(JNIEnv* env,

jobject failbox, jobject currentThread, jobject body) {
2 jstring name = do_Thread_getName_method(env, currentThread

);
3 const char* str = (*env)->GetStringUTFChars(env, name,

NULL);
4 printf("\n %s enters the failbox\n", str);
5 fflush(stdout);
6 if (strcmp(str, "Thread-0") == 0) {
7 do_CountDownLatch_countDown_method(env, currentThread);
8 do_CountDownLatch_await_method(env, currentThread);
9 }

10 (*env)->ReleaseStringUTFChars(env, name, str);
11 do_SetUncaughtExceptionHandler_method(env, currentThread,

failbox);
12 do_MonitorEnter(env, failbox);
13 jboolean failed_value = do_get_FailboxField_failed(env,

failbox);
14 if (failed_value == JNI_TRUE) {
15 do_Throw_FailboxException(env, "FailboxFailed");
16 }
17 jobject threads = do_get_FailboxField_threads(env, failbox

);
18 do_ArrayList_add(env, threads, currentThread);
19 do_MonitorExit(env, failbox);
20 if ((*env)->ExceptionCheck(env) == JNI_TRUE)
21 do_Failbox_fail(env, failbox);
22 do_Runnable_run(env, body);
23 if ((*env)->ExceptionCheck(env) == JNI_FALSE)
24 do_SetUncaughtExceptionHandler_method(env, currentThread

, NULL);
25 }

Like the Java implementation of method fail in Listing 8.16, a call of the method
printf is added to its JNI implementation, as shown at lines 9-11 in Listing 8.19.

Listing 8.19: The Java_Failbox_fail C method

8.7. At the Start of the Catch Block: UEHF (JNI) to NUEHF (JNI) 135

1 JNIEXPORT void JNICALL Java_Failbox_fail(JNIEnv* env,
jobject failbox) {

2 do_MonitorEnter(env, failbox);
3 jobject threads = do_get_FailboxField_threads(env, failbox

);
4 int arrayListSize = do_ArrayList_size(env, threads);
5 for (int i = 0; i < arrayListSize; i++) {
6 jobject arrayElement = do_ArrayList_get(env, threads, i)

;
7 do_Thread_interrupt(env, arrayElement);
8 do_SetUncaughtExceptionHandler_method(env, arrayElement,

NULL);
9 const char* strName = (*env)->GetStringUTFChars(env,

nameThread, NULL);
10 printf("\n %s is interrupted inside the faibox\n",

strName);
11 fflush(stdout);
12 }
13 do_ArrayList_clear(env, threads);
14 do_set_FailboxField_failed(env, failbox, JNI_TRUE);
15 do_MonitorExit(env, failbox);
16 }

Limitation analysis of the failbox implementation With the JNI code we addressed
only the first vulnerability point. The second weak point, concerning an exception occurring
while the handler is being executed, is still there. This is because to call the uncaught
exception handler, one needs to briefly go back to Java, i.e., back to the JVM (Listing 8.17).
If an asynchronous exception occurs in this method (Listing 8.17) before the native
implementation of fail in Listing 8.19 has been started (line 2 in Listing 8.17), the
remaining threads inside the failbox will not be properly notified.

8.7 At the Start of the Catch Block: UEHF (JNI) to
NUEHF (JNI)

In this section we first demonstrate a test revealing the weak spot in the implementation
with the uncaught exception handler partially in native code. To remedy the positive
result we present a solution fully implemented in JNI in Section 7.5.

8.7.1 Testing with failbox implementation
We modify the test scenario such that thread threadPut crashes twice: one crash occurs
within the inner try block inside the failbox and the failbox is able to catch it; another one
happens within the method uncaughtException before the fail method is executed.

To be able to test these two crashes, we need to add the synchronization approach to the
run method of class RunnableBlockPut (lines 13-14 in Listing 8.9) and the method

136 Test-Driven Evolution of Failboxes

uncaughtException (lines 2-15 in Listing 8.19). The updated QueueExample in
Listing 8.20 is similar to Listing 8.13. In Listing 8.20, one more InterruptingThread
thread (lines 13-14) is created and two more Latches (lines 5-8) are initialized. The first
interrupting thread at line 13 stops threadPut when it is waiting at line 15 in Listing 8.9.
Then the threadPut crashes and calls uncaughtException method in Listing 8.21.
During the execution of the uncaughtException method, threadPut blocks again
at line 7 in Listing 8.21 until the second interrupting thread (line 14 in Listing 8.20) calls
the stop method of threadPut.

Listing 8.20: Positive test: Class QueueExample with Failbox and Latch
1 public class QueueExample {
2 public static void main(String[] args) {
3 Failbox failbox = new Failbox();
4 LinkedBlockingQueue<String> queue = new

LinkedBlockingQueue<String>();
5 CountDownLatch latchFirstA = new CountDownLatch(1);
6 CountDownLatch latchFirstB = new CountDownLatch(1);
7 CountDownLatch latchSecondA = new CountDownLatch(1);
8 CountDownLatch latchSecondB = new CountDownLatch(1);
9 Thread threadPut = new FailboxedThread(failbox, new

RunnableBlockPut(queue, latchFirstA, latchFirstB),
latchSecondA, latchSecondB);

10 threadPut.start();
11 Thread threadTake = new FailboxedThread(failbox, new

RunnableBlockTake(queue), null, null);
12 threadTake.start();
13 new InterruptingThread(threadPut, latchFirstA).start();
14 new InterruptingThread(threadPut, latchSecondA).start();
15 }
16 }

Note that we need to add the call interrupted at line 3 to clear the interrupted flag of
the threadPut in Listing 8.21. Otherwise, the threadPut does not block at statement
thread.latchSecondB.await(). This is because the interrupted flag is set to true
after the first invocation of the method stop of the threadPut has completed.

Listing 8.21: Positive test: An Uncaught Exception Handler method
1 public void uncaughtException(Thread t, Throwable e){
2 if (t.getName().equals("Thread-0")) {
3 t.interrupted();
4 try {
5 FailboxedThread thread = (FailboxedThread) t;
6 thread.latchSecondA.countDown();
7 thread.latchSecondB.await();
8 } catch (InterruptedException ee) { }
9 }

10 fail();
11 }

8.7. At the Start of the Catch Block: UEHF (JNI) to NUEHF (JNI) 137

The result of the test is positive, i.e., the output shows that threadTake is not
notified about the failure of threadPut.

8.7.2 Testing with improved failbox implementation
The weak spot of this implementation can be resolved by the implementation with fully
native code shown in Section 7.5. The test case above should be able to test whether the
weak spot still exists in the implementation with fully native code.

To be able to compare the implementations with partially and fully native code, the
test code should be added to the same location inside these two different implementations.
In the previous case, the test code is added to the start of the handling exceptions part
(lines 2-9 in Listing 8.21), i.e., the start of the catch block. In a similar way, the test code
needs to be added to the implementation with fully native code, as shown at lines 20-24
in Listing 8.22 when the implementation in fully native code starts handling exceptions.

Listing 8.22: The enter method of Class Failbox with test code in C
1 JNIEXPORT void JNICALL Java_Failbox_enter(JNIEnv *env,

jobject failbox, jobject currentThread, jobject body) {
2 jstring name = do_Thread_getName_method(env, currentThread

);
3 const char* str = (*env)->GetStringUTFChars(env, name,

NULL);
4 printf("\n %s enters the failbox\n", str);
5 fflush(stdout);
6 do_MonitorEnter(env, failbox);
7 jboolean failed_value = do_get_FailboxField_failed(env,

failbox);
8 if (failed_value == JNI_TRUE) {
9 do_Throw_FailboxException(env, "FailboxFailed");

10 }
11 jobject threads = do_get_FailboxField_threads(env, failbox

);
12 do_ArrayList_add(env, threads, currentThread);
13 do_MonitorExit(env, failbox);
14 do_Runnable_run(env, body);
15 jthrowable exception = (*env)->ExceptionOccurred(env);
16 (*env)->ExceptionClear(env);
17 do_MonitorEnter(env, failbox);
18 do_ArrayList_remove(env, threads, currentThread);
19 if (exception != NULL) {
20 if (strcmp(str, "Thread-0") == 0) {
21 do_Thread_interrupted(env, currentThread);
22 do_CountDownLatch_countDown_method(env, currentThread)

;
23 do_CountDownLatch_await_method(env, currentThread);
24 }
25 do_set_FailboxField_failed(env, failbox, JNI_TRUE);

138 Test-Driven Evolution of Failboxes

26 int arrayListSize = do_ArrayList_size(env, threads);
27 for (int i = 0; i < arrayListSize; i++) {
28 jobject arrayElement = do_ArrayList_get(env, threads,

i);
29 do_Thread_interrupt(env, arrayElement);
30 jstring nameThread = do_Thread_getName_method(env,

arrayElement);
31 const char* strName = (*env)->GetStringUTFChars(env,

nameThread, NULL);
32 printf("\n JNI: %s interrupts %s inside the failbox\n",

str, strName);
33 }
34 }
35 do_MonitorExit(env, failbox);
36 if (exception != NULL)
37 do_Throw(env, exception);
38 }

Output and results The output of the test case for the implementation with fully
native code shows that threadTake is notified by threadPut, i.e., the result is negative.

8.8 Overview of Tests and Results
In sections 8.5-8.7, we demonstrate how to test different implementations of failbox using
the synchronization mechanism with Latches. By these tests, the improvement of each
implementation can be distinguished and also the limitation of each implementation
(except for the full one in JNI) assessed. In this section, we show an overview of the tests
and their outputs.

In fact, the combined test scenarios now cover all points where the failbox might not
handle the exceptions, i.e., by producing negative results, the tests establish the correctness
of the final failbox implementation.

Table 8.1 above demonstrates that the robustness of the implementation of failboxes is
incrementally improved. For example, the test at row 1 shows that if the test code, i.e.,
the synchronized mechanism with Latches, is added immediately before the synchronized
statement inside each implementation, then the basic one can not handle the asynchronous
exception but the one with the uncaught exception handler in Java can. We also use
this test case to check the other two implementations, with and without the uncaught
exception hander in JNI, which are not given in this chapter. The outputs of the tests
show that these two implementations are also able to catch the asynchronous exception.
At row 2, the test in Section 8.6 shows that the implementation with uncaught exception
handler in Java is not able to catch the asynchronous exception when it occurs at the start
of the enter method inside the implementation. However, this limitation is removed in
the implementation with the uncaught exception handler in JNI, which is shown via the
same test in section 8.6.

Table 8.2 provides all results of the tests in this chapter. From the outputs printed on the
console, we easily know whether the notification part inside the failbox is executed. In other

8.9. Conclusions and Future Work 139

Table 8.1: Overview of tests with Latches on implementations of Failboxes

Section
Location of the Test

Code inside the failbox
BF

(Java)
UEHF
(Java)

UEHF
(JNI)

NUEHF
(JNI)

V
Immediate before

the synchronized statement
7 X X X

VI
At the start

of the enter method
7 7 X X

VII
At the start

of the catch block
7 7 7 X

1 The checkmarks indicate the implementation is able to catch the asyn-
chronous exception.

2 The tests for different failbox implementations in gray cells are demon-
strated in the corresponding sections of this chapter.

3 The tests for different failbox implementations corresponding to white
cells are not shown in this chapter.

words, whether the implementation is able to handle the asynchronous exception. Note that
the abbreviation T_NBF (Delay) in the first row represents the test for testing without
the basic failbox implementation. Except for this abbreviation, the rest of abbreviations in
the first column represent tests for testing with different failbox implementations in Java
or in JNI and the required order in which instructions are executed is ensured via either
the delay approach or the latches mechanism in corresponding sections. For instance,
T_BF(Java) (Delay) represents the test for testing the basic Java implementation of
failbox and the required order in which instructions are executed is ensured via the delay
mechanism in Section 8.3.

8.9 Conclusions and Future Work
We presented a testing approach for concurrent programs that enables to generate asyn-
chronous exceptions in a controlled manner. The approach is motivated, explained and
exemplified on implementations of failboxes presented in Chapter 7. The testing approach
enables us to develop tests that demonstrate the wait dependency safety weaknesses of
the different failbox implementations, thereby substantiating our earlier claims discussed
in Chapter 7. Furthermore, the tests are repeatable in that they give the same results for
runs that may differ in scheduling, even on different platforms.

A straightforward step for future work is to adapt the test setup for checking whether
the consistency dependency safety of programs can be ensured via different failbox imple-
mentations in the presence of asynchronous exceptions as well. This will require adaptation
of existing synchronizing mechanisms like locks and semaphores in Java by making them
aware of failboxes, which is explained in detail in [66]. Another direction to further
develop the approach would be to automatically generate synchronization code, and even

140 Test-Driven Evolution of Failboxes

Table 8.2: Overview of outputs and results on tests

Section Output Result
III (T_NBF) (Delay) Thread-2 stops Thread-0 Positive

III (T_BF(Java)) (Delay)

Thread-0 enters the failbox
Thread-1 enters the failbox
Thread-2 stops Thread-0

Thread-0 interrupts Thread-1
inside the failbox

Thread-1 is interrupted

Negative

IV (T_NBF) (Latches) Thread-2 stops Thread-0 Positive

IV (T_BF(Java)) (Latches)

Thread-0 enters the failbox
Thread-1 enters the failbox
Thread-2 stops Thread-0

Thread-0 interrupts Thread-1
inside the failbox

Thread-1 is interrupted

Negative

V (T_BF(Java)) (Latches)
Thread-0 enters the failbox
Thread-1 enters the failbox
Thread-2 stops Thread-0

Positive

V (T_UEHF(Java)) (Latches)

Thread-0 enters the failbox
Thread-1 enters the failbox
Thread-2 stops Thread-0
Thread-1 is interrupted

inside the failbox
Thread-1 is interrupted

Negative

VI (T_UEHF(Java)) (Latches)
Thread-0 enters the failbox
Thread-1 enters the failbox
Thread-2 stops Thread-0

Positive

VI (T_UEHF(JNI)) (Latches)

JNI: Thread-0 enters the failbox
JNI: Thread-1 enters the failbox

JNI: Thread-1 is interrupted
inside the failbox

Thread-2 stops Thread-0
Thread-1 is interrupted

Negative

VII (T_UEHF(JNI)) (Latches)

JNI: Thread-0 enters the failbox
JNI: Thread-1 enters the failbox

Thread-2 stops Thread-0
Thread-3 stops Thread-0

Positive

VII (T_NUEHF(JNI)) (Latches)

JNI: Thread-0 enters the failbox
JNI: Thread-1 enters the failbox

JNI: Thread-0 interrupts Thread-1
inside the failbox

Thread-2 stops Thread-0
Thread-3 stops Thread-0
Thread-1 is interrupted

Negative

1 Thread-0 and Thread-1 are string names of threads threadPut and
threadTake, respectively. Threads Thread-2 and Thread-3 interrupt
thread Thread-0 separately.

8.9. Conclusions and Future Work 141

the complete tests, for given code with places in that code which are identified as possibly
vulnerable for asynchronous exceptions.

In [69], a language and tool are presented to provide test scenarios that, at a rather
abstract level, are similar to ours. It would be very interesting to investigate if our tests
could be generated by that tool.

Chapter 9

Conclusions

This chapter concludes this thesis by discussing the main contributions and directions for
future research. For each of the research questions stated in Chapter 1, we provide the
main results and conclusions. Additional details are available in the chapters that cover
the research questions.

9.1 Contributions
The main research question covered in this thesis is formulated as follows.

RQ: How can we ensure the correctness of software that is automatically
generated from model-to-code transformations?

This question is divided into six more specific research questions, and each of these
questions is addressed in one of the chapters of this thesis.

The first of these questions concerns the challenges and choices in the implementation
and verification of model-to-code transformations and is formulated as follows.

RQ1: What are the challenges and choices of implementing and verifying Java
code generation from concurrent state machines?

To address this question, in Chapter 3 we identified several challenges and choices in the
context of Java code generation from slco models which consist of concurrent, communi-
cating objects. The challenges and choices mainly originate in the lack of correspondence
between model-oriented primitives in the domain-specific modeling language and their
counterparts in Java. Java does not have suitable constructs to directly implement all
concepts of slco (e.g., atomicity, non-determinism, conditional synchronous and asyn-
chronous communication). To this end, we explored possibilities to mimic each slco
concept with equivalent observable behavior using appropriate Java constructs. Moreover,
high-level modeling languages are not designed to address all details needed when gener-
ating executable code from them. Thus, we also worked on the implementation details

144 Conclusions

which are not defined at the slco model level but have to be considered at the Java
level (e.g., synchronization constructs and exception handling mechanisms). Furthermore,
to obtain good implementations, we took quality aspects (e.g., modularity, efficiency,
robustness) into account when implementing slco models. However, this consideration of
quality aspects imposes additional challenges, e.g., they are often intertwined. Finally, we
discussed challenges regarding the verification of the correctness of produced Java code
and the transformation itself in terms of a formal logic and proof support.

Once challenges and choices have been identified in the context of implementing slco
models in Java, gaps between them need to be bridged. This leads to the following research
question.

RQ2: How to bridge the gaps between DSMLs and their target implementation
platforms?

To address this question, we defined a framework for transforming slco models to multi-
threaded Java programs in Chapter 4. When implementing different slco concepts in Java,
we identified and demonstrated concrete gaps between domain-specific modeling languages
and envisaged implementation platforms. We also presented how to bridge these gaps
by finding patterns in programming languages for correctly capturing concurrent model
semantics. We made a distinction between model-generic concepts and model-specific
parts of slco models and also constructed corresponding Java programs with two parts:
generic code and specific code. Generic concepts of slco models are transformed into
generic Java code, while aspects that are specific for concrete slco models are transformed
into specific Java code. Quite some effort was put in investigating how to let the generic
code be modular. As a beneficial consequence, modification of some constructs of the
generic code will not affect the transformation and other constructs of the generic code.
Moreover, each construct of the generic code can be understood in isolation which benefits
the overall understanding of the transformation. Furthermore, the existing constructs can
be reused as much as possible when the need for new target platforms arises.

Once model-to-code transformations have been implemented, a question that naturally
arises is how to guarantee that functional properties of the input models are preserved in
the generated code. This requires semantic conformance between the input models and the
generated code. To address this, a formal specification of the properties and verification of
their preservation is needed. Research question RQ3 addresses this issue.

RQ3: How to show that the generic code implementing model-generic concepts
preserves certain desirable properties of models?

In Chapter 5, we first discussed how we had implemented, specified, and verified a
protection mechanism to access shared variables in such a way that the code blocks
implementing atomic DSML statements are guaranteed to be serializable. This generic
mechanism was used in our framework, but the solution can be regarded as a reusable
module to safely implement atomic operations in general in concurrent systems. Second,
we showed the feasibility to verify the atomicity of generic statements, focusing on the
slco assignment statement. In particular, we formally proved its implementation against
a specification of non-interference using the VeriFast tool [68]. Third, we proved with
VeriFast that our mechanism to ensure the atomicity of statements does not introduce
lock-deadlocks. As an added value, we proved that in our generated programs there is no

9.1. Contributions 145

need for reentrant locks. This allows us to simplify the formal specification of the Java
locks used in our mechanism.

Produced code and the transformations themselves for models in the domain of
safety-critical concurrent systems can be complex, which in turn makes a formal proof
of their correctness difficult and time-consuming. By systematically structuring a model
transformation into small separated and isolated modules, the implementation of each
module can be updated and verified without affecting the overall transformation machinery.
This in turn requires modular approaches for specifying and verifying each module.
Demonstrating the ability to use tool-assisted formal verification for verifying constructs
of the generic code in a modular way is therefore important. Thus, we formulated the
following research question.

RQ4: How to use tool-assisted formal verification to verify in a modular way
a construct of the generic code implementing model-independent concepts?

In Chapter 6, we presented a simplified implementation of the slco asynchronous channel
as a generic part of the model-to-code transformation from slco to Java. We provided
its specification and verification in a modular way for use in a general, multi-threaded
environment via separation logic in VeriFast. Using VeriFast, we verified the absence of
race conditions of the implementation. Besides this, we also showed how to prove properties
of clients using the channel. Furthermore, we proposed a novel modular specification
schema which improves the modularity of the VeriFast approach. This modular schema
was also applied to the specification and verification of the channel. Although our schema
is developed using separation logic and VeriFast, it can be straightforwardly adapted
for the standard Owicki-Gries method (assuming extensions with modules) or similar
formalisms for concurrent verification.

Exceptions are not considered at the slco modeling level but have to be handled
correctly in the produced code. This is because abnormal termination caused by exceptions
may lead to critical issues, such as safety violations and deadlocks. These issues may harm
the robustness of the generated Java code. The following research question is related to
this.

RQ5: How to ensure that generated concurrent code is robust with respect to
exceptions?

To address this question, in Chapter 7 we studied an exception handling mechanism called
failbox, which is intended to be applied in our current framework. The original implemen-
tation of failbox is in Scala, whereas for our setting, we required a Java implementation.
Moreover, the original required the assumption of absence of asynchronous exceptions
inside the failbox code whereas we wanted to remove that restriction. To address these
issues, we first provided a Java implementation without this assumption. The assumption
was then eliminated in an incremental manner through several increasingly more robust
implementations which are all presented in Chapter 7. For each implementation we
analyzed the vulnerabilities and argue the remedies in the next implementation.

Before applying the improved failboxes into our framework for improving the robustness
of the generated Java code, the robustness of the mechanism itself needs to be investigated.
Research question RQ6 addresses this issue.

146 Conclusions

RQ6: How to assess that the exception mechanism failbox used in the model-
to-code transformation is robust?

In Chapter 8, we presented a testing approach for concurrent programs that enables the
generation of asynchronous exceptions in a controlled manner. The approach is motivated,
explained and exemplified on implementations of failboxes presented in Chapter 7. The
testing approach enables us to develop tests that demonstrate the wait dependency safety
weaknesses of the different failbox implementations, thereby substantiating our claims
discussed in Chapter 7. Furthermore, the tests are repeatable in that they give the same
results for runs that may differ in scheduling, even on different platforms.

Summarizing, techniques and approaches presented in this thesis enable the automated
generation of reliable multi-threaded Java programs from slco models specifying concurrent
systems at a high level of abstraction. We demonstrated that the generic code can be
verified using the tool-assisted formal verification in a modular way. Using the VeriFast
program verifier we learned that the tool supports Java advanced features like multi-
threading, but does not actually provide the specifications for some constructs in Java.
For instance, to verify a fine-grained ordered-locking approach proposed in Chapter 5, we
needed to supply the specifications of the Java class ReentrantLock regarding atomicity
and deadlock freedom properties. The specification language of VeriFast is expressive
enough to define those specifications by users in a modular manner. However, this required
considerable time and expertise.

By making a distinction between model-generic concepts and model-specific parts of
slco models, we constructed the corresponding Java programs for models with two parts:
generic Java code and specific Java code. This distinction provides a clear maintenance
advantage and also supports modular verification. In this thesis, we focused on specifying
and verifying the constructs of the generic code. This paves the way for verifying the
correctness of the transformation completely in the next steps, as specifications for
constructs of the generic code can be directly used when verifying the specific Java code.
The modularity ensures that each construct of the generic code can be updated without
affecting the overall transformation machinery. This makes it possible to have different
implementations of each construct in the generic code, e.g., slco channels. For example,
we only provided the specification and verification of a simplified implementation of
slco channels. To further investigate the specification and verification for a channel
implementation incorporating more advanced concurrency features of Java from package
java.util.concurrent, an important future extension is to enrich the tool VeriFast
by adding more specifications for the concurrent data structures from this package. To
improve the robustness of the Java programs generated from models, we studied an
exception handling mechanism called failbox. As the original Scala implementation cannot
be directly applied to our Java based framework, we provided a Java version, improving it
through several increasingly more robust implementations. Specifying and verifying the
last and most robust implementation still need to be further investigated. More details
about future work are explained in the next section.

9.2 Future Work
A fine-grained generic locking mechanism as demonstrated in Chapter 4 can be regarded
as an efficient and reusable module to safely implement atomic operations in concurrent

9.2. Future Work 147

systems. The mechanism employs a fine-grained ordered-locking approach, in which
each shared variable is assigned its own lock for read and write access. The locks of
shared variables involved in the Java implementation of an slco statement need to be
acquired before threads access them. However, not all statements of an slco model need
to compete over accessing shared variables during the runtime (execution) of the Java
program transformed from the slco model. In such cases, these statements are data-race
free. Correspondingly, acquiring the locks of the involved shared variables are not needed
when executing those statements. An interesting direction for future research would be
to investigate whether the information about potential data-races can be obtained at the
model level. Based on the information obtained, statements that are data-race free would
be translated to a Java code block that does not try to acquire locks. Correspondingly,
the amount of overhead introduced by using the fine-grained locking is decreased.

Java package Java.util.concurrent.atomic contains useful classes to perform
atomic operations on single variables. These atomic operations usually are much faster than
synchronizing via locks, as they make heavy use of compare-and-swap (CAS). Therefore,
another interesting future direction would be to use atomic operations of classes in pack-
age Java.util.concurrent.atomic to implement the slco statements which only
involve single shared variables. For instance, AtomicInteger and AtomicBoolean
can be used to implement slco Integer and Boolean variables, respectively. To verify the
correctness of the corresponding Java implementation of the slco statements, specifica-
tions for atomic classes are needed. Currently, VeriFast only supports the specification
for the atomic class AtomicReference. Enriching specifications for atomic classes in
Java could lead to an interesting extension to VeriFast. Alternatively, we can investigate
whether it is feasible to use other similar verification tools like Vercors [23] to verify the
implementation of this kind of slco statements. Vercors supports formal specification of
classes from the atomic package in the Java API [53] as well.

The fine-grained generic locking mechanism specified and verified in Chapter 5 is
simplified in the sense that the wait-notify mechanism for notifying blocked threads is not
considered. The wait-notify mechanism improves the efficiency of concurrent programs but
also complicates verification. This is because it may cause a liveness issue, i.e., a waiting
thread might be blocked forever, leading the program to a deadlock. Also, it restricts
certain interleavings in the program. This makes it difficult to reason about the functional
behavior of the program. Recently, there has been growing interest in proving deadlock
freedom and finite blocking of non-terminating programs [28,55,63,94]. In [55] a useful
verification approach for verifying such deadlock freedom of programs that use condition
variables is proposed by Hamin et al. This approach could lead to an interesting extension
to VeriFast: the extension should enable the verification of the implementation of slco
statements including the wait-notify mechanism.

A simplified Java implementation of slco’s asynchronous channel as well as its corre-
sponding specification and verification are demonstrated in Chapter 6. This implementation
does not cover the conditional reception feature. Also, the implementation itself does
not support blocking send and receive operations. These simplifications facilitate the
verification of the implementation. A more complete implementation of slco asynchronous
channel is presented in Chapter 4, incorporating more advanced features of Java. To verify
this improved implementation, we still need to extend the tool VeriFast with specifications
of operations of class BlockingQueue. A history-based approach to develop behavioral
specifications for concurrent data structures like BlockingQueue is proposed by Za-

148 Conclusions

harieva Stojanovski et al. in [94], which provides a valuable insight to formally specify the
behavior of Java concurrent data structures for VeriFast in future research.

To improve the robustness of generated code from slco models, we implemented and
tested an exception handling mechanism called failbox in Chapters 7 and 8, respectively.
However, the work presented in this thesis has not yet showed the application of failbox
in our framework that transforms slco models to Java code. To be able to apply the
failbox mechanism in the implementation in future research, one needs to give a definition
of all kinds of dependent operations including send and receive operations of channels
at the slco model level. Based on this definition, an approach to analyze dependent
operations of an slco model needs to be introduced when transforming from slco
models to Java code. Correspondingly, dependent operations will be executed in the same
failbox during the execution of the Java implementation. Besides applying the failbox
concept in the implementation, future work also involves formally verifying the proposed
failbox implementations, and comparing the failbox approach to other mechanisms [45,56]
guaranteeing dependency safety. By setting objective criteria, a full evaluation of usability
and performance could be performed.

A straightforward step for future work is to adapt the test setup in Chapter 8 for
checking whether the consistency dependency safety of programs can be ensured via different
failbox implementations in the presence of asynchronous exceptions as well. This will
require adaptation of existing synchronizing mechanisms like locks and semaphores in Java
by making them aware of failboxes, which is explained in detail in [66]. Another direction
to further develop the approach would be to automatically generate synchronization code,
and even the complete tests, for given code with places in that code which are identified as
possibly vulnerable for asynchronous exceptions. In [69], a language and tool are presented
to provide test scenarios that, at a rather abstract level, are similar to ours. It would be
very interesting to investigate if our tests could be generated by that tool.

Besides the verification of generic code, specific code should also be verified. This could
be addressed by automatically deriving tests for the code from the model [20]. A further
step is to generate annotation along with the code. This complementary approach allows
fully automated program proofs from the model-to-code generator. A final step would
be to directly verify the correctness of the transformation’s rules expressed in EGL by
using formal approaches. These parts of work can be considered as a valuable direction
for future work, as the transformation framework can then be fully verified and thus its
correctness can be ensured.

At the slco model level, fairness and liveness properties have not been considered
yet. However, the challenge when transforming slco models to code is that fairness and
liveness has to be addressed in some way. The current Java implementation of slco
models in our framework only ensures fairness properties in the sense that we rely on the
constructs supporting fairness provided by the Java library, e.g., fair locks. Moreover, we
have achieved and verified lock-deadlock freedom for the generic code. The first step for
future research would be to advance the formal rigor of the slco-approach by formally
expressing fairness and liveness. The second step would be to investigate how to ensure
these properties and formally prove their preservation in Java code transformed from slco
models.

Bibliography

[1] “Eclipse Modeling Framework,” https://eclipse.org/modeling/emf/. Accessed: 2017-
07-22.

[2] “Java API Specifications,” http://docs.oracle.com/javase/7/docs/api/. Accessed:
2017-08-29.

[3] “Java Native Interface Specification,” http://docs.oracle.com/javase/7/docs/
technotes/guides/jni/spec/jniTOC.html. Accessed 2017-08-11.

[4] “Scala,” http://www.scala-lang.org/files/archive/spec/2.11/. Accessed: 2017-07-22.

[5] “Testing Asynchronous Code,” https://www.javacodegeeks.com/2015/10/
testing-asynchronous-code.html, Accessed: 2016-09-20.

[6] “VeriFast Website,” https://people.cs.kuleuven.be/~bart.jacobs/verifast/, Accessed:
2017-06-08.

[7] “Xtext,” https://eclipse.org/Xtext/. Accessed: 2017-07-22.

[8] L. Ab Rahim and J. Whittle, “Verifying Semantic Conformance of State Machine-to-
Java Code Generators,” in International Conference on Model Driven Engineering
Languages and Systems, ser. LNCS, vol. 6394. Springer, 2010, pp. 166–180.

[9] M. Abadi, C. Flanagan, and S. N. Freund, “Types for Safe Locking: Static Race
Detection for Java,” ACM Transactions on Programming Languages and Systems,
vol. 28, no. 2, pp. 207–255, 2006.

[10] M. Aigner, A. Biere, C. M. Kirsch, A. Niemetz, and M. Preiner, “Analysis of Portfolio-
Style Parallel SAT Solving on Current Multi-Core Architectures,” in Pragmatics of
SAT Workshop, ser. EPiC Series, vol. 29. Easychair, 2013, pp. 28–40.

[11] S. Andova, M. van den Brand, and L. Engelen, “Prototyping the Semantics of a
DSL using ASF+SDF: Link to Formal Verification of DSL Models,” in International
Workshop on Algebraic Methods in Model-based Software Engineering, ser. EPTCS,
vol. 56, 2011, pp. 65–79.

https://eclipse.org/modeling/emf/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
http://www.scala-lang.org/files/archive/spec/2.11/
https://www.javacodegeeks.com/2015/10/testing-asynchronous-code.html
https://www.javacodegeeks.com/2015/10/testing-asynchronous-code.html
https://people.cs.kuleuven.be/~bart.jacobs/verifast/
https://eclipse.org/Xtext/

150 Bibliography

[12] S. Andova, M. van den Brand, and L. Engelen, “Reusable and Correct Endogenous
Model Transformations,” in International Conference on Theory and Practice of
Model Transformations, ser. LNCS, vol. 7307. Springer, 2012, pp. 72–88.

[13] J. Armstrong, “Making Reliable Distributed Systems in the Presence of Software
Errors,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2003.

[14] B. J. Arnoldus, “An Illumination of the Template Enigma: Software Code Generation
with Templates,” Ph.D. dissertation, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2010.

[15] J. Arnoldus, M. van den Brand, A. Serebrenik, and J. J. Brunekreef, Code Generation
with Templates, ser. Atlantis Studies in Computing. Atlantis Press, 2012, vol. 1.

[16] J. Bach, X. Crégut, P. Moreau, and M. Pantel, “Model transformations with Tom,” in
International Workshop on Language Descriptions, Tools, and Applications. ACM,
2012, p. 4.

[17] M. Bagherzadeh, H. Rajan, and M. A. D. Darab, “On Exceptions, Events and
Observer Chains,” in Aspect-Oriented Software Development. ACM, 2013, pp.
185–196.

[18] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Checking. MIT press,
2008.

[19] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums, “Formal System
Development with KIV,” in Fundamental Approaches to Software Engineering, ser.
LNCS, vol. 1783. Springer, 2000, pp. 363–366.

[20] A. Belinfante, J. Feenstra, R. G. de Vries, J. Tretmans, N. Goga, L. M. Feijs, S. Mauw,
and L. Heerink, “Formal Test Automation: A Simple Experiment,” in International
Workshop on Testing Communicating Systems: Method and Applications, ser. IFIP,
vol. 147. Kluwer, 1999, pp. 179–196.

[21] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond, “DoubleChecker: Efficient Sound
and Precise Atomicity Checking,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2014, pp. 28–39.

[22] J. O. Blech, S. Glesner, and J. Leitner, “Formal Verification of Java Code Generation
from UML Models,” in International Fujaba Days 2005-MDD, 2005, pp. 49–56.

[23] S. Blom and M. Huisman, “The VerCors Tool for Verification of Concurrent Pro-
grams,” in International Symposium on Formal Methods, ser. LNCS, vol. 8442.
Springer, 2014, pp. 127–131.

[24] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson, “Permission Accounting
in Separation Logic,” in ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 2005, pp. 259–270.

Bibliography 151

[25] D. Bosnacki, S. Edelkamp, D. Sulewski, and A. Wijs, “GPU-PRISM: An Extension of
PRISM for General Purpose Graphics Processing Units,” in International Workshop
on Parallel and Distributed Methods in verifiCation. IEEE Computer Society Press,
2010, pp. 17–19.

[26] D. Bošnački, M. R. Odenbrett, A. Wijs, W. Ligtenberg, and P. Hilbers, “Efficient
Reconstruction of Biological Networks via Transitive Reduction on General Purpose
Graphics Processors,” BMC Bioinformatics, vol. 13, p. 281, 2012.

[27] D. Bošnački, M. van den Brand, P. Denissen, C. Huizing, B. Jacobs, R. Kuiper,
A. Wijs, M. Wiłkowski, and D. Zhang, “Dependency Safety for Java: Implementing
Failboxes,” in International Conference on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools. ACM, 2016, pp.
15:1–15:6.

[28] P. Boström and P. Müller, “Modular Verification of Finite Blocking in Non-
terminating Programs,” in European Conference on Object-Oriented Programming,
ser. LIPIcs, vol. 37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[29] D. Bošnački, M. van den Brand, J. Gabriels, B. Jacobs, R. Kuiper, S. Roede, A. Wijs,
and D. Zhang, “Towards Modular Verification of Threaded Concurrent Executable
Code Generated from DSL Models,” in International Conference on Formal Aspects
of Component Software, ser. LNCS, vol. 9539. Springer, 2015, pp. 141–160.

[30] S. Brookes, “A Semantics for Concurrent Separation Logic,” Theoretical Computer
Science, vol. 375, no. 1-3, pp. 227–270, 2007.

[31] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan,
“Efficient and Precise Datarace Detection for Multithreaded Object-Oriented Pro-
grams,” in ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2002, pp. 258–269.

[32] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model Checking and the
State Explosion Problem,” in Tools for Practical Software Verification, LASER,
International Summer School, ser. LNCS. Springer, 2012, vol. 7682, pp. 1–30.

[33] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies, “VCC: A Practical System for Verifying Concurrent C,”
in International Conference on Theorem Proving in Higher Order Logics, ser. LNCS,
vol. 5674. Springer, 2009, pp. 23–42.

[34] K. Czarnecki and S. Helsen, “Feature-based Survey of Model Transformation Ap-
proaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[35] S. de Putter and A. Wijs, “Verifying a Verifier: On the Formal Correctness of
an LTS Transformation Verification Technique,” in International Conference on
Fundamental Approaches to Software Engineering, ser. LNCS, vol. 9633. Springer,
2016, pp. 383–400.

152 Bibliography

[36] S. de Putter and A. Wijs, “Compositional Model Checking Is Lively,” in Interna-
tional Conference on Formal Aspects of Component Software, ser. LNCS, vol. 10487.
Springer, 2017, pp. 117–136.

[37] S. de Putter and A. Wijs, “A Formal Verification Technique for Behavioural Model-
To-Model Transformations,” Formal Aspects of Computing, pp. 1–41, 2017 (available
online).

[38] E. Denney and B. Fischer, “Generating Customized Verifiers for Automatically
Generated Code,” in International Conference on Generative Programming and
Component Engineering. ACM, 2008, pp. 77–88.

[39] E. Denney, B. Fischer, J. Schumann, and J. Richardson, “Automatic Certification
of Kalman Filters for Reliable Code Generation,” in IEEE Aerospace Conference.
IEEE, 2005, pp. 1–10.

[40] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, “Graphviz –
Open Source Graph Drawing Tools,” in International Symposium on Graph Drawing.
Springer, 2001, pp. 483–484.

[41] L. Engelen, “From Napkin Sketches to Reliable Software,” Ph.D. dissertation, Eind-
hoven University of Technology, Eindhoven, The Netherlands, 2012.

[42] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of Race Conditions
and Deadlocks,” in ACM Symposium on Operating Systems Principles. ACM, 2003,
pp. 237–252.

[43] A. Farzan and P. Madhusudan, “Causal Atomicity,” in International Conference on
Computer Aided Verification, ser. LNCS, vol. 4144. Springer, 2006, pp. 315–328.

[44] L. M. Feijs, “Transformations of Designs,” in Workshop on Algebraic Methods, ser.
LNCS, vol. 490. Springer, 1991, pp. 167–199.

[45] P. Felber, C. Fetzer, V. Gramoli, D. Harmanci, and M. Nowack, “Safe Exception
Handling with Transactional Memory,” in Transactional Memory. Foundations,
Algorithms, Tools, and Applications - COST Action Euro-TM IC1001, ser. LNCS,
vol. 8913. Springer, 2015, pp. 245–267.

[46] C. Fetzer, K. Högstedt, and P. Felber, “Automatic Detection and Masking of Non-
Atomic Exception Handling,” in International Conference on Dependable Systems
and Networks. IEEE Computer Society, 2003, pp. 445–454.

[47] L. Fix, O. Grumberg, A. Heyman, T. Heyman, and A. Schuster, “Verifying Very
Large Industrial Circuits Using 100 Processes and Beyond,” International Journal
of Foundations of Computer Science, vol. 18, no. 1, pp. 45–62, 2007.

[48] C. Flanagan and S. Qadeer, “A Type and Effect System for Atomicity,” in ACM
SIGPLAN Conference on Programming Language Design and Implementation. ACM,
2003, pp. 338–349.

Bibliography 153

[49] C. Fogelberg, A. Potanin, and J. Noble, “Ownership Meets Java,” Aliasing, Con-
finement and Ownership in Object-oriented Programming (IWACO), pp. 30–33,
2007.

[50] M. Fowler, Domain-specific Languages. Pearson Education, 2010.

[51] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java Language
Specification. Java SE 8 Edition, 2015.

[52] D. Grewe and A. Lokhmotov, “Automatically Generating and Tuning GPU Code
for Sparse Matrix-Vector Multiplication from a High-Level Representation,” in
Workshop on General Purpose Processing on Graphics Processing Units. ACM,
2011.

[53] C. Haack, M. Huisman, C. Hurlin, and A. Amighi, “Permission-based Separation
Logic for Multithreaded Java Programs,” Logical Methods in Computer Science,
vol. 11, no. 1, pp. 1–66, 2015.

[54] A. Haase, M. Völter, S. Efftinge, and B. Kolb, “Introduction to OpenArchitecture-
Ware 4.1.2,” in MDD Tool Implementers Forum, 2007.

[55] J. Hamin and B. Jacobs, “Modular Verification of Deadlock Freedom in the Presence
of Condition Variables,” Department of Computer Science, Katholieke Universiteit
Leuven, Tech. Rep., 2017.

[56] D. Harmanci, V. Gramoli, and P. Felber, “Atomic Boxes: Coordinated Exception
Handling with Transactional Memory,” in European Conference on Object-Oriented
Programming, ser. LNCS, vol. 6813. Springer, 2011, pp. 634–657.

[57] J. W. Havender, “Avoiding Deadlock in Multitasking Systems,” IBM systems journal,
vol. 7, no. 2, pp. 74–84, 1968.

[58] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Communications
of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[59] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the
ACM, vol. 21, no. 8, pp. 666–677, 1978.

[60] G. J. Holzmann, R. Joshi, and A. Groce, “Tackling Large Verification Problems
with the Swarm Tool,” in International SPIN Symposium on Model Checking of
Software, ser. LNCS, vol. 5156. Springer, 2008, pp. 134–143.

[61] K. Huizing and R. Kuiper, “Verification of Object Oriented Programs Using Class
Invariants,” in International Conference on Fundamental Approaches to Software
Engineering, ser. LNCS, vol. 1783. Springer, 2000, pp. 208–221.

[62] J. D. Ichbiah, R. Firth, P. N. Hilfinger, O. Roubine, M. Woodger, J.-R. Abrial, J.-L.
Gailly, J.-C. Heliard, H. F. Ledgard, B. A. Wichmann et al., Reference Manual for
the Ada Programming Language. Ada Joint Program Office, 1983.

[63] B. Jacobs, “Provably Live Exception Handling,” in Workshop on Formal Techniques
for Java-like Programs. ACM, 2015, pp. 7:1–7:4.

154 Bibliography

[64] B. Jacobs, D. Bosnacki, and R. Kuiper, “Modular Termination Verification: Extended
Version,” Department of Computer Science, Katholieke Universiteit Leuven, Tech.
Rep., 2015.

[65] B. Jacobs, P. Müller, and F. Piessens, “Sound Reasoning about Unchecked Excep-
tions,” in International Conference on Software Engineering and Formal Methods.
IEEE Computer Society, 2007, pp. 113–122.

[66] B. Jacobs and F. Piessens, “Failboxes: Provably Safe Exception Handling,” in
European Conference on Object-Oriented Programming, ser. LNCS. Springer, 2009,
vol. 5653, pp. 470–494.

[67] B. Jacobs and F. Piessens, “Expressive Modular Fine-Grained Concurrency Speci-
fication,” in ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 2011, pp. 271–282.

[68] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens,
“VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java,” in In-
ternational Symposium on NASA Formal Methods, vol. 6617. Springer, 2011, pp.
41–55.

[69] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov, “Improved
Multithreaded Unit Testing,” in ACM SIGSOFT Symposium on the Foundations of
Software Engineering. ACM, 2011, pp. 223–233.

[70] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

[71] D. Kolovos, L. Rose, R. Paige, and A. Garcıa-Domınguez, The Epsilon Book. Eclipse,
2011.

[72] A. Laarman, R. Langerak, J. Van De Pol, M. Weber, and A. Wijs, “Multi-Core
Nested Depth-First Search,” in International Symposium on Automated Technology
for Verification and Analysis, ser. LNCS, vol. 6996. Springer, Heidelberg, 2011, pp.
321–335.

[73] A. Laarman, J. van de Pol, and M. Weber, “Multi-core LTSmin: Marrying Modularity
and Scalability,” in International Symposium on NASA Formal Methods, ser. LNCS,
vol. 6617. Springer, 2011, pp. 506–511.

[74] G. Lagorio and M. Servetto, “Strong Exception-Safety for Checked and Unchecked
Exceptions,” Journal of Object Technology, vol. 10, no. 1, pp. 1–20, 2011.

[75] D. Lea, Concurrent Programming in Java: Design Principles and Patterns. Addison-
Wesley Professional, 2000.

[76] K. R. M. Leino, P. Müller, and J. Smans, “Deadlock-free Channels and Locks,” in
European Symposium on Programming, ser. LNCS, vol. 6012. Springer, 2010, pp.
407–426.

Bibliography 155

[77] N. D. Matsakis and T. R. Gross, “Handling Errors in Parallel Programs Based
on Happens Before Relations,” in IEEE International Symposium on Parallel and
Distributed Processing, 2010, pp. 1–8.

[78] R. Membarth, A. Lokhmotov, and J. Teich, “Generating GPU Code from a High-
Level Representation for Image Processing Kernels,” in Workshop on Highly Parallel
Processing on a Chip, ser. LNCS, vol. 7155. Springer, Heidelberg, 2011, pp. 270–280.

[79] M. Musuvathi and D. R. Engler, “Model Checking Large Network Protocol Im-
plementations,” in Symposium on Networked Systems Design and Implementation.
USENIX Association, 2004, pp. 155–168.

[80] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng, “On
Optimization Methods for Deep Learning,” in International Conference on Machine
Learning. Omnipress, 2011, pp. 265–272.

[81] P. O’Hearn, J. Reynolds, and H. Yang, “Local Reasoning about Programs that Alter
Data Structures,” in International Workshop on Computer Science Logic, ser. LNCS,
vol. 2142. Springer, 2001, pp. 1–19.

[82] S. Owicki and D. Gries, “Verifying Properties of Parallel Programs: An Axiomatic
Approach,” Communications of the ACM, vol. 19, no. 5, pp. 279–285, 1976.

[83] S. Pllana and F. Xhafa, Programming Multicore and Manycore Computing Systems.
Wiley, 2017.

[84] L. A. Rahim and J. Whittle, “A Survey of Approaches for Verifying Model Transfor-
mations,” Software & Systems Modeling, vol. 14, no. 2, pp. 1003–1028, 2015.

[85] H. Rebêlo, R. Coelho, R. Lima, G. T. Leavens, M. Huisman, A. Mota, and F. Castor,
“On the Interplay of Exception Handling and Design by Contract: An Aspect-
Oriented Recovery Approach,” in Workshop on Formal Techniques for Java-Like
Programs. ACM, 2011, pp. 7:1–7:6.

[86] J. C. Reynolds, “Separation Logic: A Logic for Shared Mutable Data Structures,” in
IEEE Symposium on Logic in Computer Science, IEEE. IEEE Computer Society,
2002, pp. 55–74.

[87] S. Roede, “Proving Correctness of Threaded Parallel Executable Code Generated
from Models Described by a Domain Specific Language,” Master’s thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands, 2012.

[88] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven Engineering,” Computer,
vol. 39, no. 2, pp. 25–31, 2006.

[89] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and Soul of
Model-Driven Software Development,” IEEE software, vol. 20, no. 5, pp. 42–45,
2003.

[90] N. Shavit and D. Touitou, “Software Transactional Memory,” Distributed Computing,
vol. 10, no. 2, pp. 99–116, 1997.

156 Bibliography

[91] J. Smans, B. Jacobs, and F. Piessens, “VeriFast for Java: A tutorial,” in Aliasing in
Object-Oriented Programming. Types, Analysis and Verification, ser. LNCS. Springer,
2013, vol. 7850, pp. 407–442.

[92] M. Staats and M. P. E. Heimdahl, “Partial Translation Verification for Untrusted
Code-Generators,” in International Conference on Formal Engineering Methods, vol.
5256. Springer, 2008, pp. 226–237.

[93] K. Stenzel, N. Moebius, and W. Reif, “Formal Verification of QVT Transformations
for Code Generation,” Software & Systems Modeling, vol. 14, no. 2, pp. 981–1002,
2015.

[94] M. Z. Stojanovski, “Closer to Reliable Software: Verifying functional Behaviour of
Concurrent Programs,” Ph.D. dissertation, University of Twente, Enschede, The
Netherlands, 2015.

[95] M. Sulzmann and A. Zechner, “Model Checking DSL-Generated C Source Code,”
in International SPIN Symposium on Model Checking of Software, ser. LNCS, vol.
7385. Springer, 2012, pp. 241–247.

[96] K. Svendsen, L. Birkedal, and M. Parkinson, “Joins: A Case Study in Modular
Specification of a Concurrent Reentrant Higher-Order Library,” in European Confer-
ence on Object-Oriented Programming, ser. LNCS, vol. 7920. Springer, 2013, pp.
327–351.

[97] K. Svendsen, L. Birkedal, and M. Parkinson, “Modular Reasoning about Separation
of Concurrent Data Structures,” in European Symposium on Programming, ser.
LNCS, vol. 7792. Springer, 2013, pp. 169–188.

[98] S. Tasharofi and R. Johnson, “Patterns in Testing Concurrent Programs with Non-
deterministic Behaviors,” Department of Computer Science, University of Illinois at
Urbana-Champaign, Tech. Rep., 2011.

[99] S. Toub, “Keep Your Code Running with the Reliability Features of the .NET
Framework,” MSDN Magazine, October 2015.

[100] T. Tuerk, “A Formalisation of Smallfoot in HOL,” in International Conference on
Theorem Proving in Higher Order Logics, ser. LNCS, vol. 5674. Springer, 2009, pp.
469–484.

[101] M. van Amstel, M. van den Brand, and L. Engelen, “An Exercise in Iterative Domain-
specific Language Design,” in In Proceedings of the Joint ERCIM Workshop on
Software Evolution and International Workshop on Principles of Software Evolution.
ACM, 2010, pp. 48–57.

[102] M. van Amstel, M. van den Brand, and L. Engelen, “Using a DSL and Fine-
Grained Model Transformations to Explore the Boundaries of Model Verification,” in
International Conference on Secure Software Integration and Reliability Improvement.
IEEE Computer Society, 2011, pp. 120–127.

Bibliography 157

[103] M. F. van Amstel, “Assessing and Improving the Quality of Model Transformations,”
Ph.D. dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands,
2012.

[104] A. van Deursen, P. Klint, and J. Visser, “Domain-specific Languages: An Annotated
Bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000.

[105] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design Patterns: Elements of
Reusable Object-Oriented Software. Reading: Addison-Wesley, 1995.

[106] P. H. Welch and J. M. Martin, “Formal Analysis of Concurrent Java Systems,”
Communicating Process Architectures, vol. 58, pp. 275–301, 2000.

[107] A. Wijs, “Define, Verify, Refine: Correct Composition and Transformation of Con-
current System Semantics,” in International Symposium on Formal Aspects of
Component Software, ser. LNCS, vol. 8348. Springer, 2013, pp. 348–368.

[108] A. Wijs, “GPU Accelerated Strong and Branching Bisimilarity Checking,” in Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, ser. LNCS, vol. 9035. Springer, Heidelberg, 2015, pp. 368–383.

[109] A. Wijs and D. Bošnački, “Many-Core On-The-Fly Model Checking of Safety
Properties Using GPUs,” International Journal on Software Tools for Technology
Transfer, vol. 18, no. 2, pp. 169–185, 2016.

[110] A. Wijs and L. Engelen, “Efficient Property Preservation Checking of Model Refine-
ments,” in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, vol. 13. Springer, 2013, pp. 565–579.

[111] A. Wijs and L. Engelen, “REFINER: Towards Formal Verification of Model Trans-
formations,” in International Symposium on NASA Formal Methods, ser. LNCS, vol.
8430, 2014, pp. 258–263.

[112] A. Wijs and B. Lisser, “Distributed Extended Beam Search for Quantitative Model
Checking,” in Workshop on Model Checking and Artificial Intelligence, ser. LNAI,
vol. 4428. Springer, Heidelberg, 2007, pp. 165–182.

[113] A. Wijs, T. Neele, and D. Bošnački, “GPUexplore 2.0: Unleashing GPU Explicit-
State Model Checking,” in International Conference on Formal Methods, ser. LNCS,
vol. 9995. Springer, 2016, pp. 694–701.

[114] D. Zhang, D. Bošnački, M. van den Brand, P. Denissen, C. Huizing, B. Jacobs,
R. Kuiper, A. Wijs, and M. Wiłkowski, “Dependency Safety for Java: Implementing
and Testing Failboxes,” Science of Computer Programming, 2017, submitted.

[115] D. Zhang, D. Bošnački, M. van den Brand, L. Engelen, C. Huizing, R. Kuiper, and
A. Wijs, “Towards Verified Java Code Generation from Concurrent State Machines,”
in Workshop on Analysis of Model Transformations co-located with ACM/IEEE 17th
International Conference on Model Driven Engineering Languages & Systems, ser.
CEUR, vol. 1277. CEUR-WS.org, 2014, pp. 64–69.

158 Bibliography

[116] D. Zhang, D. Bošnački, M. van den Brand, C. Huizing, B. Jacobs, R. Kuiper, and
A. Wijs, “Verifying Atomicity Preservation and Deadlock Freedom of a Generic
Shared Variable Mechanism Used in Model-To-Code Transformations,” Communica-
tions in Computer and Information Science, vol. 692, pp. 249–273, 2017.

[117] D. Zhang, D. Bošnački, M. van den Brand, C. Huizing, R. Kuiper, B. Jacobs, and
A. Wijs, “Verification of Atomicity Preservation in Model-To-Code Transformations,”
in International Conference on Model-Driven Engineering and Software Development.
SciTePress, 2016, pp. 578–588.

[118] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst, “Ownership and Immutability
in Generic Java,” in ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 2010, pp. 598–617.

[119] A. Zündorf, “Rigorous Object Oriented Software Development,” Ph.D. dissertation,
University of Paderborn, Paderborn, Germany, 2001.

Summary

From Concurrent State Machines to Reliable
Multi-threaded Java Code

Model transformation is a powerful concept in model-driven software engineering.
Starting with an initial model written in a domain-specific modeling language (DSML),
other artifacts such as additional models, source code and test scripts can be produced
via a chain of transformations. The initial model is typically written at a conveniently
high level of abstraction, allowing the user to reason about complex system behavior in
an intuitive way. The model transformations are supposed to preserve the correctness of
the initial model, thereby realizing a framework where the generated artifacts are correct
by construction. A question that naturally arises for model-to-code transformations is
how to guarantee that the functional properties of the input models are preserved in the
generated code. We distinguish generic and model specific code and concentrate on the
former. We consider this question for a framework that implements the transformation
from the concurrent DSML slco to multi-threaded Java code. In this context, we identify
and address several challenges involving the robustness and correctness of generated code.

Our main contributions are as follows:
First, we start our research by studying the challenges and choices of implementing

and verifying model-to-code transformations. We explore possibilities to mimic each slco
concept with a counterpart programmed in Java. We also work on the implementation
details which are not defined at the slco model level but have to be considered at
the Java level (e.g., synchronization constructs and exception handling mechanisms).
Furthermore, to obtain good implementations, we take quality aspects (e.g., modularity,
efficiency, robustness) into account when implementing slco models. This consideration of
quality aspects imposes additional challenges, e.g., functional and quality issues are often
intertwined. Finally, we discuss challenges regarding the verification of the correctness
of produced Java code and the transformation itself in terms of a formal logic and proof
support.

Second, we develop an automated model-to-code transformation from slco models to
multi-threaded Java programs, which is implemented in the Epsilon Generation Language
(EGL) using Eclipse. The transformation rules are defined by means of templates. The
generator applies transformation rules to all the meta-model objects, which results in
generation of the corresponding Java code. This Java code is constructed by combining
specific code implementing the behavior of the input model with generic code implementing
model independent slco concepts. By making a distinction between generic and specific

160 Summary

code, proving the correctness of model-to-code transformations can be done more efficiently.
Third, we provide a protection mechanism to access shared variables to preserve

atomicity of slco statements in the Java implementation. This generic mechanism is
used in our framework, but the solution is reusable to safely implement atomic operations
in concurrent systems. We give its generic specification based on separation logic and
verify it using VeriFast. We also show the feasibility to verify the atomicity of statements,
focusing on the slco assignment statement. Moreover, we prove with VeriFast that our
mechanism does not introduce lock-deadlocks. As an added value, we prove that in our
generated programs there is no need for reentrant locks, which allows us to simplify the
formal specification of the Java locks in our mechanism.

Fourth, we specify and perform automated verification of a Java implementation of the
slco channel data type. To this end, we introduce a new schema that supports fine grained
concurrency and procedure-modularity. We demonstrate this approach by specifying and
verifying the channel construct using the separation logic based tool VeriFast. Our results
show that such tool-assisted formal verification is a viable technique, supporting object
orientation, concurrency via threads, and parameterized verification.

Fifth, we ensure the robustness of generated code by applying the exception handling
mechanism called failbox to the code generation. To this end, we implement the mechanism
failbox in Java and also improve it by eliminating the assumption required in the original
failbox implementation. This assumption is eliminated in an incremental manner through
several increasingly more robust implementations. For each implementation we analyze
the vulnerabilities and argue the remedies in the next implementation.

Last, we present a testing approach to investigate whether the vulnerabilities of each
implementation of failbox are realistic and the remedies proposed in the next implementa-
tion are effective. This testing approach enables us to generate asynchronous exceptions
in a controlled manner for concurrent programs. The tests are repeatable in that they
give the same results for runs that may differ in scheduling, even on different platforms.

To summarize, we identify several challenges on the correctness and robustness of Java
code generated from concurrent state machines. To address these challenges, we introduce
an approach where code is verified in a modular fashion using VeriFast and robustness
is provided by an improved failbox mechanism. Techniques and approaches presented in
this thesis enable the automated generation of reliable multi-threaded Java programs from
slco models specifying concurrent systems at a high level of abstraction.

Curriculum Vitae

Personal Information
Name: Dan Zhang
Date of birth: June 30, 1986
Place of birth: Henan, China

Education
MSc. in Computer Science and Engineering 2010–2013

Xi’an Jiaotong University
Xi’an, China

BSc. in Computer Science and Engineering 2005–2009

Zhengzhou University of Light Industry
Zhengzhou, China

Professional Experience
Researcher 2017–present

University of Twente
Enschede, the Netherlands

PhD candidate 2013–2017

Eindhoven University of Technology
Eindhoven, the Netherlands

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic De-
sign of ABCs with the Real World. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2015-01
A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction. Fac-
ulty of Science, UvA. 2015-02
R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Faculty of
Mechanical Engineering, TU/e. 2015-03
T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibility and
Trustworthiness. Faculty of Mathematics
and Computer Science, TU/e. 2015-04
A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2015-05
T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2015-06
S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07
E. Costante. Privacy throughout the Data
Cycle. Faculty of Mathematics and Com-
puter Science, TU/e. 2015-08
S. Cranen. Getting the point — Obtaining
and understanding fixpoints in model check-
ing. Faculty of Mathematics and Computer
Science, TU/e. 2015-09
R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-10
J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security pro-

tocols. Faculty of Science, Mathematics and
Computer Science, RU. 2015-11
Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Evalua-
tion for Automotive Software Systems. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2015-12
J. Bransen. On the Incremental Evalua-
tion of Higher-Order Attribute Grammars.
Faculty of Science, UU. 2015-13
S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-14
C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2015-15
S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16
R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Systems.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2015-17
J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2015-18
M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics and
Computer Science, TU/e. 2015-19
D. Gebler. Robust SOS Specifications
of Probabilistic Processes. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2015-20
M. Zaharieva-Stojanovski. Closer to
Reliable Software: Verifying functional be-
haviour of concurrent programs. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-21

R.J. Krebbers. The C standard formal-
ized in Coq. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2015-22

R. van Vliet. DNA Expressions – A For-
mal Notation for DNA. Faculty of Mathe-
matics and Natural Sciences, UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models to Safety
Assurance – Applying Model-Based Tech-
niques to Support Safety Assurance. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2016-06

B. Ege. Physical Security Analysis of Em-
bedded Devices. Faculty of Science, Mathe-
matics and Computer Science, RU. 2016-07

A.I. van Goethem. Algorithms
for Curved Schematization. Faculty
of Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Deci-
sion Diagrams. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2016-10

A.C. van Hulst. Control Synthesis using
Modal Logic and Partial Bisimilarity – A
Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineering,
TU/e. 2016-11

A. Zawedde. Modeling the Dynamics of
Requirements Process Improvement. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2016-12

F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2016-13

J.N. van Rijn. Massively Collaborative
Machine Learning. Faculty of Mathematics
and Natural Sciences, UL. 2016-14

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Ef-
ficient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems – Fault tree
analysis via Markov reward automata. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Radio Ap-
plications Scheduled on Heterogeneous Mul-
tiprocessors. Faculty of Mathematics and
Computer Science, TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communication on
the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics and
Computer Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty
of Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Limita-
tions and Opportunities. Faculty of Science,
UvA. 2017-07

W. Lueks. Security and Privacy via Cryp-
tography – Having your cake and eating it
too. Faculty of Science, Mathematics and
Computer Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse of
Domain-Specific Languages: an exploration
with MetaMod. Faculty of Mathematics
and Computer Science, TU/e. 2017-09

U. Tikhonova. Engineering the Dynamic
Semantics of Domain Specific Languages.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty

of Mathematics and Computer Science,
TU/e. 2017-11
A. Amighi. Specification and Verifica-
tion of Synchronisation Classes in Java:
A Practical Approach. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2018-01
S. Darabi. Verification of Program Par-
allelization. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2018-02
J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2018-03
P. Fiterău-Broştean. Active Model
Learning for the Analysis of Network Proto-
cols. Faculty of Science, Mathematics and
Computer Science, RU. 2018-04
D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java Code.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2018-05

	Acknowledgements
	Table of Contents
	Introduction
	Background
	Setting the Context

	Preliminaries
	SLCO

	Challenges and Choices

