Erratum

Yin, Y.; Han, Dong Soo; Kim, June Seo; Lavrijsen, R.; Lee, Kyung Jin; Lee, Seo Won; Kim, Kyoungh Whan; Lee, Hyun Woo; Swagten, H.J.M.; Koopmans, B.

Published in:
Applied Physics Letters

DOI:
10.1063/1.5041318

Published: 11/06/2018

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. Nov. 2018
Erratum: “Chiral magnetoresistance in Pt/Co/Pt zigzag wires” [Appl. Phys. Lett. 110, 122401 (2017)]

Yuxiang Yin, Dong-Soo Han, June-Seo Kim, Reinoud Lavrijsen, Kyung-Jin Lee, Seo-Won Lee, Kyoung-Whan Kim, Hyun-Woo Lee, Henk J. M. Swagten, and Bert Koopmans

Citation: Appl. Phys. Lett. 112, 249901 (2018); doi: 10.1063/1.5041318
View online: https://doi.org/10.1063/1.5041318
View Table of Contents: http://aip.scitation.org/toc/apl/112/24
Published by the American Institute of Physics

Articles you may be interested in

Chiral magnetoresistance in Pt/Co/Pt zigzag wires
Applied Physics Letters 110, 122401 (2017); 10.1063/1.4979031

Chiral anisotropic magnetoresistance of ferromagnetic helices

Tunneling anisotropic magnetoresistance in fully epitaxial magnetic tunnel junctions with different barriers

Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet

Switching current reduction using MgO cap layer in magnetic tunnel junctions

Invisible magnetic sensors
Erratum: “Chiral magnetoresistance in Pt/Co/Pt zigzag wires” [Appl. Phys. Lett. 110, 122401 (2017)]

Yuxiang Yin,1,a) Dong-Soo Han,1 June-Seo Kim,1 Reinoud Lavrijsen,1 Kyung-Jin Lee,2,3
Seo-Won Lee,2 Kyoung-Whan Kim,4 Hyun-Woo Lee,5 Henk J. M. Swagten,1
and Bert Koopmans1

1Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513,
5600 MB Eindhoven, The Netherlands
2Department of Materials Science and Engineering, Korea University, Seoul 02841, South Korea
3KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841,
South Korea
4Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, USA
5PCTP and Department of Physics, Pohang University of Science and Technology, Pohang 37673,
South Korea

(Received 24 May 2018; accepted 28 May 2018; published online 11 June 2018)

https://doi.org/10.1063/1.5041318

This erratum includes three modifications to the original paper:2

- The units of \(R_{\text{DW}} \) (y-axis) in Fig. 4 (in main text), Fig. S3 (in supplementary material), and Fig. S4 (in supplementary material) should be \(\Omega \) instead of \(\text{m}\Omega \).
- At the end of the right-top paragraph of page 3, a reference to the supplementary material should be added. shunting through the Pt layer (see supplementary material).
- The following section should be added to the supplementary material.

DETERMINATION OF THE SINGLE DW RESISTANCE

To convert the change of the resistance of the whole wire \(\Delta R \) to the single DW resistance \(R_{\text{DW}} \) only in Co layer, one more effect should be taken into account since the current does not distribute equally through the different layers. Based on the Fuchs-Sondheimer model,1 a fraction of

\[p = 0.033 \]

of the current runs through the magnetic Co layer. The measured resistance of the wire can now be described as the result of two parallel resistors \(R_{\text{Co}} = R_{\text{wire}}/p \) and \(R_{\text{Pt}} = R_{\text{wire}}/(1-p) \), where \(R_{\text{wire}} \approx 1 \text{k} \Omega \). The change of single DW resistance \(R_{\text{DW}} \) leads to a change of the resistance of the whole wire \(\Delta R \), which is given by

\[
\Delta R = \frac{p^2 R_{\text{DW}} R_{\text{wire}}}{R_{\text{wire}} + p(1-p) R_{\text{DW}}} \approx p^2 R_{\text{DW}}.
\]

Thus, one can calculate that \(R_{\text{DW}} = \Delta R/p^2 = \Delta R \times 920 \). The calculated single DW resistance \(R_{\text{DW}} \) is shown in Fig. 4.

a)E-mail: y.yin@tue.nl