LRM for multivariable and position-dependent mechanical systems

Citation for published version (APA):

Document license:
CC BY

Document status and date:
Published: 01/09/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 19. Apr. 2021
LRM for multivariable and position-dependent mechanical systems
ERNSI workshop 2016

FRF identification
FRFs have a central role in identification and control of motion system and are used for:
1. obtaining basic information on the system: resonances, nonlinearities, etc.,
2. direct controller tuning and validation, and
3. as an intermediate step in parametric identification.

New class of methods for improved FRF identification ⇒ Local parametric approaches [1]:
- LRM [2,3]: improved quality around lightly damped resonances compared to LPM
- MIMO LRM ⇒ open aspect: parametrization

key mechanism: exploit smoothness over frequencies

MIMO LRM parametrizations
Different parametrizations for $G(w) = D^{-1}(w)N(w)$:
- MISO: $D(w) = \text{diag}(d_i(w))$
- Common denominator: $D(w) = I_{n_u} d_c(w)$(
- full MFD $D(w) = D_0 + D_1 w + \ldots$
- integer (low) order MFD

⇒ analyze methods on simulations and benchmark data
- 4×4 simulated system
- MFD variant overall best performance, especially around resonances
- All LRM variants outperform spectral analysis and LPM estimates

- Experimental benchmark data of AVIS [4]
- Analyse efficiency of MIMO LRM compared to standard techniques

nD-LRM for position-dependent models
Mechanical systems often position-dependent due to motion ⇒ nonlinear / LPV behavior.
Here: local modeling, i.e., “frozen” in fixed operating point ⇒ behavior smooth over frequency and scheduling domain.
key mechanism: exploit smoothness in scheduling domain [5]

Ongoing work
- user friendly algorithms
- parametric modeling and control (poster Rozario A16)

References

Acknowledgments: Rick van der Maas, Annemiek van der Maas, Egon Geerardyn, Dieter Verbeke, Johan Schoukens and Maarten Steinbuch are gratefully acknowledged for their contributions to this work. This research is supported by NWO-STW WENI grant “Precision Motion: Beyond the Nanometer” (no. 130773), ASML research and the TUE Impulse program.

/department of mechanical engineering
/control systems technology
@TUEcST