Effect of optical damage resistant dopants on the dielectric properties of LiNbO3

Citation for published version (APA):

DOI:
10.1063/1.5021758

Document status and date:
Published: 21/04/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Effect of optical damage resistant dopants on the dielectric properties of LiNbO₃: Insight from broadband impedance spectroscopy and Raman scattering

Charlotte Cochard, Mael Guennou, Thiemo Spielmann, Niels van Hoof, Alexei Halpin, and Torsten Granzow

Citation: Journal of Applied Physics 123, 154105 (2018); doi: 10.1063/1.5021758
View online: https://doi.org/10.1063/1.5021758
View Table of Contents: http://aip.scitation.org/toc/jap/123/15
Published by the American Institute of Physics

Articles you may be interested in

Study of the B-site ion behaviour in the multiferroic perovskite bismuth iron chromium oxide
Journal of Applied Physics 123, 154104 (2018); 10.1063/1.5020305

Structural investigation of (111) oriented (BiFeO₃)(1-x)(LaFeO₃)x superlattices by X-ray diffraction and Raman spectroscopy
Journal of Applied Physics 123, 154103 (2018); 10.1063/1.5032085

Giant electrocaloric effect in a cracked ferroelectrics
Journal of Applied Physics 123, 154102 (2018); 10.1063/1.5004203

Improved flexoelectricity in PVDF/barium strontium titanate (BST) nanocomposites
Journal of Applied Physics 123, 154101 (2018); 10.1063/1.5022650

Flexoelectricity in ATiO₃ (A = Sr, Ba, Pb) perovskite oxide superlattices from density functional theory
Journal of Applied Physics 123, 144101 (2018); 10.1063/1.5018405

Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature
Journal of Applied Physics 123, 155301 (2018); 10.1063/1.5025149
Effect of optical damage resistant dopants on the dielectric properties of LiNbO₃: Insight from broadband impedance spectroscopy and Raman scattering

Charlotte Cochard,¹ ² Mael Guennou,¹ Thiemo Spielmann,³ Niels van Hoof,⁴ Alexei Halpin,⁴ and Torsten Granzow¹
¹MRT Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch-sur-Alzette, Luxembourg
²Centre for Nanostructured Media, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
³IEE S.A., ZAE Weiergewan, 11 Rue Edmond Reuter, L-5326 Contern, Luxembourg
⁴Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The Netherlands

(Received 8 January 2018; accepted 31 March 2018; published online 17 April 2018)

Optical damage limits the application range of congruent LiNbO₃. This problem is commonly overcome by adding optical-damage-resistant cations. Here, the influence of doping with optical-damage-resistant Mg and Zn on the ionic and piezoelectric contributions to the dielectric permittivity is investigated in a broad frequency range (1 mHz–2 THz). It is shown that the two dopants have radically different influences on the variation of ionic permittivity with doping, in spite of their similarities with respect to the crystallographic structure. Raman spectroscopy reveals that the difference in permittivity can be traced to the effect of Mg and Zn doping on the susceptibility of the phonon modes. Both observations point to differences in the defect incorporation mechanisms.

Published by AIP Publishing. https://doi.org/10.1063/1.5021758

I. INTRODUCTION

Since its first growth in the 1960s,¹ lithium niobate LiNbO₃ (LN), has attracted a lot of interest owing to its large variety of properties ranging from ferroelectricity to electro-optic properties or photorefractivity.² It was already realized at that time that congruently grown LN deviated strongly from the stoichiometric composition. Indeed, congruent LN exhibits a [Li]/[Nb] ratio of about 0.94, i.e., 6% off the stoichiometric composition. Despite this large number of defects, congruent LN has been used in a variety of applications such as surface acoustic wave devices.

This lower content of Li can be understood in terms of outdiffusion of Li₂O during the growth process.³ Several mechanisms of charge compensation can be envisioned and have been debated in the early 1990s.⁴,⁵ Today, the so-called Li site vacancy model is the one favored. In this model, some of the Li vacancies are replaced by Nb atoms in the antisite. In this case, using Kröger-Vink notations, the chemical formula of congruent LN can be written as

\[
\left\{[Li_L]_{0.94}[Nb_L]_{0.01}[V_L]_{0.01}[V_{Li}]_{0.04}\right\}[Nb_{Nb}]O_3,
\]

where the braces group the atoms on the Li site.

It was very soon recognized that these defects make LN extremely sensitive to optical damage.⁶,⁷ To overcome this limitation, enormous efforts were deployed to grow defect-free stoichiometric LN. Simultaneously, different dopants were incorporated in congruent LN not only to reduce optical damage (Mg, Zn, Sc, and In) but also to tailor its properties to one’s need, like Fe is used to enhance the bulk photovoltaic effect.⁸

Doping with these specific cations has proven very successful in strongly decreasing the optical damage induced by high laser power without any deterioration of the optical properties of interest. The ability to reduce optical damage while maintaining exceptional optical properties has allowed to design compact laser systems at high wavelengths⁹,¹⁰ and optical parametric oscillators.¹¹ Additionally, doping with damage-resistant cations causes a decrease in the coercive field and a shift of the absorption edge to shorter wavelengths.¹² The former is particularly advantageous for the preparation of periodically poled LN (PPLN) used for quasi-phase matching frequency conversion, while the latter becomes an asset for holographic recording.

Reduction of optical damage appears abruptly at the doping level above a threshold composition, which itself depends on the cation used as a dopant (e.g., ~5 mol. % for Mg doping and ~7 mol. % for Zn doping). At low concentrations, dopants are incorporated on the Li site. Notably, their incorporation decreases the Nb in the antisite up to the threshold composition above which this type of defect disappears. Above the threshold composition, dopants sit on both the Li and Nb sites. Despite the extensive research on the influence of dopants on the defect structure,¹³–¹⁶ the exact mechanism for defect compensation when doping with damage resistant ions is not fully understood yet and may depend on the nature of the dopants and the growth conditions.³
frequencies has attracted only sporadic interest,17–19 in spite of the relevance of dielectric measurements for discussions on defects in general and defect mobility in particular.

In this work, the effect of optical damage resistant dopants, namely Zn and Mg, on the dielectric properties is systematically investigated. It is shown that these two dopants influence the ionic permittivity differently. These results are put in perspective with Raman spectroscopy in order to get a better understanding of the origin of these differences.

II. EXPERIMENTAL DETAILS

In this study, plates of congruently grown single crystals of undoped, Zn- and Mg-doped LN provided by Impex GmbH (Rheine, Germany) were used. Mg-doped LN was characterized as square plates ($10 \times 10 \times 0.5$ mm3) with doping concentrations ranging from 1.5 mol. % to 5.5 mol. %, whereas the properties of Zn-doped LN were determined using rectangular plates ($10 \times 8 \times 1$ mm3) with doping concentrations between 5.5 mol. % and 9 mol. %. The crystals were oriented along either the z or x axes depending on the composition. Both z and x-oriented plates were employed for the characterization of pure LN.

The two room temperature components of the dielectric permittivity $\varepsilon_{11} = \varepsilon'_{11} + j\varepsilon''_{11}$ and $\varepsilon_{33} = \varepsilon'_{33} + j\varepsilon''_{33}$ were determined based on impedance measurements from 1 mHz to 10 MHz carried out using a Novocontrol Concept 40 dielectric spectrometer. At higher frequencies, the dielectric permittivity was evaluated based on refractive index measurements: $n^2 = \sqrt{\varepsilon''/\mu''}$ with $\mu'' = 1$ in the case of LN. The refractive index was determined in the free-space quasioptical setup, in the W-band (70–110 GHz),20 and using a commercial Menlo terahertz time domain spectrometer (THz-TDS) from 200 GHz to 1.5 THz.

Raman scattering experiments were performed at room temperature on a Renishaw inVia spectrometer using a red excitation (633 nm).

III. RESULTS AND DISCUSSION

The dispersion of the real part of the dielectric permittivity ε' over the entire frequency range is similar for all doping concentrations. It is exemplified in Fig. 1 with the presentation of ε'_{11} for undoped LN, and LN doped with 4.5 mol. % Mg and with 6.5 mol. % Zn. Regardless of the doping, the same features can be observed: two plateaus separated by piezoelectric resonances. At high frequencies (>100 MHz), the dielectric permittivity results from the electronic and ionic contributions. At the highest frequency limit measured here, the permittivity increases slightly due to the onset of a phonon mode. At low frequencies (<40 kHz), the piezoelectricity of LN adds another contribution to these two.21

To detail the effect of Mg and Zn doping on these contributions, the ionic and the piezoelectric contributions to the permittivity are plotted separately as a function of doping concentration in Figs. 2 and 3, respectively, and will be discussed individually in the following. For simplicity, we call here “ionic contribution” to the permittivity ε_{ion} a value that in fact contains the sum of the ionic and electronic contributions. Since the latter shows no dependence on Mg or Zn doping,22,23 the discussion remains correct nonetheless.

A. Ionic contribution

Our previous work21 on undoped congruent LN single crystals demonstrates that no dielectric relaxation is observed between the resonances associated with piezoelectricity.

FIG. 1. Example of dielectric dispersion for congruent LN, LN doped with 4.5% Mg, and LN doped with 6.5% Zn at room temperature.

FIG. 2. Effect of Mg and Zn doping on the ionic contribution to the room temperature dielectric permittivity. The green circles represent ε'_{11}, and the orange squares represent ε'_{33}. The open and filled symbols depict data obtained at 90 GHz and 0.75 THz, respectively. The dielectric permittivity measured at 0.75 THz reported in Ref. 24 is displayed in darker triangles for comparison. The dashed lines are a guide to the eye.
around 5 MHz and the resonances observed due to phonons (above 5 THz), indicating that the ionic permittivity can be determined measuring either the clamped permittivity (characterized at frequencies above piezoelectric resonances) or permittivity at higher frequencies. In this study, the ionic contribution to the permittivity is determined based on measurements performed at 90 GHz and 0.75 THz, since the two values are far from any resonances. These two values are in good agreement with one another and with the available literature.24 (Fig. 2).

For both dopants, the ionic contribution \(e_{i,\text{ion}} \) is not strongly affected by doping although a limited decrease in the permittivity can be observed when increasing the Mg content in LN. On the other hand, the Zn and Mg dopants affect \(e_{i,\text{ion}} \) differently. Indeed, Zn-doped LN presents a permittivity that is constant up to a threshold composition, where it increases abruptly. Above the threshold composition, the dielectric constant of LN:Zn shows again no dependence on the Zn content. In the case of Mg doping, the permittivity increases steadily up to the threshold composition, where it increases abruptly. Above the threshold composition, the dielectric constant of LN:Mg shows again no dependence on the Mg content. In the case of Mg doping, the permittivity increases steadily up to the threshold composition, where it reaches its maximum and decreases suddenly for larger Mg doping.

Thus, it appears that the two components of the ionic permittivity are influenced very differently by the doping and that Mg and Zn doping have different effects on the permittivity.

B. Piezoelectric contribution

Piezoelectricity contributes to the permittivity at frequencies below the piezoelectric resonances, i.e., below 40 kHz. Hence, the piezoelectric contribution to the low-frequency permittivity can be determined as the difference between the dielectric constant measured at frequencies below the piezoelectric resonances (e.g., 1 kHz) and the ionic permittivity: \(e_{\text{piezo}} = e_1'(1 \text{ kHz}) - e_{i,\text{ion}} \). The influence of Zn and Mg doping on the piezoelectric permittivity is presented in Fig. 3.

The increase in either Mg or Zn concentration has the same effect on the piezoelectric contribution to permittivity: \(e_{11,\text{piezo}} \) decreases while \(e_{33,\text{piezo}} \) remains constant. This effect of doping on the two components of \(e' \) differs owing to their contrasting magnitude: \(e_{33,\text{piezo}} \) is nearly negligible due to the low corresponding piezoelectric coefficients \(d_{31} \) and \(d_{33} \). In contrast, LN is known for its large \(d_{15} \) and \(d_{33} \), inducing the large value of \(e_{11,\text{piezo}} \), making it more sensitive to doping. Nevertheless, it appears clearly that the two optical-damage resistant dopants considered here, Zn and Mg, have similar impacts on the piezoelectric contribution to the permittivity.

C. Raman spectroscopy

Raman spectroscopy can probe subtle changes in the structure and, in polar crystals, where polar phonon modes are also Raman active, the dielectric contribution of each phonon mode can be calculated from the experimentally obtained spectra. Both are intimately linked, because the ionic permittivity describes the response/movement of the ions to an electric field. In simple cases, and in particular, in the case of LN, the dielectric response of the phonons can be modeled as the superposition of damped harmonic oscillators (DHOs), so that the dielectric contribution \(e_i \) of the \(i \)th transverse optical phonon can be written as

\[
e_i(\omega) = \frac{\Delta e_i \omega_{TOi}^2}{\omega_{TOi}^2 - \omega^2 - j\omega \gamma_i},
\]

where \(\omega_{TOi} \) is the frequency of the phonon, \(\gamma_i \) is its damping, and \(\Delta e_i \) is the oscillator strength. For frequencies far below the phonon frequencies, the dielectric contribution of the \(i \)th phonon is given by the oscillator strength \(\Delta e_i \), whereas \(\gamma_i \) and \(\omega_{TOi} \) are of major influence only for frequency close to \(\omega_{TOi} \). The contribution of a specific phonon mode to the permittivity depends on its symmetry: in LN, the longitudinal A_{11}-modes contribute to \(e_{33} \), while the transverse E-modes lead to the development of \(e_{11} \).

In general, the Raman scattered intensity is expressed as

\[
I(\omega) = K \|n(\omega) + 1\| \varepsilon''(\omega),
\]

where \(\varepsilon'' \) is the imaginary part of the permittivity, \(\|n(\omega) + 1\| \) is the Bose-Einstein population factor for the Stokes scattering, and \(K \) is a factor dependent on the experimental conditions. Replacing \(\varepsilon''(\omega) \) in Eq. (3) by the value derived from the DHO [Eq. (2)], the oscillator strength can be derived

\[
\Delta e_i = I(\omega_{TOi}) \frac{\gamma_i}{\omega_{TOi}} K \|n(\omega_{TOi}) + 1\|.
\]

Therefore, it appears clearly that the dielectric contribution of a phonon mode is given by the intensity of the Raman mode, as well as its position and damping. A detailed study of the effect of doping on the different Raman modes is then a natural starting point to the understanding of the different effects of Zn or Mg doping on the ionic contribution of LN.

Figure 4 presents the Raman spectra for all samples considered in this study. With our crystal orientations and scattering geometries, it is expected from the selection rules that all Raman active mode except for E(LO) can be observed (Table I). Actually, despite the fact that the E(LO) modes...
should not be accessible, they are clearly visible in the $X(YY)\bar{X}$ spectrum when LN is doped with either Zn or Mg [Fig. 4(e)]. Therefore, it appears that doping leads to a breaking of the selection rules in LN.

In addition, Raman bands present the usual broadening related to doping. It can be seen for example in Figs. 5 and 6. It is particularly interesting to note that the $A_1(\text{TO}_2)$ mode is more affected by doping than the $A_1(\text{TO}_1)$ mode. This has been attributed in the past to the fact that the two modes probe different movements of Li or Nb. In fact, the $A_1(\text{TO}_2)$ mode describes essentially the z vibration of Li ions in antiphase to Nb with respect to a relatively rigid oxygen cage, whereas the TO_1 mode can be seen as Nb vibrating in antiphase with the oxygen sublattice while leaving Li relatively static so that it is naturally less affected by substitution on the Li site.

Furthermore, changes in the position can be observed for some Raman bands (see, for example, the inset of Fig. 5).
With Zn and Mg doping, evolution in the relative intensity between several Raman bands can be indubitably observed. For example, the intensity of all A_1(TO) peaks decreases in comparison with the A_1(TO$_1$) mode in Fig. 5. Changes in relative intensity are also observed for bands with different symmetries: Fig. 7 not only highlights the changes in relative intensities between different A_1(LO) modes, but also between these modes and the E modes. In summary, doping with Zn or Mg influences very strongly the Raman spectra in terms of the peak position, width, and relative intensity.

It is also clear that Zn and Mg influence differently the position of the phonon modes, indicating that indeed these two dopants have different effects on the structure. Our observations are consistent with similar systematic investigations in the literature with shifts of the order a few wavenumbers at most, and a behaviour that may be linear or non-linear as a function of the doping concentration (spectra are given as the supplementary material). For both types of dopants, it was found that the width of the bands shows almost no dependence for below threshold compositions and increases with larger doping. On the other hand, the position of the peaks varies differently depending on the phonon modes considered and the dopant: Mg keeps the position of most bands unaltered except the A_1(TO$_2$) and A_1(TO$_3$), which are shifted to lower frequencies, whereas Zn tends to favor a decrease in the frequency of most phonon modes.

In principle, it should be possible to quantify the contribution of each phonon mode and identify their atomic vibration patterns in order to gain more insight into the structural aspects of doping. However, this is particularly challenging here for a number of reasons. First, the transverse permittivity ε_{11} is more complex than the longitudinal ε_{33} because of the larger number of phonons involved (9 E modes vs. 4 A_1 modes). Besides, examination of the eigenvectors for the E modes calculated in Ref. 28 shows that they do not have very clearly distinguishable atomic displacements patterns, but more or less involve motions of all atoms, and as such are less sensitive to modifications at a specific atomic site. Last, experimentally comparing Raman intensities from sample to sample is always challenging and comes with many uncertainties (absorption corrections, possible miscuts, etc.), while the change in permittivity remains relatively modest (about 10%-20% at most). At this stage, it appears unlikely that the variations in permittivity can be reduced to a simple contribution; this is left for future studies.

TABLE I. Expected modes according to selection rules accessible in the present experiment.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Expected modes according to selection rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(YY)X</td>
<td>A_1(TO) + E(TO)</td>
</tr>
<tr>
<td>X(ZZ)X</td>
<td>A_1(TO)</td>
</tr>
<tr>
<td>X(YZ)X</td>
<td>E(TO)</td>
</tr>
<tr>
<td>X(ZY)X</td>
<td>E(TO)</td>
</tr>
<tr>
<td>ZXXXZ</td>
<td>A_1(LO) + E(TO)</td>
</tr>
<tr>
<td>ZYYYZ</td>
<td>A_1(LO) + E(TO)</td>
</tr>
<tr>
<td>ZXYYZ</td>
<td>E(TO)</td>
</tr>
<tr>
<td>ZYXZ</td>
<td>E(TO)</td>
</tr>
</tbody>
</table>

FIG. 5. Comparison of A_1(TO) Raman spectra in Zn-, Mg-doped, and undoped LN crystals. The spectra were all normalized to the intensity of the A_1(TO$_1$) mode. (Inset) illustration of the shift in the peak position induced by doping. The spectra were normalized to the maximum intensity.

FIG. 6. Comparison of E(TO) Raman spectra in Zn-, Mg-doped and undoped LN crystals. Spectra were normalized to the maximum intensity and shifted for clarity.

FIG. 7. Comparison of A_1(LO) and E Raman spectra in Zn-, Mg-doped and undoped LN crystals. The spectra were all normalized to the intensity of the E(TO$_3$) mode (236 cm$^{-1}$).
D. Consequences for the dopant incorporation mechanism

Literature usually indicates that both Zn and Mg tend to incorporate in LN in a similar way above and below their threshold composition, and as such have a very similar effect on the crystal structure of LN. Both tend to increase the unit cell volume and sit on the Li-site for doping concentration below the threshold and on both sites above it. Yet, to this date, the precise incorporation mechanism related to this substitution is not fully understood. At doping levels below the threshold, the dopant goes on the Li site and favors a decrease in the niobium in antisite Nb$_{4}$

Two possible scenarios can be considered. The first is a two-step process where the dopant first substitutes all Nb$_{4}$ and only then starts to replace lithium on its site Li$_{4}$. The second scenario assumes that these two substitutions happen simultaneously, leading ultimately to the disappearance of all Nb$_{4}$. In this picture, already at the threshold, the dopant will be situated on both Li and Nb sites, in a ratio that depends on their respective energetic cost.

He and Xue showed using the bond valence model that the energy cost is lower for Zn to sit on the Li site than for Mg and conversely that it costs more energy for Zn to be located on the Nb site than for Mg. These (small) differences in energy cost might lead to slight differences in the substitution and defect compensation mechanisms. Indeed, below the threshold, Zn would simultaneously replace Nb$_{4}$ and Li$_{4}$, while Mg would favor a two step substitution mechanism. Above the threshold, the difference in energy cost for Zn and Mg to go on the Li or Nb sites can lead to a slightly different amount of Zn or Mg going on either of the sites.

It is worth noting that this difference between the incorporation mechanism of Zn and Mg is consistent with the fact that the two dopants exhibit different threshold compositions. Indeed, it is usually considered that the threshold composition corresponds to the value above which there is no Nb in antisite left. As Mg would favor taking the place of Nb atoms, all incorporated Mg atoms would decrease the amount of Nb$_{4}$, whereas all Zn would not push the Nb back on its site as Zn substitutes simultaneously both Nb$_{4}$ and Li$_{4}$ necessitating a larger amount of Zn to annihilate all antisite Nb.

Here, our data both from dielectric measurements and Raman spectroscopy point out differences between Zn and Mg-doped samples, visible in the values of the ionic contribution to the dielectric constant, and the alterations of the Raman spectrum. Even though our analysis does not allow for a quantification of defect populations, it clearly supports the hypothesis of two different incorporation mechanisms for Zn and Mg.

IV. SUMMARY AND CONCLUSION

The dielectric properties of congruently grown undoped, Zn- and Mg-doped LN crystals were measured in a wide frequency range: 1 mHz to 2 THz. The influence of doping on the different contributions to the components of permittivity was systematically investigated. It was shown that Zn and Mg have similar effects on ε'_{33}, while they have different effects on the ionic contribution of ε'_{11}. This dopant dependence comes as a surprise as it is usually accepted that Zn and Mg have similar effects on the crystallographic structure.

Investigation using Raman spectroscopy was undertaken to get a better understanding of the origin of this difference. It appears that the difference is reflected in changes in the oscillator strengths of the phonon modes. This corroborates the dielectric measurements and supports the idea of differences in the defect incorporation mechanism for Zn and Mg. However, it was not possible to single out a particular mode responsible for the effect.

SUPPLEMENTARY MATERIAL

See supplementary material for the raw Raman spectra obtained during the course of this work.

ACKNOWLEDGMENTS

This study was supported by the National Research Fund, Luxembourg, under Project reference FNR/C13/MS/5817287/Granзов, FNR/P12/48563155/Kreisel, and FNR/Midimiat/10036216.

