Moby-dic

Citation for published version (APA):

DOI:
10.3182/20120823-5-NL-3013.00034

Document status and date:
Published: 09/10/2012

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
NOTICE: this is the author's version of a work that was accepted for publication in Proceedings of IFAC Conference on Nonlinear Model Predictive Control 2012 (NMPC'12). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.
MOBY-DIC: A MATLAB Toolbox for Circuit-Oriented Design of Explicit MPC

Alberto Oliveri∗ Davide Barcelli∗∗ Alberto Bemporad∗∗
Bart Genuit∗∗∗ Maurice Heemels∗∗∗ Tomaso Poggi∗∗∗∗
Matteo Rubagotti† Marco Storace∗

∗ Department of Naval, Electric, Electronic and Telecommunications Engineering, University of Genoa, Via Opera Pia 11A, Genova, Italy; e-mail: {alberto.oliveri,marco.storace}@unige.it
∗∗ IMT Institute for Advanced Studies, Piazza S. Ponziano 6, Lucca, Italy; e-mail: {davide.barcelli,alberto.bemporad}@imtlucca.it
∗∗∗ Hybrid and Networked Systems Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; e-mail: {m.heemels,b.a.g.genuit}@tue.nl
∗∗∗∗ RF group, ESS-Bilbao, Paseo Landabarrri, 2, Leioa, Spain; e-mail: tpoggi@essbilbao.org
† Nazarbayev University, Kabanbay Batyr Ave 53, Astana, Kazakhstan; e-mail: matteo.rubagotti@nu.edu.kz

Abstract: This paper describes a MATLAB Toolbox for the integrated design of Model Predictive Control (MPC) state-feedback control laws and the digital circuits implementing them. Explicit MPC laws can be designed using optimal and sub-optimal formulations, directly taking into account the specifications of the digital circuit implementing the control law (such as latency and size), together with the usual control specifications (stability, performance, constraint satisfaction). Tools for a-posteriori stability analysis of the closed-loop system, and for the simulation of the circuit in Simulink, are also included in the toolbox.

1. INTRODUCTION

Despite the importance of embedded control in many applications, there are only few integrated methods to design and deploy embedded control systems in a systematic and highly efficient manner. There is an abundance of methods for the separate design of the control algorithms eventually embedded into a hardware platform, or to create a suitable hardware platform for the implementation of a given control algorithm. These methods typically follow a sequential design procedure as depicted in Fig. 1(a). On the other hand, to the best of our knowledge, no tools are available for automated and integrated design flows from the mathematical model of the process to the synthesis of the electronic circuits. Ideally, such tools should incorporate both control specifications (stability, constraint satisfaction, performance) and circuit requirements (speed, size, power usage, cost), as depicted in Fig. 1(b).

This paper is concerned with a software toolbox (called MOBY-DIC) implementing an integrated design flow that is based on explicit MPC [Bemporad et al., 2002]. The resulting control law is a piecewise-affine (PWA) function of the system state, which allows one to cope with constraints on input and state variables without the need to solve an optimization problem on-line, and is therefore very effective to control small-sized systems for which small sampling times are needed [Alessio and Bemporad, 2009]. MATLAB toolboxes are available that allow to design explicit MPC control laws, see, e.g., Bemporad [2004], Kvasnica et al. [2004]. Interestingly, the hardware implementation of PWA functions has been deeply studied in circuit theory (see, e.g., Parodi et al. [2005], Storace and Poggi [2011] and the references therein), and the related results can be exploited to setup an integrated design methodology for MPC-based embedded controllers.

The MOBY-DIC Toolbox for MATLAB provides an automatic tool chain for the circuit design of embedded control
systems, given a linear time-invariant model of the physical process, the constraints on states and input variables, and the specifications on the digital circuit actually employed to implement the control law, according to the design flow shown in Fig. 1(b). This means that the toolbox allows the designer to have information in advance on the resulting circuit implementation of the controller, in order to ease trading off between control performance, restrictions in area occupancy and speed of implementation. Circuit implementations (with automatic generation of VHDL code) are provided for both exact (optimal) control laws (obtained through the direct interaction of the MOBY-DIC Toolbox with the Hybrid Toolbox [Bemporad, 2004] or the Multiparametric Toolbox [Krasnica et al., 2004]), and for sub-optimal ones based on recent results by Bemporad et al. [2011], Genuit et al. [2012], Lu et al. [2011]. The sub-optimal methods permit to obtain faster circuit implementations, since they exploit PWA functions defined over regular partitions of the domain, at the cost of loss of both optimality and, in some cases, a-priori closed-loop stability. Methods for the a-posteriori stability analysis of the closed-loop system, and for the evaluation of the domain of attraction (mainly based on Rubagotti et al. [2012]), are also provided with the toolbox. Moreover, the toolbox offers several methods for the simulation of the closed-loop system, which allows one to test the designed circuit and, if necessary, to intervene both on the circuit settings and on the control parameters. The toolbox can also interact with Xilinx System Generator, to obtain a Simulink block implementing the controller. In this way, one can simulate the effect of the circuit latency and the quantization error introduced by the fixed point representation.

Finally, the toolbox allows also the automated circuit implementation of direct virtual sensors (Poggi et al. [2012]), but this functionality will not be described in the present paper for space limitation reasons.

The toolbox can be freely downloaded. A complete HTML documentation describing all objects, methods, functions as well as the circuit architectures is also available.

2. MODEL PREDICTIVE CONTROL

Consider a linear discrete-time system

\[x(t + 1) = Ax(t) + Bu(t) \]

where \(x \in \mathbb{R}^n_x \) and \(u \in \mathbb{R}^n_u \) denote the system states and inputs, respectively. The control input \(u(t) \) can be computed using MPC, by solving the following quadratic program

\[
\min_{\underline{u}} \quad x_N^T P x_N + \left(\sum_{k=0}^{N-1} x_k^T Q x_k + u_k^T R u_k \right) + p e^2
\]

subject to

\[
x_0 = x(t), \quad x_{k+1} = Ax_k + Bu_k, \quad k = 0, \ldots, N - 1,
\]

\[
u_k = K x_k, \quad k = N_u, \ldots, N - 1
\]

\[
E_{u_k} u_k \leq G_u, \quad k = 0, \ldots, N_u - 1
\]

\[
E_{u_k} u_k \leq G_u + V_u \epsilon, \quad k = N_u, \ldots, N - 1
\]

\[
E_{x_k} x_k + F_x x_k \leq G_x + V_x \epsilon, \quad k = 0, \ldots, N - 1
\]

\[
\epsilon \geq 0
\]

where \(N \) and \(N_u \) are the prediction and control horizons, respectively, \(U = [u_0^T \ldots u_{N-1}^T]^T \in \mathbb{R}^{n_u \times N_u} \) is the vector of optimization variables, \(\epsilon \) is a slack variable relaxing the constraints, and \(p > 0 \) is a (large) weight penalizing constraint violations. \(E_u, G_u \) and \(V_u \) are matrices of appropriate dimensions defining input constraints, while \(F_x, G_x \) and \(V_x \) represent mixed input-state constraints. The above problem can be solved off-line as a multi-parametric quadratic program (mpQP) which leads to obtaining \(u_0 \) (the other elements of \(U \) are discarded, according to the receding horizon principle) as an explicit function of the current state (parameter) \(x \) [Alessio and Bemporad, 2009]. More specifically, the control law \(u_0(x) \) is a PWA function of the current state \(x_0 \) defined over a generic polytopic partition. Other cost functions based on \(1 \)-norm and \(\infty \)-norm can also be employed instead of (2), leading to a multi-parametric Linear Program (mpLP). Since also in this case the resulting control law \(u_0(x) \) is a PWA function of the state, the approximation and circuit tools presented here can be applied analogously.

3. PWA FUNCTIONS

Given a hyper-rectangular compact domain \(D \) partitioned into \(n_v \) convex polytopes \(\mathcal{P}_i, i = 1, \ldots, n_v \) a PWA function \(f_{\text{pwa}} : \mathbb{R}^{n_x} \rightarrow \mathbb{R}^{n_f} \) can be expressed as:

\[
f_{\text{pwa}}(x) = F_i x + G_i, \quad \text{if} \ x \in \mathcal{P}_i
\]

where \(F_i \in \mathbb{R}^{n_f \times n_x} \) and \(G_i \in \mathbb{R}^{n_f \times 1} \). The second step is trivial; a higher computational effort is required for the point location problem. Some efficient algorithms, besides the inefficient direct search, have been proposed in the literature (see for example Tøndel et al. [2003], Bayat et al. [2011]). We implemented in the toolbox the algorithm by Tøndel et al. [2003], in which a binary search tree is constructed off-line, based on the domain partition. Each non-leaf node of the tree corresponds to a partitioning edge and each leaf node to a polytope. The tree is then explored on-line to locate the region containing a given point. The binary search tree can be easily mapped into a Finite State Machine, for a digital circuit implementation, which

\[
\text{PWAG functions:} \quad \text{the evaluation of a PWAG function at a point } x \text{ is performed in two steps: (i) locate the polytope } \mathcal{P}_i \text{ containing } x \text{ (point location problem) and (ii) compute the affine expression } F_i x + G_i.\]

\[\text{In general, the solution of a mpQP or mpLP can be a PWA function defined over overlapping polytopes; this happens for example in control applications of PWA or mixed logic dynamical systems. This situation cannot be managed by our approximation techniques. Nonetheless, for the applications we are interested in (control of linear systems), the obtained polytopes never overlap.}\]

\[\text{http://ncas.dibe.unige.it/software/MOBY-DIC_Toolbox}\]
as described in Oliveri et al. [2009]. An example of PWAW function is shown in Fig. 5(a).

- **PWAS functions**: a simplicial PWA (PWAS) function is a PWA function defined over a domain partitioned into regular simplices. A simplex is a segment in one dimension, a triangle in two dimensions, a tetrahedron in three dimensions and so on. A simplicial partition is built by subdividing each domain component into regular simplices. A simplex is a segment in one dimension, a triangle in two dimensions, a tetrahedron into uniform partitions; the domain is therefore partitioned into \(\prod_{j=1}^{n} p_j \) hyper-rectangles which are further partitioned into \(n_d \) simplices each. Any continuous PWAS function can be represented as a weighted sum of PWAS basis functions in this way:

\[
 f_{\text{pwas}}(x) = \sum_{i=1}^{n_b} w_i \alpha_i(x)
\]

where \(w_i \) are the weights and \(\alpha_i \) are the PWAS basis functions defined as \(\alpha_j(v_j) = \delta_{j,i} \), with \(v_j \) the vertices of the simplicial partition and \(\delta_{j,i} \) the Kronecker delta. Therefore, any PWAS function is univocally characterized by its domain, the simplicial partition and the set of weights \(w_i, i = 1, \ldots, n_b \). In case of \(\alpha \) basis functions, the weights \(w \) correspond to the values of the PWAS function in the vertices of the simplicial partition.

The value of the function in any point \(x \) can be computed by linear interpolation of the value of the function in the vertices of the simplex containing the point. The location of the simplex (point location problem) can be carried on in a very simple way, due to the regularity of the partition [Parodi et al., 2005]. Digital architectures for the computation of PWAS functions have been proposed in Storace and Poggi [2011] and they are employed in the toolbox. An example of a PWAS function is shown in Fig. 5(b).

- **PWAR functions**: a hyper-rectangular PWA (PWAR) function is a PWA function defined over a domain partitioned into hyper-rectangles. We consider two kinds of PWAR functions: the single- (sPWAR) and the multi-resolution (mPWAR) type. The single-resolution type is characterized by the fact that the axes \(x_j, j = 1, \ldots, n_d \) of domain \(D \) are divided into \(m_j \) intervals, possibly of different lengths, in which case the partition is non-uniform; the regions are stacked like the components of a matrix, as shown in Fig. 2(c). In contrast, the multi-resolution type of partition is built by selecting hyper-rectangular regions from multiple single-resolution partitions of \(D \); these partitions have \(m_j = 2^l, l = 1, \ldots, r \) divisions along each axis (for circuit implementation reasons), as shown in Fig. 2(d). Because of its hierarchical structure, this type of partition has a corresponding search tree (a generalized oct-tree), which is very beneficial for solving the point location problem. Digital architectures for the evaluation of PWAR functions have been proposed by Comaschi et al. [2012] and are implemented in the toolbox. An example of a PWAR function is shown in Fig. 5(c).

4. DESCRIPTION OF THE TOOLBOX

The MOBY-DIC Toolbox is a MATLAB/Simulink toolbox which makes extensive use of Object Oriented Programming. In the following, the main objects for the represen-
N_c. Each constraint is added to the object via method
setConstraints, which allows a very simple and flexible usage.

- **pwaFunction**: the pwaFunction object is an abstract class (not instantiable directly), which represents any PWA function $f_{pwa} : \mathbb{R}^n \rightarrow \mathbb{R}^m$. Inherited objects are pwag, pwas and pwar. In this object the common properties to all derived classes are declared: the function domain (D) and its dimension (n_d), the number of dimensions of the codomain (n_f), and a structure (synthesisInfo) with details on the circuit implementation of the function. The most important common methods to all derived classes are eval, for the evaluation of the function in an array of points, getRegions, which returns all the regions partitioning the domain, synthesize, which generates the VHDL files describing a circuit implementing the function, and generateSimulinkModel, for the automatic generation of a Simulink model of the closed-loop system.

- **pwag**: the pwag object (derived from the pwaFunction class) represents a PWAG function. In this object, three structures are used to store all data, edges, functions and regions. Structure edges stores all edges of the polytope without repetitions and without considering the sign of the edge. The coefficients of the edges are stored in fields H and K of structure edges. Since the polytopes have, in general, some common edges, many repetitions in the coefficients H_i and K_i, also with opposite sign, can occur; the approach we used allows, therefore, to save memory occupation sensibly. Structure functions stores, in fields F and G, the coefficients F_i and G_i of all affine functions. As for previous structure, coefficients related to the same affine function are saved only once. regions is actually an array of n_r structures, one for each polytope partitioning the domain. These structures have two fields: edges and Ifunctions. The edges field of the i-th element of regions is a matrix with $n_{el,i}$ rows and 2 columns. The first column contains the indices of the coefficients H_i and K_i in matrices edges.H and edges.K. The second column contains the sign of the edges. In the same way, the field Ifunctions contains the indices of F_i and G_i in matrices functions.F and functions.G. The pwag object contains also a structure tree which stores the binary search tree necessary for a circuit computation of the function (Oliveri et al. [2009]). The structure contains a field nodes which is an array of structures whose elements correspond to the nodes of the tree. Each node is characterized by a univocal name and by the names of his children nodes; it contains moreover information about the set of edges and polytopes lying at the two sides of the edge corresponding to the node itself.

- **pwas**: the pwas object (derived from the pwaFunction class) represents a PWAS function. Any PWAS function is univocally defined by the domain partition and by the set of weights w_i; in this toolbox we only refer to PWAS functions described through α basis functions since they can be handled in a computationally efficient way (with sparse matrices). The simplicial partition is represented, in the MATLAB object, with a cell array P with as many elements as the function domain dimensions. The i-th

\[Hx \leq K \quad \text{and} \quad -Hx \leq -K \]

denote the same edge, with opposite sign.

\[5 \quad \text{If the codomain is multi-dimensional, } w \text{ is a matrix with as many columns as the number of dimensions of the codomain.} \]
are the prediction and control horizons, the cost function matrices and the type of norm for the MPC optimization problem, and some other settings specific to each toolbox. Default values are automatically set in case an option is not provided.

5.2 Design of approximate control laws

An approximate MPC controller can also be designed starting from the exact MPC control law. Two methods are available to accomplish this task.

- **PWAS controller:** the `pwasApproximation` function allows to obtain a `pwas` object that approximates the `pwag` one by using the method described in Bemporad et al. [2011]. The same constraints satisfied by the exact MPC law are also enforced in the approximate one, though possibly softened with slack variables. The routine needs the `pwag`, `linearSystem` and `constraints` objects and the desired simplicial partition and returns a `pwas` object. Some options can be provided to this function, such as the norm to use in the optimization problem and the solver to be employed. Once the approximation has been found, the maximum approximation error can be computed with function `suboptimalityAnalysis`, as explained in Bemporad et al. [2011].

- **PWAR controller:** the `pwarApproximation` function allows to approximate the `pwag` object by a `pwar` one by using the methods described in Genuit et al. [2012] and Lu et al. [2011]. The same constraints satisfied by the exact MPC law are also enforced in the approximate one, and constraints on stability and performance can be enforced depending on the method used. The routine needs the `pwag`, `linearSystem` and `constraints` objects and returns a `pwar` object. Some options can be provided to this function, such as the norm to use in the optimization problem and the solver to be employed. To facilitate setting these options, two functions are included. The `pwarApproxSettings` function can be used to create an options structure in which the non-specified entries are filled with default values, whereas `pwarApproxSettingsCheck` can be used to check for inconsistencies and commonly made errors in the options structure.

5.3 Stability analysis of the closed-loop

Most of the described design methods for approximate MPC control law are aimed at practical implementation on digital circuits, and therefore do not incorporate conditions that guarantee the a-priori stability of the closed-loop system. For this reason, the function `stabilityTest` is provided. The method employed by this function is based on the use of PWA Lyapunov functions, which permits to certify the stability of the origin and to find an evaluation of the domain of attraction as a polytope. Also the presence of additive disturbances (not taken into account during the MPC design) can be considered. Since, in case of persistent disturbances, the convergence to the origin cannot be assured, `stabilityTest` will evaluate the set including the origin, where the state will be ultimately bounded. If the stability test fails, a new approximation can be obtained with a finer domain partition and the test can be repeated. The stability test can also be performed for the exact controller (not only for the approximate one) in case it is designed without stability guarantees. For more details, the reader is referred to Rubagotti et al. [2011, 2012].

5.4 Circuit implementation of digital controllers

One of the main features of MOBY-DIC Toolbox is the possibility of automatically generating VHDL code for the circuit implementation (on FPGA) of exact and approximate MPC controllers. Serial and parallel architectures are available for PWAG, PWAS and PWAR controllers, which allow to trade-off between circuit complexity and speed. A description of the architectures can be found in Oliveri et al. [2009], Storace and Poggi [2011], Comaschi et al. [2012] and in the toolbox documentation. The VHDL files are generated by resorting to method `synthesize` of a `pwag`, `pwas` or `pwar` object once the circuit specifications (number of bits for inputs and outputs, type of input acquisition, circuit sampling time) have been provided. The synthesis process also generates a log file in which information about the circuit performances is shown: input/output representation, latency, number of multipliers, memory occupation. The generated files include also a testbench for the circuit so that it can be simulated by any VHDL simulator (e.g., Modelsim). The results of the simulation can be read by MOBY-DIC Toolbox which automatically performs the suitable data conversions and scalings.

5.5 Closed-loop simulation of controllers

Simulations of the closed-loop system with exact or approximate MPC controller can be performed in several ways with this toolbox. The discrete-time controlled system can be simulated in MATLAB by means of methods `sim` and `simplot` of `linearSystem` object. If the discrete-time system was obtained as a discretization of a continuous-time plant, for the purpose of generating the MPC control law, it could be useful to simulate directly the continuous-time plant in closed-loop with the exact or approximate controller. This task is accomplishable with method `generateSimulinkModel`, which automatically generates a Simulink model ready to be simulated. If the VHDL files have been generated for the controller, it is also possible (always through method `generateSimulinkModel`) to directly simulate them for the computation of the controller in the closed-loop system; this allows to take into account the effects of circuit latency (delays) and of the fixed point representation (quantization error). Xilinx System Generator is required for this functionality.

6. A SIMPLE CASE STUDY

In this section we illustrate the functioning of the toolbox in a very simple example, in order to focus on the capabilities of the software rather than on the control problem itself. MOBY-DIC Toolbox has been also used, however, in more complex applications such as Adaptive Cruise Control systems and Buck-Boost DC-DC converters (Oliveri et al. [2011], Spinu et al. [2012], Comaschi et al. [2012]). Let us consider the continuous-time double integrator system defined by the following state equations:

\[
\dot{x}(t) = A_c x(t) + B_c u(t)
\]
with \(A_c = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) and \(B_c = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \), subject to soft constraints
\[
-1 \leq u \leq 1 \\
[-8, -4] \leq x \leq [8, 4]
\] (6)

In order to compute the MPC control function we discretized system (5) with sampling time \(T_s = 1 \), thus obtaining:
\[
x(t + 1) = A_d x(t) + B_d u(t)
\] (7)

where \(A_d = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) and \(B_d = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \). The system has 2 state variables \(n_x = 2 \), one input variable \(n_u = 1 \) and zero parameters \(n_p = 0 \). We computed the MPC control law with Hybrid Toolbox by setting \(N = N_u = 5 \), \(Q = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(R = 0.1 \), thus obtaining a pwag object. The following snippet of code shows how these steps are performed:

```matlab
% Create linearSystem object
linSys = linearSystem(nx,nu,np);
% Set discrete-time system matrices
linSys = linSys.setMatrices('A',Ad);
linSys = linSys.setMatrices('B',Bd);
% Set sampling time
linSys = linSys.setSamplingTime(Ts);
% Create constraints object
constr = constraints(nx,nu,np,N);
% Set input constraints from k to k+Nu-1
constr = constr.setConstraints('u1',-1,1,0:Nu-1);
% Set state constraints from k+1 to k+N
constr = constr.setConstraints('x1',-8,8,1:N);
constr = constr.setConstraints('x2',-4,4,1:N);
% MPC options
MPCoptions = struct( ...
    'toolbox','hybtbx', ...
    'N',N, ...
    'Nu',Nu, ...
    'Q',Q, ...
    'R',R, ...
);
% Generate pwag object representing the MPC control law
Cpwag = generateMPC(linSys,constr,MPCoptions);
```

Since closed-loop stability and constraint satisfaction are not guaranteed a priori, stabilityTest is employed to get a stability certificate for the origin, together with an estimate of its domain of attraction, shown in Fig. 4.

% Generate the closed-loop system with PWAG controller
CpwagCL = Cpwag.getClosedLoop(linSys);
% Check stability of the closed-loop system
[Xp Xf] = stabilityTest(CpwagCL);

Then we approximate the exact MPC control law with a PWAS function defined over a non-uniform simplicial partition and we compute the maximum approximation error \(M = 0.385 \) at point \(x = [4.83 - 2.26] \).

% Choose simplicial partition (non-uniform)
P = cell(1,2);
P1 = [linspace(-8,-0.5,8) linspace(0.5,8,8)];
P2 = [-4 linspace(-2.275,-0.2,7) linspace(0.3,3.619,7)];
% Choose domain for the pwas function
D = Cpwag.getDomain();
% Approximation options
appr_opts = pwarApproxSettings(...
 'norm',inf, ... % Use inf norm for approx.
 'rhomax',0.24, ... % Maximum approx. error
 'con_input', 1, ... % Input constraints enforced
 'resolutiontype', 'multi', ... % Type of resolution used
 'minlevel', 1, ... % Minimal level of refinement
 'maxlevel', 5, ... % Maximal level of refinement
 'solver', 'cdd', ... % Use CDD solver
 'multithreading', 1 ... % Enable multithreading
);
% Perform the approximation
Cpwar = pwarApproximation(Cpwag,linSys,constr,D,P,appr_opts);

Next, a multi-resolution PWAR approximation is obtained by imposing a maximum error of 0.24.

% Approximation options
appr_opts = pwarApproxSettings(...
 'norm',inf, ... % Use inf norm for approx.
 'rhomax',0.24, ... % Maximum approx. error
 'con_input', 1, ... % Input constraints enforced
 'resolutiontype', 'multi', ... % Type of resolution used
 'minlevel', 1, ... % Minimal level of refinement
 'maxlevel', 5, ... % Maximal level of refinement
 'solver', 'cdd', ... % Use CDD solver
 'multithreading', 1 ... % Enable multithreading
);
% Perform the approximation
Cpwar = pwarApproximation(Cpwag,linSys,constr,D,appr_opts);

The plots (obtained with method `plot`) of the exact and approximate control laws are shown in Fig. 5.
The following piece of code shows how to generate VHDL files for the FPGA implementations of exact and approximate controllers.

```matlab
% Circuit specifications
cir_specs = struct( ... 'nbit', 12, ... % N. of bits for inputs 'type', 'serial', ... % Type of architecture 'inputAcquisition', 'parallel', ... % Input acquisition 'frequency', 20e6, ... % Working frequency 'samplingTime', Ts, ... % System sampling time );

% Generate VHDL files for exact and approx. controllers
Cpwag = Cpwag.synthesize(cir_specs);
Cpwas = Cpwas.synthesize(cir_specs);
Cpwar = Cpwar.synthesize(cir_specs);
```

The circuit performance of both serial and parallel architectures, as provided by MOBY-DIC Toolbox, are shown in Table 1.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Latency @20MHz</th>
<th>Mem. occup.</th>
<th>N. mult.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pwag_ser</td>
<td>1850 ns</td>
<td>175.5 bytes</td>
<td>1</td>
</tr>
<tr>
<td>pwag_par</td>
<td>950 ns</td>
<td>175.5 bytes</td>
<td>2</td>
</tr>
<tr>
<td>pwas_ser</td>
<td>400 ns</td>
<td>384 bytes</td>
<td>3</td>
</tr>
<tr>
<td>pwas_par</td>
<td>250 ns</td>
<td>1152 bytes</td>
<td>5</td>
</tr>
<tr>
<td>pwar_ser</td>
<td>450 ns</td>
<td>585 bytes</td>
<td>1</td>
</tr>
<tr>
<td>pwar_par</td>
<td>350 ns</td>
<td>585 bytes</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1. Performances of the circuit architectures implementing PWAG, PWAS and PWAR controllers

Finally, a Simulink model for the simulation of the closed-loop system considering circuit delays and fixed point representation has been generated.

```matlab
% Model options
model_opts = struct( ... 'simulateVHDL', 1, ... % Simulate VHDL files 'samplingTime', Ts, ... % Sampling time of the system );

% Continuous time plant
plant = ss(Ac, Bc, eye(2), 0);

% Initial condition for simulation
x0 = [-4 -2];

% Generate model for exact and approx. controllers
Cpwag.generateSimulinkModel(plant, x0, model_opts);
Cpwas.generateSimulinkModel(plant, x0, model_opts);
Cpwar.generateSimulinkModel(plant, x0, model_opts);
```

Figure 6 shows the results of the Simulink simulation and evidences the correct regulation of the system to the origin. Indeed, the control law is derived taking into account both control specifications and circuit complexity either by setting the simplicial partition (i.e., the cell array P) for the PWAS approximation, or by setting the maximum level of refinement for the PWAR approximation. It is important to stress that the circuit performances are known before actually implementing the controller on FPGA and they can be known even before designing the controller itself. The user can therefore redesign or change the approximation parameters in order to meet circuit specifications. Further tools to ease this task are under development and will be available in a future release with a Graphical User Interface.

7. CONCLUSIONS AND FUTURE WORK

The paper introduces a complete software toolbox in MATLAB for the automatic generation of VHDL code describing embedded control systems, and illustrates its capabilities through a simple case study. The toolbox is still in phase of development and some capabilities will be added, such as the synthesis of a-priori stabilizing PWAS controllers. A complete Graphical User Interface (GUI) will be designed to facilitate the use of the toolbox and to graphically monitor the circuit performance as a function of control and circuit parameters.

REFERENCES

