Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts

Citation for published version (APA):

DOI:
10.1002/anie.201604654

Document status and date:
Published: 01/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Abstract: In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a lower overpotential compared to that of untreated Ag. Notably, the Ag resulting from Ag oxide is capable of electrochemically reducing CO$_2$ to CO with approximately 80% catalytic selectivity at a moderate overpotential of 0.49 V, which is much higher than that (ca. 4%) of untreated Ag under identical conditions. Electrokinetic studies show that the improved catalytic activity is ascribed to the enhanced stabilization of COOH intermediate. Furthermore, highly nanostructured Ag is likely able to create a high local pH near the catalyst surface, which may also facilitate the catalytic activity for the reduction of CO$_2$ with suppressed H$_2$ evolution.

The electrochemical conversion of CO$_2$ into carbon-based fuels is an attractive strategy for utilizing CO$_2$ captured at large emission sources.$^{[1–5]}$ In order to close the anthropogenic carbon cycle, the electrocatalytic reduction of CO$_2$ to fuels should be powered by a renewable electricity source.$^{[6]}$ For achieving this goal, the essential step is to develop a cheap, stable, and efficient catalyst with high selectivity for a desired product. Over the past few decades, several catalyst materials with the capability of reducing CO$_2$ electrochemically in CO$_2$ saturated-aqueous solutions have been identified.$^{[3,7–18]}$ It has been demonstrated that polycrystalline Au is capable of reducing CO$_2$ to CO with a high faradaic efficiency (FE) of about 87% at −0.74 vs. reversible hydrogen electrode (RHE).$^{[5]}$ While Au is currently the most efficient electrocatalytic surface for CO$_2$ reduction to CO, the low abundance and high cost of Au may prevent its large-scale applications. To find a cost-effective and stable catalyst with high selectivity and efficiency remains a challenge for achieving practical utilization of CO$_2$ reduction to CO.

Metallic Ag has attracted considerable attention due to its significantly lower cost compared to Au and high selectivity for the conversion of CO$_2$ to CO.$^{[7,11]}$ However, the high overpotential (> 0.9 V) on Ag catalysts is required for driving the electrocatalytic reduction of CO$_2$ efficiently and selectively with suppressed H$_2$O reduction.$^{[5]}$ The large overpotential required for the reduction of CO$_2$ is attributed to the hindrance for the initial electron transfer to a CO$_2$ molecule.$^{[2,19–21]}$ Lu et al.$^{[19]}$ reported that a nanoporous Ag catalyst with a fast initial electron transfer prepared by the de-alloying of an Ag-Al precursor is capable of reducing CO$_2$ electrochemically to CO efficiently and selectively at reduced overpotential. Recently, Kanan et al.$^{[21,22]}$ discovered that oxide-derived Cu and Au nanoparticle films exhibit a dramatically improved selectivity for the reduction of CO$_2$ to CO at low overpotential and high resistance to catalytic deactivation compared to polycrystalline metals.

This study is the first exploration of the catalytic activity of the electrochemical reduction of CO$_2$ on oxide-derived nanostructured Ag catalysts (OD-Ag). Here we demonstrate that a nanostructured Ag electrode resulting from silver oxide is capable of electrochemically reducing CO$_2$ to CO with high selectivity at much lower overpotential compared to that of the polycrystalline Ag, and the increased catalytic activity is linked to the improved stabilization of the COOH intermediate.

The thermal oxidation of Ag foils is prohibited because the decomposition of silver oxide becomes significant at temperatures above 200°C.$^{[23]}$ Here, we used a simple and scalable electrochemical method for oxidizing Ag electrodes. Potential anodization in alkaline solutions was an effective and simple method for the formation of Ag oxide on Ag electrodes.$^{[24–28]}$ Here, an electrode made of a polycrystalline Ag foil was immersed in 0.2 M NaOH solutions in a two-compartment cell with a Pt counter electrode and an Ag/AgCl reference electrode (cyclic voltammetry of Ag in 0.2 M NaOH is shown in Figure S1 in the Supporting Information). The two-compartment cell was separated by a Nafion-115 proton exchange membrane to avoid Pt deposition on Ag electrodes during the electrochemical synthesis. A symmetric 50 Hz square-wave pulsed potential was applied on Ag electrodes to synthesize Ag oxide layers. We found that the fabricated Ag oxide layers exhibit a porous structure, as shown in Figure S2. The resulting Ag oxide electrodes were directly used in the electrochemical reduction of CO$_2$, and were electrochemically reduced to metallic Ag in the early stage of electrolysis.

Figure 1a,b show scanning electron microscope (SEM) images of electrodes resulting from Ag oxide after the
Electrocatalytic reduction of CO2 in CO2-saturated electrolytes. The SEM images indicate that a porous-like nanostructured Ag surface was formed as a result of the reduction of Ag oxide after electrolysis. The X-ray diffraction (XRD) pattern in Figure 1c confirms the presence of Ag2O on Ag foil synthesized by anodization in alkaline solutions. After CO2 reduction electrolysis, XRD pattern shows only Ag peaks with no more indication of any remaining Ag oxide. In addition, the Ag foil fabricated by anodization turned a black color (Figure S3), which is also indicative of the formation of Ag oxide, and the sample had no remaining black color after CO2 reduction electrolysis.

To further confirm the composition of the samples before and after electrolysis, X-ray photoelectron spectroscopy (XPS) measurements were performed. The Ag 3d5/2 peak at 368.2 eV was observed for polycrystalline Ag in Figure 1d, which is also indicative of the formation of Ag oxide, and the sample had no remaining black color after CO2 reduction electrolysis.

The comparison of the CO2 reduction activity of untreated polycrystalline Ag and OD-Ag is presented in Figure 2. The OD-Ag exhibited a high initial current density (jtot) (Figure S4), which stems from the reduction of the Ag oxide layer in the initial period of electrolysis. Subsequently, the OD-Ag exhibited a jtot of 1.15 mA cm−2 with CO faradaic efficiency of 89% at −0.8 V vs. RHE, as shown in Figure 2a. At a less negative potential of −0.7 V vs. RHE, a decreased FE of 82.4% for CO formation was observed (Figure 2b). Notably, the FE of 80% for CO production was achieved at −0.6 V vs. RHE (Figure 2c), corresponding to a modest overpotential (ηCO) of 0.49 V relative to the CO2/CO equilibrium potential of −0.11 V vs. RHE. In contrast, the polycrystalline Ag electrodes experienced low jtot, accompanying with very low FE for CO formation (22.4%, 12% and 4.1% at −0.8 V, −0.7 V and −0.6 V vs. RHE, respectively).

To better understand the catalytic activity for CO2 reduction, the FE for the major products of CO2 reduction was plotted at various potentials for the polycrystalline Ag and the OD-Ag (Figure 3). As noted in Figure 3a, the FE for CO
the electrochemical reduction of CO\(_2\) to CO on both the polycrystalline Ag and the OD-Ag gradually increased with enhancing overpotentials. The increase of the FE for CO corresponds to a decrease in the related FE for H\(_2\) production (Figure 3b). In addition, a small amount of formate was only detected at high overpotentials (Figure S5). Interestingly, Figure 3a shows that the overall FE for CO on the OD-Ag was shifted by >400 mV toward the positive potential compared to that of untreated Ag (at a FE range for CO of more than 30%). In addition, the current density for CO production as a function of potentials in Figure 3c implies the onset potential for CO\(_2\) reduction on OD-Ag was −0.4 V vs. RHE (E(CO\(_2\)) = 0.29 V), which is a positive shift by about 200 mV compared to that (−0.6 V vs. RHE) of polycrystalline Ag. More importantly, for driving the electrocatalytic reduction of CO\(_2\) to CO with a high FE of 80%, a potential of −0.6 V vs. RHE was required on OD-Ag, which is significantly reduced by 500 mV compared to that of untreated Ag (−1.1 V vs. RHE). These results indicate that OD-Ag acts as an efficient catalyst for the electrocatalytic reduction of CO\(_2\) to CO with significantly suppressed H\(_2\) evolution at decreased overpotentials.

To gain insight into the electrokinetic mechanism of CO\(_2\) reduction on both catalysts, Tafel analysis was performed. Here, Tafel plots of the OD-Ag and the polycrystalline Ag (overpotential versus log of the partial current density for CO production) are shown in Figure 4. Hori has proposed that a two-electron transfer is involved in the electrochemical reduction of CO\(_2\) to CO (Scheme 1).\(^{[11,30]}\) In addition, most of the computational studies on reaction paths for CO\(_2\) reduction are based on the computational hydrogen electrode (CHE) model, in which it is assumed that a proton-coupled electron transfer (PCET) takes place at every reaction step.\(^{[31–35]}\) Thus, a COOH intermediate is formed on the active sites of the metal surface through a one-electron transfer to a CO\(_2\) molecule, and then the COOH intermediate on the surface takes another electron and proton to form a CO and a H\(_2\) molecule. It has been demonstrated that the initial electron transfer for CO\(_2\) activation is the rate-determining step (RDS) for the overall process because the first electron transfer requires a much more negative potential compared to the following steps.\(^{[2,19–21]}\)

A Tafel slope of 133 mV dec\(^{-1}\) for polycrystalline Ag shown in Figure 4a corresponds to a transfer coefficient of 0.44 [Eq. (S2)]. This slope and the transfer coefficient are consistent with the fact that the rate-determining step is the initial electron transfer to CO\(_2\).\(^{[11,19]}\) In contrast, OD-Ag exhibited a low Tafel slope of 77 mV dec\(^{-1}\) at low overpotentials, which indicates a fast initial electron transfer to a CO\(_2\) molecule according to previous studies.\(^{[7,19,21,22]}\) Subsequently, we found a dramatic increases of the Tafel slope for OD-Ag at relatively high overpotentials, indicating the CO\(_2\) electroreduction may reach a mass transport limitation on the porous-like nanostructured Ag.\(^{[35]}\) Thus, while the mass transport in a nanostructured Ag catalyst is likely slower than in an untreated Ag (flat surface) at relatively high
overpotentials, OD-Ag can offer better stabilization for the COOH intermediate than untreated Ag, thus decreasing the overpotential needed to drive CO reduction to CO.

To further investigate the electrokinetics of CO2 reduction on OD-Ag, electrolysis was performed at the HCO3− concentrations from 0.5 to 0.1 M. A plot of log(fco) vs. log([HCO3−]) in Figure 4b shows a zero-order dependence of HCO3− concentrations on CO2 reduction activity, indicating that the donation of a proton from HCO3− is not a rate-determining step for CO2 reduction.[19]

It was reported that the surface of nanostructured Ag catalysts can provide the low-coordinated surface Ag sites, which plays a significant role for stabilizing the COOH intermediate through reducing the activation energy barrier of the initial electron transfer.[19] In addition, Kanan et al. proposed a grain boundary effect for OD-Cu[37] and OD-Au.[38] Here we propose a local pH effect to offer a new insight into the correlation of nanostructured Ag catalysts with the catalytic activity for CO2 reduction. The pH rises locally at the electrode/electrolyte interface because of releasing OH− in the cathodic reactions (Equation S (4–5)).[39] Thus, the pH close to the electrode (local pH) is higher than the bulk pH. To understand the local pH effect, CO2 reduction was performed on flat Ag and OD-Ag in 0.1 m K2HPO4 and 0.1KHCO3, respectively. The FE for CO on flat Ag was measured on flat Ag in 0.1 m KClO4. KClO4 does not have buffer ability, which results in a relatively high local pH at the electrode/electrolyte interface. We found that the FE for CO in CO2-saturated 0.1 m KClO4 was obviously higher than that of CO2-saturated 0.1 m KHCO3 (Figure 5a). These observations (the FE for CO on flat Ag: KClO4 > KHCO3 > K2HPO4) imply that the local pH may play an important role in the reduction of CO2.

In contrast, we found that FE for CO on OD-Ag was almost equal in the two different electrolytes (Figure 5b) at various potentials. This observation may be partly attributed to that the limitation of the diffusion process in nanoporous Ag catalysts (Figure 1a,b) hinders the neutralization reaction for OH− generated near the catalyst surface, resulting in a high local pH in 0.1 m K2HPO4. In addition, H2 evolution is not favorable at the high pH value. Thus, the local pH created in nanoporous Ag may contribute to the suppressed H2 evolution (Figure 5d) with preferred CO2 reduction (Figure 5b).

In summary, nanostructured Ag catalysts prepared by electrochemically reducing Au, Ag, or ODAg exhibited an enhanced catalytic activity for the reduction of CO2, and the high selectivity for CO was shifted by more than 400 mV to a lower overpotential than that of untreated polycrystalline Ag. At a moderate overpotential of 0.49 V, the oxide-derived nanostructured Ag was able to reduce CO2 to CO with about 80% faradaic efficiency, which is dramatically higher compared to that (ca. 4%) of untreated polycrystalline Ag at identical conditions. The dramatically improved catalytic activity and selectivity for CO2 reduction to CO is likely correlated with the nanostructured surface, resulting in highly active sites for stabilizing COOH intermediate. In addition, a high local pH generated within the porous-like nanostructured Ag catalysts may also play a role in the improved CO2 reduction along with suppressed H2 evolution. This study shows that a selective and cost-effective oxide-derived Ag catalyst can efficiently and selectively reduce CO2 to CO. While the catalytic activity of this oxide-derived Ag catalyst is not as high as the recent oxide-derived Au, its cost is significantly lower, and thus this catalyst and synthetic approach may provide a more practical platform for large-scale CO2 electroreduction.

Acknowledgements

This work is supported by CSC, and the NWO VENI grant awarded to Wilson A. Smith. The authors would like to thank Dr. Kristina Djanashvili for assistance in the 400 MHz NMR experiments. We also would like to thank Prof. Bernard Dam and Dr. David Vermaas for helpful discussions.

Keywords: carbon dioxide · conversion of carbon dioxide · electrocatalysis · heterogeneous catalysis · surface chemistry

How to cite: Angew. Chem. Int. Ed. 2016, 55, 9748–9752

Angew. Chem. 2016, 128, 9900–9904

Received: May 12, 2016
Published online: July 5, 2016