Artificial cilia for microparticle manipulation and anti-fouling
Zhang, S.; Wang, Y.; den Toonder, J.M.J.

Published: 11/10/2016

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
ARTIFICIAL CILIA FOR MICROPARTICLE MANIPULATION AND ANTI-FOULING

Shuaizhong Zhang1,2, Ye Wang1 and Jaap den Toonder1
s.zhang1@tue.nl
1Eindhoven University of Technology, the Netherlands
2China Scholarship Council, the People’s Republic of China

Motivation and Aim
The (bio-)fouling of surfaces submerged in liquid forms a serious problem for many applications. One inspiration to address this issue is the use of cilia which are oscillating micro-hairs found in nature, and which are very effective in particle manipulation. Thus we aim to develop engineered analogues of cilia – magnetically actuated artificial cilia (MAAC) for particle manipulation and anti-fouling. We have fabricated MAAC using a home-built roll-pulling setup. The MAAC perform a synchronized tilted conical movement when actuated by a rotating magnet, generating substantial fluid flow which is an important first step towards manipulating surrounding particles and creating anti-fouling.

Background

(Bio-)fouling occurs in many applications including biomedical and microfluidic devices, micro- to macroscale sensors and marine devices. It inhibits their normal functioning and leads to enormous economic losses.

Cilia
In nature, cilia are very effective in manipulating surrounding particles [1].

Simulation-base evidence
Since biological cilia are so effective in manipulating particles, researchers propose the use of cilia to create anti-fouling surfaces. Numerical simulations on repelling particles away from ciliated surface have been done by the group of Balazs and coworkers [2].

Figure 3: Numerical simulation of microparticle manipulation using cilia: (a) a model of active cilia; (b) a model of passive cilia. [5]

Roll Pulling Process of MAAC
We have fabricated MAAC using a novel out-of-cleanroom, cost-effective and potentially large-scale roll-pulling method. The MAAC made in this way can perform a synchronized tilted conical movement under the actuation of an external rotating magnet. An actuation movie can be found on https://youtu.be/qnqh435wHo8.

Figure 4: (a) Schematic of the roll-pulling setup; (b) Photo of the home-built set-up; (c) Microscopic picture of MAAC made with the roll-pulling setup using micropillars of 150 μm in diameter.

Results
We can produce MAAC with lengths of 250, 200 and 150 μm using micropillars with diameters 150, 125 and 100 μm respectively. The length and aspect ratio can be adjusted by varying the gap between the roll and the substrate, and the diameter of the micropillars. What's more, the geometrical configuration of the MAAC can be set by controlling the arrangement of the roll's micropillars. Fig. 5d shows the fluid flow generation property of MAAC.

Figure 5: Microscopic pictures of MAAC: (a) MAAC fabricated with micropillars of 100 μm diameter; (b) MAAC fabricated with 125 μm diameter micropillars; (c) MAAC fabricated with 150 μm diameter micropillars; and (d) the fluid flow generation property of MAAC made by pillars of diameter 150 μm.

Outlooks
Characterize the capability of MAAC in manipulating particles, including sticky and non-sticky, soft and hard, passive and active particles.

Acknowledgements
This research is financially supported by the China Scholarship Council. Hossein Eslami Amirabadi and Sheen SahebAli have provided useful suggestions during the experiments. Many thanks to the Chemical and Biological Microsystems Society (CBMS) for offering a travel grant.

References

/ Microsystems group / Department of Mechanical Engineering / Eindhoven University of Technology