Temporal logic control of general Markov decision processes by approximate policy refinement

Citation for published version (APA):

Document status and date:
Published: 20/12/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 28. Apr. 2019
Temporal logic control of general Markov decision processes by approximate policy refinement

Sofie Haesaert¹, Sadegh Soudjani², and Alessandro Abate³

¹ California Institute of Technology, United States
² School of Computing, Newcastle University, United Kingdom
³ Computer Science Department, Oxford University, United Kingdom

Abstract. The formal verification and controller synthesis for Markov decision processes that evolve over uncountable state spaces are computationally hard and thus generally rely on the use of approximations. In this work, we consider the correct-by-design control of general Markov decision processes (gMDPs) with respect to temporal logic properties by leveraging approximate probabilistic relations between the original model and its abstraction. We newly work with a robust satisfaction for the construction and verification of control strategies, which allows for both deviations in the outputs of the gMDPs and in the probabilistic transitions. The computation is done over the reduced or abstracted models, such that when a property is robustly satisfied on the abstract model, it is also satisfied on the original model with respect to a refined control strategy.

1 Introduction

With the ever more ubiquitous embedding of digital components into physical systems new computational efficient verification and control synthesis methods for these cyber-physical systems are needed. The correct functioning of cyber-physical systems can only be expressed over the combined behaviour of both the digital component and its connected physical system. Quite importantly, stochastic models are key when computers interact with physical systems such as biological processes, power networks, and smart-grids. These dynamic systems with uncertainty and non-determinism can be modelled as Markov processes evolving over continuous spaces. Their potential safety critical impact on the environment they interact with makes it of particular interest to develop formal methods that assist in their verifiable design. In this work, we newly enable the verification and synthesis of these stochastic systems with respect to probabilistic linear temporal logic properties.

As our modelling framework, we consider the rich class of general Markov decisions processes (gMDPs), which are Markov decision processes evolving over continuous or uncountable state spaces and which have control-dependent stochastic transitions in combination with a metric output space. It is over this output
that we define properties of interest. The characterisation of properties over such processes can in general not be attained analytically [3], so an alternative is to approximate these models by simpler processes, such as finite-state MDP [9] or continuous-space reduced order models [21] that are prone to be mathematically analysed or algorithmically verified [10]. In [13, 12], we have proposed new approximate similarity relations to quantify the accuracy of the approximation utilising bounds on the output distance and on the transition probabilities. We have shown that for bounded safety properties these approximate similarity relations can be used to refine control strategies with bounded error on transition probability and deviations in the output space. The main goal of this paper is to study general temporal logic properties of gMDPs in combination with these approximate similarity relations. As the main contribution of the paper we show that the standard verification and control synthesis for gMDPs can be made robust a-priori to the introduced accuracy errors.

Related Work. Properties defined in PCTL, PLTL, and PCTL* for finite-state Markov (decision) processes can be verified using tools such as PRISM [17]. Moreover it is also well-known how to design policies, i.e., to control these Markov decision processes such that the satisfaction of these properties is maximised. The work in [2] has studied model-checking of automata specifications against autonomous (i.e. uncontrolled) discrete-time stochastic models over uncountable state spaces. It was shown that the computation of the probability of satisfying a specification expressed as deterministic finite automaton (DFA) can be restated in terms of a probabilistic reachability problem over the product between the original model and the DFA. This result has been extended in [22] to the case of controlled discrete-time Markov processes, which are a special subclass of gMDPs introduced in our work (obtained with identity output map, $h(x) = x$ for all $x \in X$, and so with an output space $Y = X$). In this work we extend the model class discussed in [22] and build on their results by showing that an approximate model can be used to compute the solutions of Bellman equations associated to the stochastic reachability problem.

The paper is organised as follows. In the next section, we first define gMDPs and state the temporal logic control problem. In Section 3 we define approximate simulation relation on gMDPs and solve the robust probabilistic reachability problem. In Section 4 we extend the results to probabilistic temporal logic control utilising the product of gMDP and DFA. In Section 5 we detail the approximation procedure for linear stochastic dynamical systems and we apply it to a simple toy case. Throughout the paper proofs of the theorems have been relegated to the appendix of the extended version [14].

2 Problem statement: temporal logic control

2.1 Preliminaries and notations

In this work, we only consider Borel measurable spaces, i.e., $(X, B(X))$, and we restrict our attention to Polish spaces [5]. Together with the measurable space
depends non-deterministically on the choice of to a probability measure \(\mu \). Let us further denote the set of all probability measures for a given measurable space \((X, B(X))\) as \(\mathcal{P}(X, B(X)) \).

For the sets \(A \) and \(B \) a relation \(R \subset A \times B \) is a subset of the Cartesian product \(A \times B \). The relation \(R \) relates \(x \in A \) with \(y \in B \) if \((x, y) \in R \), which is equivalently written as \(x R y \). For a given set \(\mathcal{Y} \) a metric or distance function \(d_Y \) is a function \(d_Y : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0} \) satisfying the following conditions: \(\forall y_1, y_2, y_3 \in \mathcal{Y}: d_Y(y_1, y_2) = 0 \iff y_1 = y_2; d_Y(y_1, y_2) = d_Y(y_2, y_1); \) and \(d_Y(y_1, y_2) + d_Y(y_2, y_3) \geq d_Y(y_1, y_3) \).

2.2 General Markov decision processes and control strategies

General Markov decision processes are related to control Markov processes [1] and Markov decision processes [4,20,15], and formalised as follows.

Definition 1 (general Markov decision process (gMDP)). A discrete-time gMDP is a tuple \(M = (X, \pi, T, U, h, \mathcal{Y}) \) with
- \(X \), an (uncountable) Polish state space with states \(x \in X \) as its elements;
- \(U \), the set of controls which is a Polish space;
- \(\pi \), the initial probability measure \(\pi : B(X) \to [0, 1] \);
- \(T : X \times U \times B(X) \to [0, 1] \), a conditional stochastic kernel assigning to each state \(x \in X \) and control \(u \in U \) probability measure \(T(\cdot | x, u) \) over \((X, B(X))\);
- \(Y \), the output space decorated with metric \(d_Y \); and
- \(h : X \to Y \), a measurable output map.

For any set \(A \in B(X) \), \(P_{x,u}(x(t+1) \in A) = \int_A T(dx' | x(t) = x, u) \), where \(P_{x,u} \) denotes the conditional probability \(P(\cdot | x, u) \). At every state, the state transition depends non-deterministically on the choice of \(u \in U \). When chosen according to a probability measure \(\mu_u : B(U) \to [0, 1] \), we refer to the stochastic control input as \(\mu_u \) and denote the transition kernel as \(T(\cdot | x, \mu_u) = \int_U T(\cdot | x, u) \mu_u(du) \in \mathcal{P}(X, B(X)) \). Given a string of inputs \(\{u(t)\}_{t \leq N} := u(0), u(1), \ldots, u(N) \), over a finite time horizon \([0, N]\), and an initial condition \(x_0 \) (sampled from \(\pi \)), the state at the \((t+1)\)-st time instant, \(x(t+1) \), is obtained as a realisation of the controlled Borel-measurable stochastic kernel \(T(\cdot | x(t), u(t)) \) – these semantics induce paths (or executions) of the gMDP. Further, output traces of gMDP are obtained by applying the output map \(h(\cdot) \) to the paths of gMDP, namely \(\{y(t)\}_{t \leq N} := y(0), y(1), \ldots, y(N) \) with \(y(t) = h(x(t)) \) for all \(t \in [0, N] \). Denote the class of all gMDP with the same metric output space \(\mathcal{Y} \) as \(\mathcal{M}_Y \).

A policy is a selection of control inputs based on the past history of states and controls. When the selected controls are only dependent on the current states, the policy is referred to as Markov.

Definition 2 (Markov policy). For a gMDP \(M = (X, \pi, T, U, h, \mathcal{Y}) \), a Markov policy \(\mu \) is a sequence \(\mu = (\mu_0, \mu_1, \mu_2, \ldots) \) of universally measurable maps \(\mu_t : X \to \mathcal{P}(U, B(U)) \), \(t \in \mathbb{N} \) := \(\{0, 1, 2, \ldots\} \), from the state space \(X \) to the set of controls.
We allow controls to be selected via universally measurable maps from the state to the space of stochastic control inputs, so that properties such as safety can be maximised. We introduce the notion of a control strategy, and define it as a broader, memory-dependent version of the Markov policy above. This strategy is formulated again as a gMDP that takes as its input the state of the to-be-controlled gMDP.

Definition 3 (Control strategy). A control strategy $\mathbf{C} = (X_C, x_{C0}, X, T, h)$ for a gMDP $M = (X, \pi, T, U, h)$ is a gMDP with state space X_C; initial state x_{C0}; input space X; universally measurable kernels $T : X_C \times X \times B(X_C) \to [0, 1]$; and with universally measurable output map $h : X_C \to \mathcal{P}(U, B(U))$.

Note that the stochastic transitions for the control strategy and the gMDP are selected in an alternating fashion. The output map of the strategy is indexed based on the time instant at which the resulting policy will be applied to the gMDP. This is further elucidated in Algorithm 1. The execution of a gMDP M controlled with strategy \mathbf{C} (denoted by $\mathbf{C} \times M$) is defined on the canonical sample space $\Omega := (X \times X_C)^{N+1}$ endowed with its product topology $B(\Omega)$ and with a unique probability measure $\mathbb{P}_{\mathbf{C} \times M}$. A Markov policy is as a special case of control strategy which does not have an internal state that can be used to remember relevant past events.

Remark 1. Any Markov policy μ as defined in Def. 2 can be written as a control strategy $\mathbf{C}_\mu := (X_\mu, x_{\mu0}, X, T_\mu, h_\mu)$ with $X_\mu := Q \times X$, for which Q is the set of time indices $Q := \{-1, 0, 1, 2, 3, \ldots\}$, and with $x_{\mu0} := (-1, x_0)$ the initial state for some $x_0 \in X$. The probability measure on the next control state $x'_{\mu} = (q', \tilde{x}') \in X_\mu$ given $x(t)$ and given the current state $x_{\mu} = (q, \tilde{x})$ is defined with a stochastic kernel as

$$T_\mu(A|(q, \tilde{x}), x(t)) := \begin{cases} 1 & \text{if } (q + 1, x(t)) \in A, \\ 0 & \text{else}. \end{cases}$$
2.3 Probabilistic path properties of controlled gMDPs

Consider a measurable target set $K \subset \mathcal{Y}$. We say that an output trace $\{y(t)\}_{t \leq N}$ reaches a target set K, if there exists a time $t \in [0, N]$ such that $y(t) \in K$. This bounded reaching of K is denoted by $\Diamond^{\leq N} \{y \in K\}$ or briefly $\Diamond^{\leq N} K$. For $N \to \infty$, we denote the reachability property as $\Diamond K$, i.e., eventually K.

For a given gMDP M with control strategy C, a verification task consists of quantifying the probability that an output trace of $C \times M$ reaches K within the time horizon $[0, N]$, i.e., $\mathbb{P}_{C,M}(\Diamond^{\leq N} K)$, or that the target set K is eventually reached, i.e., $\mathbb{P}_{C,M}(\Diamond K)$, and verifying that it is within a given threshold.

More complex properties can be described using temporal logic. Consider a set of atomic propositions AP, the alphabet $\Sigma := 2^{AP}$, and infinite words that are string composed of elements from Σ, $\omega = \omega(0), \omega(1), \omega(2), \ldots \in \Sigma^\infty$. Of interest are atomic propositions that are connected to the gMDP via a measurable labelling function $L : \mathcal{Y} \to \Sigma$ from the output space to the alphabet Σ. Via its trivial extension, output traces $\{y(t)\}_{t \geq 0} \in \mathcal{Y}^\infty$ can be mapped to the set of infinite words Σ^∞, as $\omega = L(\{y(t)\}_{t \geq 0}) := \{L(y(t))\}_{t \geq 0}$. Consider linear-time temporal logic properties with syntax

$$\psi := \text{true} \mid p \mid \neg \psi \mid \psi_1 \land \psi_2 \mid \Diamond \psi \mid \psi_1 \mathcal{U} \psi_2.$$ \hspace{1cm} (1)

Let $\omega_i = \omega(t), \omega(t+1), \omega(t+2), \ldots$ be a postfix of the word ω, then the satisfaction relation between ω and a property ψ, expressed via LTL, is denoted by $\omega \models \psi$ (or equivalently $\omega_0 \models \psi$). The semantics of the satisfaction relation are defined recursively over ω_i and the syntax of the LTL formula ψ. An atomic proposition $p \in AP$ is satisfied by ω, i.e., $\omega_i \models p$, iff $p \in \omega(t)$. Furthermore, $\omega_i \not\models \neg \psi$ if $\omega_i \not\models \psi$ and we say that $\omega_i \models \psi_1 \land \psi_2$ if $\omega_i \models \psi_1$ and if $\omega_i \models \psi_2$. The next operator $\omega_i \models \Diamond \psi$ holds if the property holds at the next time instance $\omega_{i+1} \models \psi$. The temporal until operator $\omega_i \models \psi_1 \mathcal{U} \psi_2$ holds if $\exists i \in \mathbb{N} : \omega_{i+1} \models \psi_2$, and $\forall j \in \mathbb{N}, 0 \leq j < i, \omega_{i+j} \models \psi_1$. Based on these semantics, operators such as disjunction (\lor) can also be defined through the negation and conjunction: $\omega_i \models \psi_1 \lor \psi_2 \iff \omega_i \models \psi_1$ or $\omega_i \models \psi_2$.

We are interested in a fragment of LTL property known as syntactically co-safe temporal logic (scLTL) \cite{10}. Even though scLTL formulas are interpreted over infinite words, their satisfaction is guaranteed in finite time. This fragment is defined as follows.

Definition 4. A scLTL over a set of atomic propositions AP has syntax

$$\psi := \text{true} \mid p \mid \neg p \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \Diamond \psi \mid \psi_1 \mathcal{U} \psi_2 \mid \Diamond \psi_2$$ \hspace{1cm} (2)

with $p \in AP$.

iv Note that for this construction, the separability of the Polish space \mathcal{X} is important as otherwise \mathbb{P}_μ would not be measurable in general.
In the remainder, we will mainly consider scLTL properties since their verification can be computed via a reachability property over a finite state automaton. With respect to a scLTL property \(\psi \), we say that a gMDP \(M \) satisfies \(\psi \) for a given control strategy \(C \) with probability at least \(p \) iff \(P_{C \times M}(L(\{y(t)\}_{t \geq 0}) = \psi) \geq p \). Apart from this verification task, we are mostly interested in synthesising control strategies such that \(C \times M \) satisfies the inequality.

2.4 Problem statement

In this paper, we tackle the control synthesis for the (bounded) probabilistic reachability problem and for the temporal logic control problem, defined next.

Problem 1 (Bounded) probabilistic reachability Given a gMDP \(M \) and a set \(K \subset Y \), compute a control strategy \(C \) that maximises the bounded reachability probability \(P_{C \times M}(\Diamond \leq N K) \) or the reachability probability \(P_{C \times M}(\Diamond K) \).

Problem 2 (Temporal logic control) Given a gMDP \(M \), a scLTL property \(\psi \) and a labelling function \(L \), compute a control strategy \(C \) that maximises the probability of controlled Markov process \(C \times M \) satisfying \(\psi \), i.e.,

\[
\max_C P_{C \times M}(L(\{y(t)\}_{t \geq 0}) = \psi).
\]

For a given controlled Markov process is generally impossible. In the next sections, we give a robust computations based on \((\epsilon, \delta)\)-probabilistic simulation relations between a given model and its approximation.

3 Quantifying stochastic reachability using \((\epsilon, \delta)\)-probabilistic simulation relations

Let a gMDP \(M = (X, \pi, T, U, h, Y) \) and a target set \(K \subset Y \) be given. In the robust formulation of Problem 1, we compute a control strategy \(C \) and a quantified lower bound \(p \), such that the probability of satisfying \(\Diamond \leq N K \), respectively \(\Diamond K \), is lower bounded by \(p \), i.e., \(P_{C \times M}(\Diamond \leq N K) \geq p \), respectively \(P_{C \times M}(\Diamond K) \geq p \). We associate to the target set \(K \subset Y \), the corresponding set in the state space \(K_X := h^{-1}(K) \subset B(X) \). Let us denote by \(r^\mu(K_X, N) \), the probability that \(K \) is reached within \(N \) time steps when a Markov policy \(\mu = (\mu_0, \mu_1, \ldots, \mu_{N-1}) \) is used. We iterate the computation of stochastic reachability of a Markov decision process, as explain in [3]. The value of \(r^\mu(K_X, N) \) can be computed by a backward recursion initialised with \(V_N = 0 \), and iterated for \(k = N - 1, \ldots, 0 \) as

\[
V_k(x) = \int_X \left[1_{K_X}(\tilde{x}) + 1_{X \setminus K_X}(\tilde{x})V_{k+1}(\tilde{x}) \right] T(d\tilde{x}|x, \mu_k(x)).
\]

Based on the final value function after \(N \) iterations, we have that

\[
r^\mu(K_X, N) = \int_X \left[1_{K_X}(x) + 1_{X \setminus K_X}(x)V_0(x) \right] \pi(dx).
\]
Furthermore, the optimal value functions $V^*_k(x)$, $k \in [0, N]$, computed recursively with $V^*_N(x) = 0$ and for all $x \in X$ and $k = N - 1, \ldots, 1, 0$,

$$V^*_k(x) = \sup_{\mu_k} \int_X \left[1_{K \delta}(\tilde{x}) + 1_{X \setminus K \delta}(\tilde{x})V^*_{k+1}(\tilde{x}) \right] \mathbb{T}(d\tilde{x}|x, \mu_k(x)), \quad (6)$$

give the optimal reachability probability

$$r^*(K_X, N) = \int_X \left[1_{K \delta}(x) + 1_{X \setminus K \delta}(x)V^*_0(x) \right] \pi(dx). \quad (7)$$

Using $V^*_k(x)$ the control strategy C^* maximising $\mathbb{P}_{\text{CM}}(\triangle K)$ is defined by a Markov policy μ^* with elements μ^*_k,

$$\mu^*_k(x) \in \arg\sup_{\mu_k} \int_X \left[1_{K \delta}(\tilde{x}) + 1_{X \setminus K \delta}(\tilde{x})V^*_{k+1}(\tilde{x}) \right] \mathbb{T}(d\tilde{x}|x, \mu_k(x)). \quad (8)$$

The unbounded optimal reachability probability $r^*(K_X)$ can be evaluated based on the fixed point of (6). More specifically, for $N \to \infty$ the value functions are strictly increasing and converging to the fixed point solution of

$$V^*(x) = \sup_{\mu} \int_X \left[1_{K \delta}(\tilde{x}) + 1_{X \setminus K \delta}(\tilde{x})V^*(\tilde{x}) \right] \mathbb{T}(d\tilde{x}|x, \mu(x)). \quad (9)$$

For a given policy μ, the unbounded reachability probability $r^\mu(K_X)$ and the associated value function $V^\mu(x)$ are formulated similarly. Thus we have that

$$\sup_C \mathbb{P}_{\text{CM}}(\triangle K) = r^*(K_X), \text{ respectively, } \sup_C \mathbb{P}_{\text{CM}}(\triangle^{\leq N} K) = r^*(K_X, N).$$

This together, with its universal measurability, has been discussed in [3]. Computation of backward recursions (4) and (6) is generally only tractable for finite state spaces. In the following, we define approximate probabilistic simulation relations over \mathcal{M}_Y, as introduced in [3], and apply it to compute a lower bound on probabilistic reachability and the corresponding synthesis problem.

3.1 Approximate simulation relations for gMDPs

Consider two gMDPs $M_i = (X_i, \pi_i, T_i, U_i, h_i, Y)$, $i = 1, 2$, that have the same metric output space (Y, d_Y). Given state-action pairs $x_1 \in X_1, u_1 \in U_1$ and $x_2 \in X_2, u_2 \in U_2$, we want to relate the corresponding transition kernels, namely the probability measures $T_1(\cdot | x_1, u_1) \in \mathcal{P}(X_1, B(X_1))$ and $T_2(\cdot | x_2, u_2) \in \mathcal{P}(X_2, B(X_2))$. As in [3], we introduce the concept of δ-lifting as follows.

Definition 5 (\(\delta\)-lifting for general state spaces). Let X_1, X_2 be two sets with associated measurable spaces $(X_1, B(X_1))$, $(X_2, B(X_2))$, and let $R \subseteq X_1 \times X_2$ be a relation for which $R \in B(X_1 \times X_2)$. We denote by $\bar{R}_\delta \subseteq \mathcal{P}(X_1, B(X_1)) \times \mathcal{P}(X_2, B(X_2))$ the corresponding lifted relation so that $\Delta \bar{R}_\delta \Theta$ holds if there exists a probability space $(X_1 \times X_2, B(X_1 \times X_2), \mathbb{W})$ (equivalently, a lifting \mathbb{W}) satisfying...
Define also the operator L_{δ} and Γ_{δ} if for every $M = (\mathbb{X}, \pi, T, U, h, \mathbb{Y})$, $i = 1, 2$, over a shared metric output space $(\mathbb{Y}, d_\mathbb{Y})$. M_1 is (ϵ, δ)-stochastically simulated by M_2 if there exists an interface function U_ϵ and a relation $\mathbb{R} \subseteq \mathbb{X}_1 \times \mathbb{X}_2$, for which there exists a Borel measurable stochastic kernel $\mathbb{W}(\cdot | u_1, x_1, x_2)$ on $\mathbb{X}_1 \times \mathbb{X}_2$ given $\mathbb{U}_1 \times \mathbb{X}_1 \times \mathbb{X}_2$, such that:

APS1. $\forall (x_1, x_2) \in \mathbb{R}, d_\mathbb{Y}(h_1(x_1), h_2(x_2)) \leq \epsilon$;
APS2. $\forall (x_1, x_2) \in \mathbb{R}, \forall u_1 \in \mathbb{U}_1: T_1(\cdot | x_1, u_1) \mathbb{R}_\delta T_2(\cdot | x_2, U_\epsilon(u_1, x_1, x_2))$, with lifted probability measure $\mathbb{W}_\mathbb{T}(\cdot | u_1, x_1, x_2)$;
APS3. $\pi_1 \mathbb{R}_\delta \pi_2$.

The simulation relation is denoted as $M_1 \preceq \delta M_2$.

This definition extends the known exact notions of probabilistic simulation in [18], and the approximate notions of [7, 8] to gMDPs over Polish spaces as elaborated in [13]. The Borel measurability for both U_ϵ (see above) and $\mathbb{W}_\mathbb{T}$ (as in this definition), which is used to prove the well-posedness of the controller refinement, can be relaxed to universal measurability [13].

3.2 δ-Robust probabilistic reachability

Definition 7 ((ϵ, δ)-Robust satisfaction). Consider any $M_1 \in \mathcal{M}_\mathbb{Y}$. We say that a Markov policy μ for M_1 (ϵ, δ)-robustly satisfies $\mathbb{G}^{\leq N}K$ with probability p if for every $M_2 \in \mathcal{M}_\mathbb{Y}$ with $M_1 \preceq \delta M_2$ there exists a controller C_2 for M_2 such that $\mathbb{P}_{C_2,M_1}(\mathbb{G}^{\leq N}K) \geq p$.

For a given universally measurable map $\nu : \mathbb{X}_1 \rightarrow \mathcal{P}(\mathbb{U}_1, \mathcal{B}(\mathbb{U}_1))$ and constant δ, define the operator $T^\prime_\delta : \mathcal{F} \rightarrow \mathcal{F}$ acting on the set of functions $\mathcal{F} := \{f : \mathbb{X}_1 \rightarrow [0, 1]\}$ as

$$T^\prime_\delta(V)(x) := L \left(\int_{\mathbb{X}_1} [1_{K_{X_1}}(\bar{x}) + 1_{X_1 \setminus K_{X_1}}(\bar{x})V(\bar{x})]T(d\bar{x} | x, \nu(x)) - \delta \right)$$

(10)

with $L : \mathbb{R} \rightarrow [0, 1]$ being the truncation function $L(\cdot) := \min(1, \max(0, \cdot))$. Define also the operator $T^*_\delta(V)$ on \mathcal{F} as $T^*_\delta(V)(x) := \sup_\nu T^\prime_\delta(V)(x)$.
Theorem 1. A target set $K \subset \mathcal{Y}$ of gMDP M_1 is reached $(0, \delta)$-robustly with Markov policy μ and with probability $r^\mu(K_{X_1}, N)$, where
\[
r^\mu(K_{X_1}, N) := \mathbf{L} \left(\int_{X_1} [1_{K_{X_1}}(x) + 1_{X_1 \setminus K_{X_1}}(x)V_0^\delta(x)]\pi_1(dx) - \delta \right),
\]
and $V_0^\delta(x)$ is computed recursively according to $V_k^\delta := T_k^\mu(V_k^\delta)$, for $k = N - 1, \ldots, 0$ with initial value function $V_N^\delta = 0$. If $V_k^{\delta,*}$ is computed similarly as the solution of recursion $V_k^{\delta,*} = T_k^\mu(V_{k+1}^{\delta,*})$ with initial value function $V_N^{\delta,*} = 0$ and $\mu_k^* \in \text{arg sup}_{\mu_k} T_k^\mu(V_k^{\delta,*})$ then we call $\mu^* = \{\mu_0, \mu_1, \ldots\}$ the optimal $(0, \delta)$-robust policy.

Notice that for $\delta = 0$ the computation of value functions V_k^δ in Theorem 1 is the same as [3]. The proof of Theorem 1 builds on the construction of a refined control strategy as has been explained in [13]. For any M_2 such that $M_1 \preceq^\delta_0 M_2$ with the lifted probability measure \mathbb{W}_T, the control policy C_2 can be refined from C_1 (cf. [13]). More precisely, a control strategy C_2 that refines C_1 over M_2 is obtained by extending C_1 with internal states (x_1, x_2). While the state (x_1, x_2) of C_2 is in \mathcal{R}, the control refinement has as its basic ingredients the states x_1 and x_2, whose the stochastic transition to the pair (x_1', x_2') is governed first by a point distribution $\delta_{x_2(t)}(dx_2')$ based on the measured state $x_2(t)$ of M_2; and subsequently, by the lifted probability measure $\mathbb{W}_T(dx_1'|x_2', u_1, x_2, x_1)$, conditioned on x_2'.

Before tackling unbounded reachability properties, we first analyse the behaviour of T_k^δ and T_k^*.

Consider a target set $K \subset \mathcal{Y}$ of gMDP M_1 is reached $(0, \delta)$-robustly with time-homogeneous Markov policy μ and with probability $r^\mu(K_{X_1})$, where
\[
r^\mu(K_{X_1}) := \mathbf{L} \left(\int_{X_1} [1_{K_{X_1}}(x) + 1_{X_1 \setminus K_{X_1}}(x)V^\delta(x)]\pi_1(dx) - \delta \right),
\]
with $V^\delta : X_1 \to [0,1]$ the solution of $V^\delta = T_k^\mu(V^\delta)$ computed as the limit of the sequence $\{(T_k^\mu)^q(V^\delta)\}_{q \geq 0}$ that is initialised with $V = 0$. If $V^{\delta,*}$ is computed similarly as the solution of $V^{\delta,*} = T_k^\mu(V^{\delta,*})$ and $\mu^* \in \text{arg sup}_{\mu_k} T_k^\mu(V^{\delta,*})$ then we call μ^* the optimal $(0, \delta)$-robust policy.

3.3 (ϵ, δ)-Robust probabilistic reachability

Consider a target set $K \subset \mathcal{Y}$, let K^ϵ be the largest Borel measurable set such that
\[
K^\epsilon \subset \{y \mid \forall \bar{y} \in \mathcal{Y} \text{ with } d_X(\bar{y}, y) \leq \epsilon : \bar{y} \in K\}.
\]
We can now introduce an eroded version of the original target set \(K_{X_1} \), as \(K_{X_1}^\varepsilon := h_1^{-1}(K^\varepsilon) \), such that for any pair \(x_1, x_2 \) if \(x_1 \in K_{X_1}^\varepsilon \) and \(x_1 R x_2 \) then \(h_2(x_2) \in K \). As a consequence of Theorem [1] and of Corollary [1] we can evaluate the \((\varepsilon, \delta)\)-robust reachability with respect to \(K_{X_1}^\varepsilon \).

Corollary 2 \((\varepsilon, \delta)\)-robust probabilistic reachability) A target set \(K \subset \mathbb{Y} \) is reached \((\varepsilon, \delta)\)-robustly with Markov policy \(\mu \) for \(M_1 \) with respect to \(r^{(\delta, \varepsilon)}(K_{X_1}, N) \) (or \(r^{(\delta, \varepsilon)}(K_{X_1}) \)) if it reaches the target set \(K^\varepsilon \) as in (13), \((0, \delta)\)-robustly with probability \(r^\delta(K_{X_1}, N) \) defined in (11) (or \(r^\delta(K_{X_1}) \) defined in (12)).

Hence for any model \(M_2 \) that is in an \((\varepsilon, \delta)\)-probabilistic simulation relation with \(M_1 \), the combination of Theorem [1] and Corollaries [1] and [2] mean that we can verify probabilistic reachability robustly over \(M_1 \), and moreover, that we can synthesise a robust controller maximising the satisfaction probability robustly.

3.4 Upper-bounding the probabilistic reachability

We now question whether we can quantify an upper bound on a reachability probability using an approximate model \(M_1 \). Consider the operator \(T_{\varepsilon, \delta}^\mu(V)(x) \), defined as

\[
T_{\varepsilon, \delta}^\mu(V)(x) := L \left(\int_{X_1} [1_{K_{X_1}^\varepsilon}(\bar{x}) + 1_{X_1 \setminus K_{X_1}^\varepsilon}(\bar{x})]V(\bar{x})|T(d\bar{x}|x, \mu(x)) + \delta \right) \tag{14}
\]

with \(K_{X_1}^{-\varepsilon} := h_1^{-1}(K^{-\varepsilon}) \) and \(K^{-\varepsilon} := \{ y + y_e \in \mathbb{Y} | y \in K \text{ and } d_{\mathbb{Y}}(0, y_e) \leq \varepsilon \} \).

Theorem 2. Consider a target set \(K \subset \mathbb{Y} \), then an upper bound on the maximal reachability \(r^\mu(K_{X_2}, N) \) of \(M_2 \) for \(M_1 \models^\varepsilon M_2 \) can be given as

\[
\forall \mu : r^\mu(K_{X_2}, N) \leq r^{(-\varepsilon, -\delta)}(K_{X_1}, N) \tag{15}
\]

for which \(r^{(-\varepsilon, -\delta)}(K_{X_1}, N) := r^{(-\varepsilon)}(K_{X_1}^{-\varepsilon}, N) \) is computed with \(M_1 \) as follows,

\[
r^{(-\varepsilon, -\delta)}(K_{X_1}, N) := L \left(\int_{X_1} [1_{K_{X_1}^{-\varepsilon}}(x) + 1_{X_1 \setminus K_{X_1}^{-\varepsilon}}(x)]V^\delta(x)|\pi_1(dx) + \delta \right)
\]

with \(V^\delta : X_1 \rightarrow [0, 1] \) such that \(V^\delta = \sup_\mu T_{\varepsilon, \delta}^\mu(V^\delta_{k+1}) \) and \(V^\delta_N = 0 \).

4 Temporal logic control leveraging \((\varepsilon, \delta)\)-probabilistic simulation relations

We extend the results on robust probabilistic reachability to the scLTL properties in Def. [1]. For this purpose, we introduce a model known as Deterministic Finite-state Automaton (DFA).

Definition 8 (DFA). A DFA is a tuple \(A = (Q, q_0, \Sigma, F, t) \), where \(Q \) is a finite set of locations, \(q_0 \in Q \) is the initial location, \(\Sigma \) is a finite set, \(F \subseteq Q \) is a set of accept locations, and \(t : Q \times \Sigma \rightarrow Q \) is a transition function.
A finite word composed of letters of the alphabet defined by \(\Sigma \), i.e., \(\omega = (\omega(0), \ldots, \omega(n)) \in \Sigma^n \), is accepted by a DFA \(A \) if there exists a finite run \(q = (q(0), \ldots, q(n+1)) \in Q^{n+2} \) such that \(q(0) = q_0, q(i+1) = t(q(i), \omega(i)) \) for all \(0 \leq i \leq n \) and \(q(n+1) \in F \). Similarly, we say that an infinite word \(\omega \in \mathcal{S} \) is accepted by a DFA \(A \) if there exists a finite run \(q \in Q^\omega \) such that \(q(0) = q_0, q(i+1) = t(q(i), \omega(i)) \) for all \(i \in \mathbb{N}_0 \) and there exists \(j \in \mathbb{N}_0 \) such that \(q(j) \in F \). The accepted language of \(A \), denoted \(\mathcal{L}(A) \), is the set of all words accepted by \(A \). For every scLTL property \(\psi \), c.f. Definition 4, there exists a DFA \(A_\psi \) such that

\[\omega \models \psi \iff \omega \in \mathcal{L}(A_\psi). \]

As a result, the satisfaction of the property \(\psi \) now becomes equivalent to the reaching of the accept locations in the DFA. We use the DFA \(A_\psi \) to specify properties of the gMDP \(M = (X, \pi, T, U, h, \mathcal{Y}) \) as follows. Remember that \(\mathcal{L} : \mathcal{Y} \to \Sigma \) is a given measurable function. To each output \(y \in \mathcal{Y} \) it assigns the letter \(\mathcal{L}(y) \in \Sigma \). Given a control strategy \(C \), we can define the probability that a path of \(M \) satisfies a scLTL property \(\psi \), i.e., \(P_{C \times M}(\omega \in \mathcal{L}(A_\psi)) \).

We can reduce the computation of \(P_{C \times M}(\omega \in \mathcal{L}(A_\psi)) \) over the traces \(\omega \) of \(M \) to the reachability problem over another gMDP \(M \otimes A_\psi \), which we refer to as a product of the gMDP \(M \) and the automaton \(A_\psi \). This was originally derived in [22] for MDPs. We give a similar definition of the product construction as.

Definition 9 (Product between automaton and gMDP). Given a gMDP \(M = (X, \pi, T, U, h, \mathcal{Y}) \), a finite alphabet \(\Sigma \), a labelling function \(\mathcal{L} : \mathcal{Y} \to \Sigma \) and a DFA \(A_\psi = (Q, q_0, \Sigma, F, t) \), we define the product between \(M \) and \(A_\psi \) to be another gMDP denoted as \(M \otimes A_\psi = (X, \tilde{\pi}, \tilde{T}, U, h, \mathcal{Y}) \). Here \(X = X \times Q \), \(\tilde{h}(x, q) = h(x) \) for any \((x, q) \in X \), and

\[\tilde{T}(A \times \{q\}|x, q, u) = \int_{x' \in A} 1\{q' = t(q, \mathcal{L}(h(x)))\} \cdot T(dx|x, u). \]

initialised with \(\tilde{\pi}(dx, q) = \pi(dx) t(q_0, \mathcal{L}(h(x))) \).

The quantity \(P_{C \times M}(\omega \in \mathcal{L}(A_\psi)) \) can be related to the reachability probability over the gMDP \(M \otimes A \) with a goal state \(G := X \times F \), as it was shown to be the case for MDPs in [22].

Lemma 1. Given gMDP \(M \), alphabet \(\Sigma \), labelling function \(\mathcal{L} \), and scLTL specification \(\psi \) modelled with DFA \(A_\psi \), it holds that

\[P_{C(\mu) \times M}(\omega \in \mathcal{L}(A_\psi)) = P_{\mu \times (A_\psi \otimes M)}(\omega \in G) \]

For any Markov policy \(\mu \) on the product space of \(A_\psi \otimes M \) and any control strategy \(C(\mu, \psi) \) on \(M \) with properly defined mappings between \(\mu \) and the control strategy.
4.1 δ-Robust satisfaction of scLTL properties

In the following we analyse the robust satisfaction of scLTL specifications, which are temporal specifications that go beyond reachability properties defined on M. The probability of satisfying such a temporal specification can be quantified as a reachability probability with respect to $M \otimes A_\psi$. For two gMDPs M_1 and M_2, subject to $M_1 \preceq^\delta_0 M_2$, we show that (δ-approximate) probabilistic simulation relations are preserved under a product with a DFA.

Theorem 3. Let $M_i, i = 1, 2, M_i = (X_i, \pi_i, T_i, U_i, h_i, Y)$, be two gMDPs such that $M_1 \preceq^\delta_0 M_2$ and $A = (Q, q_0, \Sigma, F, t)$ be an automaton. For any labeling function $L : Y \rightarrow \Sigma$ we have $M_1 \otimes A \preceq^\delta_0 M_2 \otimes A$.

This theorem enables us to quantify temporal logic properties for M_2 with respect to M_1. Consider a scLTL property ψ with a corresponding DFA A_ψ, and two gMDPs $M_1, M_2 \in \mathcal{M}_\psi$ for which $M_1 \preceq^\delta_0 M_2$. If there exists a Markov policy μ for $M_1 \otimes A_\psi$ such that the accepting states are reached with δ-robust probability p, then there exists a control strategy C_2 for M_2 such that the accepting states of A_ψ are reached with probability p under the evolution of $C_2 \times M_2$. More precisely, denote with $X := X_1 \times Q$ the state space of $M_1 \otimes A_\psi$, then the mapping T_δ^ν becomes

$$T_\delta^\nu(V)(x_1, q) = L\left(\int_{X_1} [1_{F}(t_x(q, x')) + 1_{Q \setminus F}(t_x(q, x'))] V(x', t_x(q, x')) \right)$$

with $t_x(q, x') := t(q, L(h_1(x'))).$ For $T_\delta^\mu(V)(x_1, q) = V(x_1, q)$, the δ-robust reachability probability is defined as

$$r^\mu(F \times X_1) = L\left(\int_{X_1} [1_{F}(t_x(q_0, x_1)) + 1_{Q \setminus F}(t_x(q_0, x_1))$$

$$\times V(x_1, t_x(q_0, x_1))] \pi(dx_1) - \delta \right)$$

4.2 (ϵ, δ)-Robust satisfaction of scLTL properties

We now integrate the ϵ error in the output space into the robust synthesis problem via the effect it has on the labelling. Given $L : Y \rightarrow \Sigma$, we define $L_\epsilon : Y \rightarrow 2^\Sigma$ as

$$L_\epsilon(y) := \{ q \in \Sigma | \exists (y, y_\epsilon) : d\nu(y, y_\epsilon) \leq \epsilon \text{ and } q = L(y_\epsilon) \}$$

Consider $M_1 \preceq^\delta_\epsilon M_2$ with ϵ, then for all $(x_1, x_2) \in \mathcal{R}_\epsilon$, it holds that $L(h_2(x_2)) \in L_\epsilon(h_1(x_1))$. In Figure 1 an output space together with its labels is depicted. When taking into account an ϵ error in the output, the labelling becomes non-deterministic in some regions. This can be observed on the right of Figure 1.

Instead of integrating this relaxed labelling into the product construction of a given gMDP, we will immediately adapt the δ-robust reachability computations (17) to deal with this non-determinism. Consider the (ϵ, δ)-robust operator
Fig. 1: A typical labelling over the output space. On the left a normal labelling is given, on the right the labelling is non-deterministic due to the output error.

\[T_{\nu,\delta}(V)(x_1, q) \] defined as

\[T_{\nu,\delta}(V)(x_1, q) = \mathbb{L}\left(\int_{X_1} \min_{q' \in \bar{t}_x(q,x_1)} \left[1_{F}(q') + 1_{Q \setminus F}(q') V_{k+1}(x_1', q') \right] \times \right. \]

\[T(dx_1'|x_1, \nu(x_1, q)) - \delta \] with \(\bar{t}_x(q,x_1) := \{ t(q, \alpha) \mid \alpha \in L_r(h_1(x_1)) \} \). For a time-homogeneous Markov policy \(\mu \) and \(V(x_1, q) \) that satisfy \(T_{\mu,\delta}(V)(x_1, q) = V(x_1, q) \), the \(\delta \)-robust reachability probability is defined as

\[r_{\nu,\delta}(F \times X_1) = \mathbb{L}\left(\int_{X_1} \min_{q' \in \bar{t}_x(q_0,x_1)} \left[1_{F}(q') + 1_{Q \setminus F}(q') V(x_1, q') \right] \pi(dx_1) - \delta \right) \]

Consider a scLTL property \(\psi \) and the corresponding \(A_{\psi} \) with goal states \(F \). If \(F \times X_1 \) is \(\delta \)-robust reachable with respect to \(r_{\nu,\delta}(F \times X_1) \), then we can refine \(\mu \) to \(C_{2}(\mu, \psi) \) such that \(\psi \) is satisfied by \(C_{2}(\mu, \psi) \times M_2 \) with a probability \(p \geq r_{\nu,\delta}(F \times X_1) \). Of course the apparent non-determinism due to the relaxed labelling will be resolved in the refined control strategy by selecting the labels of the concrete model.

Building on Corollary 1, we can now also maximise the \((\epsilon, \delta) \)-robust probability using \(T^*_{\nu,\delta} \) defined as \(T^*_{\nu,\delta}(V)(x_1, q) := \sup_{\mu} T_{\nu,\delta}(V)(x_1, q) \), which yields an optimised robust Markov policy as

\[\mu^*(x_1, q) \in \arg\sup_{\mu} T_{\nu,\delta}(V^*)(x_1, q) \text{ for } T_{\nu,\delta}(V^*)(x_1, q) = V^*(x_1, q). \]

Hence, we have shown that we can leverage probabilistic simulation relations to use approximate models for the controller synthesis and verification of both probabilistic reachability (cf. Problem 1) and scLTL properties (cf. Problem 2).

5 Computational implementation and toy example

In this section, we apply our results to formal controller synthesis for stochastic linear dynamical systems. Existing formal controller synthesis results for this class of models either rely on model order reduction \[19\] or use abstraction techniques as finite-state MDPs \[22\]. Our new results combine these two approaches in one framework that benefits from both of them. More precisely, our
Abstract model used for synthesis is obtained by discretising the state space of a reduced-order version of the concrete model. **Concrete model.** Consider the following linear dynamical model M_2:

$$
x_2(t + 1) = A_2 x_2(t) + B_2 u_2(t) + B_w w(t), \quad x_2(0) = x_{20} \in X_2
$$

$$
y_2(t) = C_2 x_2(t), \quad t = 0, 1, 2, \ldots,
$$

where $x_2(\cdot) \in X_2 \subseteq \mathbb{R}^n$, $u_2(\cdot) \in U_2 \subseteq \mathbb{R}^m$, and $y_2(\cdot) \in Y \subseteq \mathbb{R}^p$. Matrices A_2, B_2, and C_2 have appropriate dimension and $w(\cdot)$ are iid random variables with standard multivariate Gaussian distributions.

Constructing the abstract model. Construction of the abstract model relies on partitioning a new space $X_s \subseteq \mathbb{R}^{n_s}$, where $n_s < n$, as $\{A_i \subset X_s, \ i = 1, 2, \ldots, l\}$. Over this partition, we select representative points $\{z_i \in A_i, \ i = 1, 2, \ldots, l\}$, which we call X_{-1} and which becomes the state space of the abstract model M_1. Introduce the operator $\Pi : X_s \rightarrow X_1$ that assigns to any $x_1 \in A_i$, $i \in \{1, \ldots, l\}$ the representative point of A_i, $z_i = \Pi(x_1)$.

Next we provide a dynamical characterisation of M_1. The state evolution of M_1 is written as

$$
x_1(t + 1) = \Pi(A_1 x_1(t) + B_1 u_1(t) + B_{w1} w(t)), \quad x_1(0) = x_{10} \in X_1
$$

$$
y_1(t) = C_1 x_1(t), \quad t = 0, 1, 2, \ldots,
$$

with state $x_1(\cdot) \in X_1$, input $u_1(\cdot) \in U_1$, and output $y_1(\cdot) \in Y$, and matrices A_1, B_1, B_{w1}, C_1 of appropriate dimensions. Note that the noise term $w(t)$ in M_1 is the same as the one in M_2, thereby allowing to define a lifting \mathcal{W}_T.

Computing the (ϵ, δ)-simulation relation. Consider the linear interface function $u_2 = R u_1 + Q x_1 + K (x_2 - P x_1)$, such that $P A_1 = A_2 P + B_2 Q$ for some matrix P. Define the relation $(x_1, x_2) \in \mathcal{R}_s^\epsilon$ iff $(x_2 - P x_1)^T M (x_2 - P x_1) \leq \epsilon^2$.

Next we check conditions of Def. 10 under which $M_1 \preceq \delta^s M_2$. It is guaranteed that $d_\gamma(y_1, y_2) \leq \epsilon$ for any $(x_1, x_2) \in \mathcal{R}_s^\epsilon$ (cf. APS1 in Def. 10) if $C_1 = C_2 P$, and $C_1^T C_2 \leq M$. Condition APS2 in Def. 10 holds if c_w is selected such that $\mathbb{P}(w^T w \leq c_w) \geq 1 - \delta$ and the following inequality

$$
(A \bar{x} + B u_1 + B_w w + P \beta)^T M (A \bar{x} + B u_1 + B_w w + P \beta) \leq \epsilon^2
$$

is satisfied for any \bar{x}, u_1, w, β such that $w^T w \leq c_w$, $u_1^T \leq c_u$, $\bar{x}^T M \bar{x} \leq \epsilon^2$, $|\beta| \leq \delta$.

The matrices in (20) are defined as $A := A_2 + B_2 K$, $B := B_3 R - P B_1$, and $B_{w2} := B_{w2} - P B_{w1}$. Vector δ is the diameter of the partition $\{A_i, i = 1, \ldots, l\}$, which satisfies $|x_i - x_i'| \leq \delta$ component-wise for any $x_i, x_i' \in A_i$ and any $i \in \{1, 2, \ldots, l\}$. Condition (20) can be checked using LMIs and the S-procedure 6.

For Condition APS3 in Def. 6, we now question when there exists a deterministic initial state x_{10} for a given deterministic initial state x_{20} satisfying $(x_{20} - P x_{10})^T M (x_{20} - P x_{10}) \leq \epsilon^2$. We can choose $x_{10} := \tilde{P} x_{20}$ with $\tilde{P} := (P^T M P)^{-1} P^T M$ which is the minimum of left-hand side, and select it as the representative point of the associated partition set in M_1. Alternatively, when the representative point cannot be freely chosen, we select $x_{10} = \Pi(P x_{20})$.

In the former case, there exists an initial state x_{10} if $x_{20}^T M (I_n - P \hat{P}) x_{20} \leq \epsilon^2$, or, dually, ϵ is lower bounded for a given x_{20}. In the latter case, if $\| M^2 (I_n - P \hat{P}) x_{20} \| + \| M^2 P \delta \| \leq \epsilon$, then there exists an initial state x_{10} satisfying Condition APS3.

Toy example. We consider the specification $\psi = \diamond \square \leq n_2 \{ y \in K \}$ which encodes reach and stay over bounded time intervals. The associated DFA is given in Figure 2 together with an illustration of a potential application of this toy example.

Consider the original model M_2, which is a 3 dimensional model with output $y_1(t) = x_a$ and

\[
\begin{align*}
x_a(t+1) &= x_a(t) - a_1(x_b(t) - x_c(t)) - a_2 u(t) + a_3 w(t) \\
x_b(t+1) &= b x_0(t) + u(t) \\
x_c(t+1) &= c_1 x_c(t) + c_2 w(t)
\end{align*}
\]

with $a_1 = .3$, $a_2 = 0.03$, $a_3 = 6e-3$, $b = c_1 = .8$ and $c_2 = .1$. For the game we consider the case with $n_2 = 3$. As in [13], we compute the lower dimensional

![Fig. 2: A game of tag: $\diamond \square \leq n_2 \{ x_a \in K \}$](image)

![Fig. 3: On the left: (ϵ, δ)-robust satisfaction probability of $\diamond \square \leq n_2 \{ y \in [-2, 2] \}$ with $\epsilon = 1.2266$ and $\delta = 0.03$. On the right: simulation runs for the original model and the abstract model with the composed robust controller.](image)
6 Conclusions and future work

In this paper, we have introduced a new robust way of synthesising control strategies and verifying probabilistic temporal logic properties. Beyond this theoretical contribution, future work will focus on the computational aspects of this approach to prepare for application on realistic sized problems.

References

\[\text{v initiated at } x_a = 2.45, x_b = 2.5 \text{ and } x_c = 1.3. \]
the reach set is \(G \) in the backward recursion are initialised with \(V \) transitions over \(X \) since (\ref{eq:reach_set}) can be computed via backward recursion of reach-avoid property. For this the safe set (i.e., the complement of the avoid set) is left-hand side of (\ref{eq:reach_set}) can be computed via backward recursion of reach-avoid set. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

A. Additional proofs

Proof (Proof of Theorem \textbf{7}. Consider any two models \(M_1, M_2 \in \mathcal{M}_0 \) with \(M_1 \preceq_0 M_2 \). A Markov policy \(\mu = (\mu_0, \ldots, \mu_N) \) for \(M_1 \) can be refined to \(M_2 \). Technically, this means that we first can write it as a control strategy for which we can do control refined as proven in \textbf{13}. Denote the control strategy that refines the Markov policy as \(C_2 \). Then the composed system \(C_2 \times M_2 \) contains transitions over \(X_1 \times X_2 \) with stochastic transition kernels defined as

\[
\mathbb{W}_\mu(d\bar{x}_1 \times d\bar{x}_2 | \mu_k(x_1), x_1, x_2) \quad \text{for} \quad k \in \{0, \ldots, N-1\}
\]

We now need to show that \(r^k(K_{X_1}, N) \) defined in (\ref{eq:reach_set}) is a lower bound for the probability that target set \(K \) is reached by \(C_2 \times M_2 \) in \(N \) time steps, \(\mathbb{P}_{C_2,M_2}(\theta \leq N | K) \). Onserse that the following holds

\[
\mathbb{P}_{C_2,M_2} \left[(x_1, x_2) \in \mathcal{R} \right] \cup \mathbb{P}_{C_2,M_2} \left[(x_1, x_2) \in \mathcal{R} \land (x_1 \in K_{X_1}) \right] \leq \mathbb{P}_{C_2,M_2} \left[\theta \leq N | y_2 \in K \right],
\]

since \((x_1, x_2) \in R \land (x_1 \in K_{X_1})\) implies \(h_2(x_2) = h_1(x_1) \) and \(h_1(x_1) \in K \). The left-hand side of (\ref{eq:reach_set}) can be computed via backward recursion of reach-avoid property. For this the safe set (i.e., the complement of the avoid set) is \(\mathcal{R} \) and the reach set is \(G := (K_{X_1} \times X_2) \cap \mathcal{R} \). The value functions \(\{V_k, k = 0, \ldots, N\} \) in the backward recursion are initialised with \(V_N = 0 \) and computed as

\[
V_k(x_1, x_2) = \int_{X_1 \times X_2} \left[1_G(\bar{x}_1) + 1_{\mathcal{R} \setminus G}(\bar{x}_1, \bar{x}_2)V_{k+1}(\bar{x}_1, \bar{x}_2) \right] \mathbb{W}_\mu(d\bar{x}_1 \times d\bar{x}_2 | \mu_k(x_1), x_1, x_2).
\]
This can be also written down as

\[V_k(x_1, x_2) = \int_\mathcal{R} \left[1_{(\mathcal{K}_{K_1} \times \mathcal{K}_2)}(\bar{x}_1) + 1_{(\mathcal{K}_{K_1} \backslash \mathcal{K}_2)}(\bar{x}_1, \bar{x}_2)V_{k+1}(\bar{x}_1, \bar{x}_2) \right] \times \mathcal{W}_T(d\bar{x}_1 \times d\bar{x}_2|\mu_k(x_1), x_1, x_2). \]

We now want to compute a lower bound on \(V_k(x_1, x_2) \) based on backwards computations over \(\mathcal{M}_1 \). The value functions \(V^\delta_k : \mathcal{X}_1 \to [0, 1] \) are defined inductively as \(V^\delta_k = T^\delta_k (V^\delta_{k+1}) \), which is

\[V^\delta_k(x_1) := \mathbf{L} \left(\int_{\mathcal{X}_1} \left[1_{\mathcal{K}_{K_1}}(\bar{x}_1) + 1_{\mathcal{K}_{K_1} \backslash \mathcal{K}_2}(\bar{x}_1)V^\delta_{k+1}(\bar{x}_1) \right] T(d\bar{x}_1|\mu_k(x_1)) - \delta \right) \]

and initialised with \(V^\delta_0 = 0 \). With focus on the above two recursions we claim that if \(V^\delta_{k+1}(x_1) \) is a lower bound for \(V_{k+1}(x_1, x_2) \) for all \((x_1, x_2) \in \mathcal{R}\), then \(V^\delta_k(x_1) \) is also a lower bound for \(V_k(x_1, x_2) \). Once we prove this claim, by induction we get that \(V^\delta_0(x_1) \) is a lower bound for \(V_{k+1}(x_1, x_2) \). As a result, the \(\delta \)-robust probability can be computed as

\[r^\mu(K_{\mathcal{X}_1}, N) := \mathbf{L} \left(\int_{\mathcal{X}_1} \left[1_{\mathcal{K}_{K_1}}(\bar{x}_1) + 1_{\mathcal{K}_{K_1} \backslash \mathcal{K}_2}(\bar{x}_1)V^\delta_0(\bar{x}_1) \right] \pi(d\bar{x}_1) - \delta \right). \]

To prove the claim we need to define \(\tilde{V}^\delta_k : \mathcal{X}_1 \to [-\delta, 1] \) as

\[\tilde{V}^\delta_k(x_1) := \int_{\mathcal{X}_1} \left[1_{\mathcal{K}_{K_1}}(\bar{x}_1) + 1_{\mathcal{K}_{K_1} \backslash \mathcal{K}_2}(\bar{x}_1)V^\delta_{k+1}(\bar{x}_1) \right] T(d\bar{x}_1|\mu_k(x_1)) - \delta, \]

such that \(\tilde{V}^\delta_k(x_1) = \mathbf{L} \left(\tilde{V}^\delta_k(x_1) \right) \). For any \((x_1, x_2) \in \mathcal{R}\), we have

\[\tilde{V}^\delta_k(x_1) + \delta = \int_{\mathcal{X}_1} \left[1_{\mathcal{K}_{K_1}}(\bar{x}_1) + 1_{\mathcal{K}_{K_1} \backslash \mathcal{K}_2}(\bar{x}_1)V^\delta_{k+1}(\bar{x}_1) \right] T(d\bar{x}_1|\mu_k(x_1)) \]

\[\leq \int_{\mathcal{R}} \left[1_{(\mathcal{K}_{K_1} \times \mathcal{K}_2)}(\bar{x}_1, \bar{x}_2) + 1_{(\mathcal{K}_{K_1} \backslash \mathcal{K}_2) \times \mathcal{K}_2}(\bar{x}_1, \bar{x}_2)V^\delta_{k+1}(\bar{x}_1, \bar{x}_2) \right] \times \mathcal{W}_T(d\bar{x}_1 \times d\bar{x}_2|\mu_k(x_1), x_1, x_2) \]

\[+ \int_{(\mathcal{X}_1 \times \mathcal{X}_2) \backslash \mathcal{R}} \mathcal{W}_T(d\bar{x}_1 \times d\bar{x}_2|\mu_k(x_1), x_1, x_2) + \delta. \]

(23)
Note that \(\nu_k \) follows from the fact that \((x_1,x_2) \in \mathcal{R} \) and \(\nu_k \) holds since \(V_{k+1}^\delta(\bar{x}_1) \) is upper bounded by 1 and is lower bounded by \(V_k^\delta(\bar{x}_1,\bar{x}_2) \) over \(\mathcal{R} \). Thus by the definition of \(V_k \), we have also that \(V_k(x_1,x_2) \leq V_{k+1}^\delta(x_1) \) for all \((x_1,x_2) \in \mathcal{R} \). Since \(V_k \) is also lower bounded by 0, we have that \(V_k(x_1,x_2) \leq L (\hat{V}_k^\delta(x_1)) = V_k^\delta(x_1) \), which completes the proof.

Proof (Proof of Theorem 2). This proof upper-bounds the maximal reachability probability and follows an analogue path to the proof of Theorem 1. Consider any two models \(M_1, M_2 \in \mathcal{M} \) with \(M_1 \succeq \delta M_2 \). A Markov policy \(\mu = (\mu_0, \ldots, \mu_N) \) for \(M_2 \) can be refined to \(M_1 \) such that the composed system \(C_1 \times M_1 \) contains transitions over \(X_1 \times X_2 \) with stochastic transition kernels defined as

\[
\mathbb{W}^\mu(d\bar{x}_1 \times d\bar{x}_2 | \mu_0(x_2), x_1, x_2) \text{ for } k \in \{0, \ldots, N - 1\}.
\]

We now need to show that \(\mathbb{P}_{\nu,M}(\hat{0} \leq N \delta) \) has an upper bound computed as given in Theorem 2. Remark that \(\hat{0} \leq N \delta \) implies the specification

\[
\psi := \{(x_1,x_2) \in \mathcal{R} \} \cup \{x_1 \in K_{X_1}^\delta \}
\]

with \(\mathcal{R} := X_1 \times X_2 \setminus \mathcal{R} \). Hence it follows that

\[
\mathbb{P}_{\nu,M}(\hat{0} \leq N \delta) \leq \mathbb{P}_{\nu,M}[\psi]. \tag{25}
\]

The right-hand side of (25) can be computed via backward recursion of reach-avoid property. For this the safe set (i.e., the complement of the avoid set) is \(\mathcal{R} \) and the reach set is \((K_{X_1} \times X_2) \cap \mathcal{R} \) \cup \(\mathcal{R} \). The value functions \(V_k \) in the backward recursion are initialised with \(V_N = 0 \) and computed as

\[
V_k(x_1,x_2) = \int_{X_1 \times X_2} \left[1_{(K_{X_1}^\delta \times X_2) \cap \mathcal{R}}(\bar{x}_1,\bar{x}_2) + 1_{\mathcal{R}}(\bar{x}_1,\bar{x}_2) + 1_{\mathcal{R} \setminus (K_{X_1}^\delta \times X_2)}(\bar{x}_1,\bar{x}_2)V_{k+1}(\bar{x}_1,\bar{x}_2) \right] \mathbb{W}^\mu(d\bar{x}_1 \times d\bar{x}_2 | \mu(x_2), x_1, x_2). \tag{26}
\]

We now want to compute an upper bound on \(V_k(x_1,x_2) \) based on backward recursion over \(M_1 \). Let \(V_{k+1}^\delta : X_1 \rightarrow [0,1] \) be defined inductively as

\[
V_{k+1}^\delta(x_1) := \sup_{\mu} \mathbb{E} \left[\int_{X_1} \left[1_{K_{X_1}^\delta}(\bar{x}_1) + 1_{X_1 \setminus K_{X_1}^\delta}(\bar{x}_1)V_{k+1}^\delta(\bar{x}_1) \right] \mathcal{T}(d\bar{x}_1 | \mu(x_1), x_1) \right] + \delta
\]

and initialised with \(V_N^\delta = 0 \). We claim that if \(V_{k+1}^\delta(x_1) \geq V_k(x_1,x_2) \) for all \((x_1,x_2) \in \mathcal{R} \), then \(V_k^\delta(x_1) \geq V_k(x_1,x_2) \). Thus by induction we get \(V_0^\delta(x_1) \geq V_0(x_1,x_2) \). By repeating the same argument for initial measure \(\pi \), we get Theorem 2.

In order to prove the above claim we need to define value functions \(\hat{V}_k^\delta : X_1 \rightarrow [-\delta,1] \) as

\[
\hat{V}_k^\delta(x_1) := \sup_{\mu} \left(\int_{X_1} \left[1_{K_{X_1}^\delta}(\bar{x}_1) + 1_{X_1 \setminus K_{X_1}^\delta}(\bar{x}_1)V_{k+1}^\delta(\bar{x}_1) \right] \mathcal{T}(d\bar{x}_1 | \mu(x_1), x_1) \right) + \delta,
\]
such that $V_{\delta}^{-\delta}(x_1) = \mathbf{L}\left(\hat{V}_{\delta}^{-\delta}(x_1)\right)$ due to the fact that \mathbf{L} and sup are interchangeable here. For any $(x_1, x_2) \in \mathcal{R}$ we have

$$V_k(x_1, x_2) \leq \int_{\mathcal{R}} \left[1_{(K^{-\delta}_{x_1} \times x_2) \cap \mathcal{R}}(\bar{x}_1, \bar{x}_2) + 1_{(K^{-\delta}_{x_1} \times x_2) \setminus \mathcal{R}}(\bar{x}_1, \bar{x}_2)V_{k+1}(\bar{x}_1, \bar{x}_2) \right] \times \mathcal{W}_T(d\bar{x}_1 \times d\bar{x}_2|\mu_k(x_2), x_1, x_2) + \delta$$

$$\leq \int_{\mathcal{R}} \left[1_{(K^{-\delta}_{x_1} \times x_2)}(\bar{x}_1, \bar{x}_2) + 1_{(x_1 \times x_2) \setminus (K^{-\delta}_{x_1} \times x_2)}(\bar{x}_1, \bar{x}_2)V_{k+1}^{-\delta}(\bar{x}_1) \right] \times \mathcal{W}_T(d\bar{x}_1 \times d\bar{x}_2|\mu_k(x_2), x_1, x_2) + \delta$$

$$\leq \sup_{\mathcal{X}_1} \int_{\mathcal{X}_1 \times \mathcal{X}_2} \left[1_{K^{-\delta}_{x_1}}(\bar{x}_1) + 1_{x_1 \setminus K^{-\delta}_{x_1}}(\bar{x}_1)V_{k+1}^{-\delta}(\bar{x}_1) \right] \mathcal{T}(d\bar{x}_1|\bar{\mu}(x_1), x_1) + \delta$$

$$= \hat{V}_{\delta}^{-\delta}(x_1).$$

Since $V_k(x_1, x_2) : \mathcal{X}_1 \times \mathcal{X}_2 \to [0, 1]$ it holds that if $V_k(x_1, x_2) \leq \hat{V}_{\delta}^{-\delta}(x_1)$ then also $V_k(x_1, x_2) \leq \mathbf{L}\left(\hat{V}_{\delta}^{-\delta}(x_1)\right) = V_{\delta}^{-\delta}(x_1)$. This completes the proof.

Proof (Proof of Theorem 9). Since $\mathcal{M}_1 \preceq_0 \mathcal{M}_2$, according to Definition 9 there exists an interface function \mathcal{U}_i, a relation $\mathcal{R} \subseteq \mathcal{X}_1 \times \mathcal{X}_2$, and a Borel measurable stochastic kernel $\mathcal{W}_T(\cdot|u_1, x_1, x_2)$ such that

1. $\forall (x_1, x_2) \in \mathcal{R}, h_1(x_1) = h_2(x_2)$;
2. $\forall (x_1, x_2) \in \mathcal{R}, \forall u_1 \in \mathcal{U}_1, \mathcal{T}_1(\cdot|x_1, u_1) \mathcal{R}_d \mathcal{T}_2(\cdot|x_2, \mathcal{U}_i(u_1, x_1, x_2))$, with lifted probability measure $\mathcal{W}_T(\cdot|u_1, x_1, x_2)$;
3. $\pi_1 \mathcal{R}_d \pi_2$.

Indicate the product gMDPs by $\mathcal{M}_i \otimes \mathcal{A} = (\tilde{\mathcal{X}}_i, \tilde{\pi}_i, \tilde{T}_i, \tilde{\mathcal{U}}, \tilde{h}_i, \tilde{\mathcal{Y}})$. According to Definition 9 we have for any $i = 1, 2, \tilde{\mathcal{X}}_i = \mathcal{X}_i \times \mathcal{Q}, \tilde{\pi}_i(dx_i, q) = \pi_i(dx_i)\cdot 1(q = q_0)$, $\tilde{h}_i(x_i, q) = h_i(x_i)$ for any $(x_i, q) \in \tilde{\mathcal{X}}_i$, and

$$\mathcal{T}_i(A_i \times \{q'\}|x_i, q, u_i) = \int_{x_i \in \tilde{\mathcal{X}}_i} 1(q' = t(q, \mathbf{L}(h_i(x_i)))) \cdot \mathcal{T}_i(d\tilde{x}_i|x_i, u_i).$$

In order to prove the theorem we construct the relation \mathcal{R}^p, the interface function \mathcal{U}_i^p, and the lifted measure \mathcal{W}_T^p based on $\mathcal{R}, \mathcal{U}_i, \mathcal{W}_T$.

1. Define $\mathcal{R}^p \subseteq \tilde{\mathcal{X}}_1 \times \tilde{\mathcal{X}}_2$ with $(x_1, q_1) \mathcal{R}^p (x_2, q_2)$ iff $x_1 \mathcal{R} x_2$ and $q_1 = q_2$. Select any $\tilde{x}_1 = (x_1, q_1) \in \tilde{\mathcal{X}}_2$ and $\tilde{x}_2 = (x_2, q_2) \in \tilde{\mathcal{X}}_2$. Then

$$\tilde{h}_1(\tilde{x}_1) = h_1(x_1, q_1) = h_1(x_1)$$

and

$$\tilde{h}_2(\tilde{x}_2) = h_2(x_2, q_2) = h_2(x_2).$$

Thus

$$(\tilde{x}_1, \tilde{x}_2) \in \mathcal{R}^p \Rightarrow (x_1, x_2) \in \mathcal{R} \Rightarrow h_1(x_1) = h_2(x_2) \Rightarrow \tilde{h}_1(\tilde{x}_1) = \tilde{h}_2(\tilde{x}_2).$$
3. We know that for all \((x, \pi)\), \(X\) lifted measure, we have probabilities (which are the same as \(W\) measure \(\overline{q}\) where \(A\) of the two gMDP according to the automaton with \(\overline{W}\) with the property that for all \(A_1 \in B(X_1), \ A_2 \in B(X_2)\), \(q_1, q_2 \in Q\)

\[
\overline{W}_{\text{init}}(\{q_1\} \times A_1 \times \{q_2\} \times A_2) := \overline{W}_{\text{init}}(A_1 \times A_2)1(q_1 = q_0)1(q_2 = q_0),
\]

where \(q_0\) is the initial state of the automaton \(A\). In words, \(\overline{W}_{\text{init}}\) assigns probabilities (which are the same as \(\overline{W}\) init) to Borel measurable subsets of \(\overline{X}_1 \times \overline{X}_2\) if and only if the discrete modes are equal to \(q_0\). For this particular lifted measure, we have

\[
- \overline{W}_{\text{init}}(\{q_1\} \times A_1 \times \overline{X}_2) = \overline{W}_{\text{init}}(A_1 \times \overline{X}_2)1(q_1 = q_0) = \pi_1(\{q_1\} \times A_1),
\]

\[
- \overline{W}_{\text{init}}(\overline{X}_1 \times \{q_2\} \times A_2) = \overline{W}_{\text{init}}(\overline{X}_1 \times A_2)1(q_2 = q_0) = \pi_2(\{q_2\} \times A_2),
\]

\[
- \overline{W}_{\text{init}}(R^p) = \sum_{q_1, q_2} \overline{W}_{\text{init}}((x_1, x_2) \in R \land q_1 = q_2) = \overline{W}_{\text{init}}(R) \geq 1 - \delta.
\]

Therefore \(\pi_1 \overline{R}_p \pi_2\) with lifted measure \(\overline{W}_{\text{init}}\).

3. We know that for all \((x_1, x_2) \in R\) and \(u_1 \in \overline{U}_1, T_1(\cdot | x_1, u_1) \overline{R} \overline{T}_2(\cdot | x_2, U_2(u_1, x_1, x_2))\), with lifted probability measure \(\overline{W}_T(\cdot | u_1, x_1, x_2)\). Define the new measure \(\overline{W}_T(\cdot | u_1, x_1, x_2)\) on \(\overline{X}_1 \times \overline{X}_2\) given \(U \times \overline{X}_1 \times \overline{X}_2\) with

\[
\overline{W}_T(\{q'_1\} \times A_1 \times \{q'_2\} \times A_2 | u_1, q_1, q_2, x_2) := \int_{\overline{x}_1 \in A_1} \int_{\overline{x}_2 \in A_2} \ldots \int_{\overline{x}_2 \in X_2} \overline{W}_T(d\overline{x}_1 \times d\overline{x}_2 | u_1, x_1, x_2).
\]

(27)

In words, \(\overline{W}_T\) assigns probabilities to Borel measurable subsets of \(\overline{X}_1 \times \overline{X}_2\) which are the same probabilities as in \(W_T\) and evolves the discrete mode of the two gMDP according to the automaton \(A\). For this particular lifted measure \(\overline{W}_T\), we have for any \(\overline{x}_1 = (x_1, q_1) \in \overline{X}_1\) and \(\overline{x}_2 = (x_2, q_2) \in \overline{X}_2\) with \(\overline{x}_1 \overline{R}_p \overline{x}_2\) and any \(u_1 \in \overline{U}_1\):

\[
\overline{W}_T(\{q'_1\} \times A_1 \times \overline{X}_2 | u_1, q_1, x_1, q_2, x_2) = \sum_{q_2' \in Q} \int_{\overline{x}_2 \in X_2} \int_{\overline{x}_1 \in A_1} \ldots \int_{\overline{x}_1 \in A_1} \overline{W}_T(d\overline{x}_1 \times d\overline{x}_2 | u_1, x_1, x_2)
\]

\[
= \int_{\overline{x}_1 \in A_1} \int_{\overline{x}_2 \in X_2} \overline{W}_T(d\overline{x}_1 \times d\overline{x}_2 | u_1, x_1, x_2)
\]

\[
= \int_{\overline{x}_1 \in A_1} \overline{W}_T(d\overline{x}_1) | \overline{T}_1(d\overline{x}_1 | x_1, u_1)
\]

\[
= \overline{T}_1(A_1 \times \{q'_1\} | x_1, q_1, u_1),
\]
and

\[
\overline{W}_T(X_1 \times \{q'_2\} \times A_2 \mid u_1, q_1, x_1, q_2, x_2) = \sum_{q'_1 \in Q} \int_{\tilde{x}_1 \in X_1} \int_{\tilde{x}_2 \in A_2} \ldots
\]

\[
= \int_{\tilde{x}_2 \in A_2} 1(q'_2 = t(q_2, L(h_2(\tilde{x}_2)))) \int_{\tilde{x}_1 \in X_1} \overline{W}_T(d\tilde{x}_1 \times d\tilde{x}_2 \mid u_1, x_1, x_2)
\]

\[
= \int_{\tilde{x}_2 \in A_2} 1(q'_2 = t(q_2, L(h_2(\tilde{x}_2)))) \overline{W}_T(X_1 \times d\tilde{x}_2 \mid u_1, x_1, x_2)
\]

\[
= \int_{\tilde{x}_2 \in A_2} 1(q'_2 = t(q_2, L(h_2(\tilde{x}_2)))) \overline{T}_2(d\tilde{x}_2 \mid x_2, U_v(u_1, x_1, x_2))
\]

\[
= \overline{T}_2(A_2 \times \{q'_2\} \mid x_2, q_2, U_v(u_1, x_1, x_2)).
\]

Take any \((x_1, q_1) \overset{R^p}{\rightarrow} (x_2, q_2)\) which implies \(q_1 = q_2\) and \(x_1 \overset{R}{\rightarrow} x_2\), hence \(h_1(x_1) = h_2(x_2)\). If we also assume \((\tilde{x}_1, q'_1) \overset{R^p}{\rightarrow} (x_2, q'_2)\), then

\[
t(q_1, L(h_1(\tilde{x}_1))) = t(q_2, L(h_2(\tilde{x}_2))),
\]

and we get

\[
\overline{W}_T(R^p \mid u_1, q_1, x_1, q_2, x_2) = \int_{(\tilde{x}_1, \tilde{x}_2) \in R} \overline{W}_T(d\tilde{x}_1 \times d\tilde{x}_2 \mid u_1, x_1, x_2)
\]

\[
\cdot \sum_{q'_1, q'_2 \in Q} 1(q'_1 = t(q_1, L(h_1(\tilde{x}_1)))) \cdot 1(q'_2 = t(q_2, L(h_2(\tilde{x}_2))))
\]

The above sum is equal to one due to \(q_1 = q_2, (\tilde{x}_1, \tilde{x}_2) \in R\), and the DFA being deterministic. Then

\[
\overline{W}_T(R^p \mid u_1, q_1, x_1, q_2, x_2) = \int_{R} \overline{W}_T(d\tilde{x}_1 \times d\tilde{x}_2 \mid u_1, x_1, x_2) \geq 1 - \delta.
\]

We have shown that

\[
\overline{T}_1(A_1 \times \{q'_1\} \mid x_1, q_1, u_1) \overset{\mathcal{R}^p \overline{T}_2}{\rightarrow} (A_2 \times \{q'_2\} \mid x_2, q_2, U_v(u_1, x_1, x_2))
\]

with lifted measure \(\overline{W}_T\) defined in (27) and the same interface function \(U_v\).