Comparing behavioural state annotations and PSG annotations in infants

Citation for published version (APA):

Document status and date:
Published: 01/04/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2020
Comparing Behavioural State Annotations and PSG Annotations in Infants

X. Long¹,², R. Otte¹, E. Zwartkruis¹
¹Philips Research, ²Technical University Eindhoven

Introduction: During the first year of life, infants spend more hours asleep than awake, making sleep one of the most important activities for their developing brains. Monitoring sleep, both in term and preterm infants, can offer valuable insights into their neuro-physiological development. The most common way to monitor infant sleep is by polysomnography (PSG), but this method requires obtrusive contact sensing on the body of the infant. This is undesirable in fragile NICU-infants, and impractical in a home situation. Therefore, we developed a framework for unobtrusively scoring infant behavioural states based on the work by Prechtl (1974), and we compared it to golden standard PSG annotations.

Materials and methods: Nine healthy infant participants (182 days ± 69 days) took their morning or daytime nap in the Tilburg University Babylab. PSG was recorded according to the guidelines set by the AASM (2007), and infants were continuously monitored by video and audio recordings. A non-obtrusive sensor was also used to collect respiratory data. Data were inspected in 30s epochs and scored by (1) an expert who rated the PSG data (“PSG-rater”), and (2) by 2 independent scorers (“behavioural raters”) who rated the infant behavioural states based on an adaptation of the scoring system developed by Prechtl (1974; state 1 to state 5). Audio and video recordings were inspected retrospectively. Instead of solely scoring observable behaviour, the respiration signal was inspected for (ir)regularity, too. Also, a number of movement behaviours were added to Prechtl’s system to come to the new framework used for this study.

Results: Preliminary results for this small sample showed that total agreement between the two behavioural raters was 86.2%, and the corresponding unweighted kappa (κ) was .81. Agreement between each of the behavioural raters on the one hand and the PSG rater on the other was 82.2% (unweighted κ = .73) and 85.8% (unweighted κ = .78), respectively. Agreement between both the behavioural raters between themselves, and between each of the behavioural raters and the PSG-rater was highest for the active awake state (80%, 93%, and 90%, respectively). Agreement between the behavioural raters was lowest for the quiet awake state (28%). Lowest agreement between behavioural rater 1 and the PSG-rater was found for the quiet sleep state (69%), and lowest agreement between behavioural rater 2 and the PSG-rater was found for the active asleep state (61%).

Conclusions: By adapting Prechtl’s system into a new scoring framework we were not only able to achieve good inter-rater reliability between the behavioural raters, but also between each of the behavioural raters and the PSG-rater. Thus, our scoring system may provide an infant-friendly way of monitoring behavioural states in infants. Future work on a larger sample is needed to further substantiate our findings, and to study whether our framework would mainly be useful in non-clinical or also in clinical settings.