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also needed. Moreover, the technological era brings us 
the possibility of digitally analyzing massive data sets. 
With the aid of pf a well-suited algorithm we can �lter 
such plethora of data. The family of visibility algorithms 
constitute one of other possibilities to map a time series 
into a graph and subsequently analyze the structure of the 
series through the set of tools developed in the graph /
complex network theory (Lacasa et�al. 2008; Lacasa and 
Toral 2010; Luque et�al. 2009; Nuæez et�al. 2012).

The idea of mapping time series into graphs seems 
attractive because it lays a bridge between nonlinear sig-
nal analysis and complex networks theory. Hence, the vis-
ibility graph (VG) algorithm has attracted attention as a 
capable technique for time series analysis due to its intrin-
sic non-locality, low computational cost, simple rules and 
straightforward implementation (Lacasa et�al. 2008; Lac-
asa and Toral 2010; Luque et�al. 2009; Nuæez et�al. 2012). 
The VG algorithm provides an e�ective method to map 
time series to a graph permitting a mutual relationship 
between dynamical properties of time series and topologi-
cal properties of the graph. Therefore, the information on 
time series is obtained just by analyzing the characteristics 
of the graph. In particular, it has been shown that both the 
structure of complex, irregular time series and nontrivial 
ingredients of its underlying dynamics are inherited in 
the topology of the visibility graphs, and therefore simple 
topological properties of the graphs can be used as time 
series features for description and automatic classi�cation 
purposes. Examples include a topological characteriza-
tion of chaotic series and the method has been used for 
the description and classi�cation of empirical time series 
appearing in physics, physiology, neuroscience or �nance 
(Lacasa et�al. 2008; Lacasa and Toral 2010; Luque et�al. 
2009; Nuæez et�al. 2012; Czechowski et�al. 2016; Shao 
2010; Ahmadlou et�al. 2012; Zhu et�al. 2012; Ahmadi and 
Pechenizkiy 2016; Yang et�al. 2009).

For synchronization purpose, the series of connectivity 
degree (i.e., the number of edges connected to a node) of 
the visibility graph nodes is considered as a new time series, 
which is called the degree sequence (DS) time series. Meas-
uring the synchronization between two DSs is called the VG 
similarity and can be presented as an alternative measure of 
synchronization between time series (Ahmadi and Pecheniz-
kiy 2016; Ahmadlou and Adeli 2012).

An important issue in analyzing a dynamic system is that 
the system may behave chaotically and/or stochastically 
(Lacasa and Toral 2010; Korn and Faure 2003). Chaotic sys-
tems display sensitivity to an initial condition which mani-
fests instability everywhere in the phase space and leads 
to non-periodic time series. When one or more parts of a 
dynamic system have randomness, it is called a stochastic 
system. A stochastic system does not always produce the 
same output for a given input.

In this paper, we present the main results of our experi-
mental study aimed at assessing the capability of the VG-
based similarity techniques in measuring synchronization 
between chaotic, noisy and stochastic time series. For this 
purpose, we conducted a comprehensive evaluation of the 
VG-based similarity measures on coupled Rössler system, 
noisy HØnon map, and the Kuramoto model. We compare 
the performance of VG-based similarity techniques with 
other commonly used synchronization measures, including 
cross-correlation, synchronization likelihood and variants of 
coherence and phase lag index. The results of our study sug-
gest to choose the horizontal VG-based similarity measure 
for detecting synchronization between chaotic and stochastic 
time series.

The rest of this paper is organized as follows: we intro-
duce the VG-based similarity measures in Sec. 2, discuss 
the experimental results in Sec. 3 and conclude with �nal 
remarks in Sec. 4.

2  The methods

2.1  Visibility graph algorithm

Let yi be a univariate time series of N data (i = 1,2,�,N). The 
VG algorithm converts the time series yi to a graph G(vi), as 
a data point yi is mapped into a node vi in G. The signal node 
(i.e., ti, a point on the time series) represents a moment in 
which the data is recorded. Therefore, a time series of size N 
maps to a graph with N nodes. The original visibility graph 
(VG) algorithm implies that two arbitrary data values (ti, yi) 
and (tj, yj) have visibility, and consequently are connected 
nodes of the associated graph, if any other data (tk, yk) placed 
between them (ti�<�tk�<�tj) satis�es (Lacasa and Toral 2010):

The schematic of the above geometric criterion and its 
associated visibility graph are shown in Fig.�1a. It is clear 
that two arbitrary nodes i and j in the graph are connected 
if one can draw a (straight) line in the time series joining yi 
and yj that does not intersect any intermediate data height.

The horizontal visibility graph (HVG) algorithm is an 
alternative, simpler and faster geometric criterion (Luque 
et�al. 2009). In the HVG algorithm, two nodes i and j in the 
graph are connected if the following geometrical criteria is 
ful�lled within the time series:

Figure�1b illustrates the scheme of the horizontal vis-
ibility algorithm and the associated graph. According to the 
HVG geometric criterion, two data points (ti, yi) and (tj, yj) 
are connected if one can draw a horizontal line in the time 
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series linking the corresponding imaginary vertical lines 
without intersecting any intermediate data point.

After constructing the original VG or HVG, the degree of 
each node is determined. The degree of node i is the number 
of links which touch i. The corresponding degree sequences 
(DS) of the original VG and the HVG algorithms are shown 
in Fig.�1c as time series. From Fig.�1c, it is clear that HVG 
is always a sub-graph of its associated original VG. This 
does not a�ect qualitative features of the resultant graph; 
quantitatively speaking, the HVG has less statistics (Luque 
et�al. 2009).

Now, the synchronization of the time series y1(t) and y2(t) 
is determined through computation of similarity of the DSs 
of the corresponding visibility graphs as:

where  DS(.) represents the degree sequence of a time series, 
and  cov[.] and �(.) are its covariance and the standard devia-
tion. The synchronization values range from 0 to 1, where 
S = 0 means the time series are not synchronized, and S = 1 
means that time series are identical.

The VG-based algorithms are nonlinear maps of time 
series to graphs, and it has been shown that many signal 
structural properties (e.g., periodicity, fractality, etc.) are 
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inherited in the resultant graph (Yang et�al. 2009; Ahmad-
lou and Adeli 2012; Korn and Faure 2003). However, some 
signal information is inevitably lost in the mapping from the 
fact that the network structure is completely determined by 
the binary adjacency matrix (Yang et�al. 2009; Ahmadlou 
and Adeli 2012; Korn and Faure 2003). For example, two 
periodic signals with the same period would have the same 
visibility graph, albeit being quantitatively di�erent. Fur-
thermore, the VG algorithm is restricted to univariate time 
series, and since it is sensitive to the nonlinear monotonic 
transformation of the original time series, it cannot be used 
to represent invariants of the underlying system (Czechowski 
et�al. 2016).

It is worth mentioning that the presented VG-based algo-
rithms are computationally e�cient to transform small-scale 
time series to graphs; however, it may take too much time to 
deal with very large time series. To transform a time series 
of size n, it is necessary check all the n(n-1)/2 pairs of signal 
nodes whether each pair of two nodes can see each other 
based on the de�ned geometrical criteria. For example, in 
Fig.�2a, to check the connection between signal nodes t3 and 
t7, we need to know the maximum slope of the lines between 
node t3 and nodes t4, t5 and t6. After calculation for each 
pair of nodes, the maximum slope is timely updated. Hence, 
the time complexity of the connection judgment between 
each pair of nodes is O(1). Therefore, the total time com-
plexity of the VG algorithm is O(n2). In other words, the 

Fig. 1  Visibility graph example
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algorithm takes O(n2) time to execute to detect synchroniza-
tion between two time series for the time duration n.

2.2  State-space trajectory

Synchronization of chaos is often understood as a regime in 
which two coupled chaotic trajectories exhibit identical, but 
still chaotic oscillations. For example, the shapes of some 
well-known coupled chaotic systems seem regular, but the 
one-dimensional projection of their trajectories seems ran-
dom. Many of the classical signal processing measures are not 
able solely to reveal such regularities behind the observed time 
series (Yang 2005; Packard et�al. 1980). Therefore, a technique 
such as a state-space reconstruction is needed to detect this kind 
of behavior and analyze nonlinear time series. To this end, the 
time series of interest is embedded in a high-dimensional space 
to form a trajectory from which the properties of the original 
dynamic system can be deduced. The embedding theorem (or 
Taken�s theorem Chan and Tong 2013) establishes that, when 
there is only a single sampled quantity from a dynamical sys-
tem, it is possible to reconstruct a state-space that is equivalent 
to the original (but unknown) state-space composed of all the 
dynamical variables (Kantz and Schreiber 2004).

Two parameters time delay (T) and an embedding dimen-
sion (d) are de�ned to reconstruct a state-space. These param-
eters should be determined properly to avoid loss of informa-
tion in the reconstructed state-space. It is suggested that to 
choose the same values of T and d for all signals to be able 
to compare the similarity of their states (Pereda et�al. 2001). 
According to Taken�s theorem (Chan and Tong 2013), the 
state vector of the ith sample of a given signal is de�ned as:

Therefore, a multi-dimensional state-space is recon-
structed from a scalar time series, as each trajectory contains 
[N���(d � 1)T] states, where N is the number of sampling 
points of each time series.
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After mapping all samples of time series to the state-
space, a window Wn, with the width of 2(w2 � w1) is con-
sidered. Here, w1 is the Theiler correction (Chan and Tong 
2013) that is used to prevent information redundancy in 
the similarity computation, and w2 is an integer number 
which determines the maximum temporal distance that a 
state can have from the reference state. Also, the state at the 
center of the window is considered as the reference state, 
Yc. Therefore, the width of window depicts the number of 
states which are restricted in the window, in other words, 
each window around reference state contains all states, Ym, 
as w1�<�|c � m|�<�w2.

Now, by calculating the Euclidian distances of all states in 
the window with the reference state, the distance time series 
(DTS) of the window is constructed. After calculating the 
DTS, the original VG or the HVG algorithm is applied on 
the DTS to determine if the synchronization corresponds to 
the window Wn. By shifting the window, the synchronization 
value is obtained for each window. Note that the window 
should be shifted with short enough steps to have a high tem-
poral resolution which usually increases the computational 
cost. The overall synchronization of the system is obtained 
by averaging the computed synchronization values over all 
windows.

Using the Takens� theorem (Chan and Tong 2013), a sig-
nal sample is mapped nonlinearly to a state-space and the 
information of neighbor samples (i.e., past and next samples) 
are also used to create the state-space of that sample. The 
original VG and the HVG algorithms are also a nonlinear 
transform of signals to graphs and according to their geo-
metric criteria, the information of at least nearest past and 
next samples is mapped into the graph. In other words, the 
original VG and the HVG algorithms inherently handle the 
high-dimensional chaos (Korn and Faure 2003), and we 
expect to observe no signi�cant improvement on our analy-
sis by making the trajectory of time series in state-space. 
However, in this work in addition to the original VG and the 
HVG algorithms, their combinations with the state-space 

Fig. 2  The trajectory of the coupled Rössler systems projected on the x1���x2 plane with �� = 0.05 when a C = 0, b C = 1.5 and c C = 5
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are also examined as separate schemes, i.e. �rst, time series 
are mapped to the state-space and then the original VG (or 
HVG) algorithm is applied on the resultant DTS for each 
window. We call these schemes as the SS-VG and the SS-
HVG, where SS refers to state-space mapping.

3  Results and�discussions

We implemented the above VG-based similarity algorithms 
to �nd synchronization between chaotic (Sec. 3.1), noisy cha-
otic (Sec. 3.2) and stochastic (Sec. 3.3) time series. The per-
formcance of the VG-based algorithms is compared against 
the commonly used synchronization measures: the cross-
correlation (CC), the coherence (Coh), the imaginary part 
of coherence (ImPC), the synchronization likelihood (SL), 
the phase coherence (PC) and the phase lag index (PLI). A 
brief review of these measures is provided in the Appendix.

3.1  Chaotic time series

Many output time series in physical, chemical and biologi-
cal systems (e.g., EEG time seriess) have a chaotic motion 
in time. A chaotic motion means that the precise behavior 
of the system cannot be determined for a very long time in 
contrast to the periodic or quasi-periodic motion. Here, we 
use the coupled Rössler systems (Rössler 1976) to generate 
chaotic time series as (Smirnov and Andrzejak 2005):
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where the subscripts 1 and 2 denote the oscillator 1 (driver) 
with state vector of X�=�[x1, y1, z1] and 2 (attractor) with 
state vector of Y�=�[x2, y2 ,z2], respectively. Parameters 
�1 = �0����� and �2 + �� are natural frequencies, where 
�0 = 1 is the normalized natural frequency and �� is the nat-
ural frequency mismatch between two coupled systems. Two 
identical systems have the same parameters and therefore 
�� = 0. It has been demonstrated that complete synchroni-
zation between two systems is not possible when there is a 
small but �nite mismatch of the parameters of the systems 
(Osipov et�al. 1997; Yanchuk et�al. 2003).

The equations of systems are solved using the fourth-
order Runge�Kutta method with a fixed step size of 
dt = 0.05. The initial conditions for all case studies are set 
as: x1(0) = 0.5, y1(0) = 1, z1(0) = 1.5, x2(0) = 2.5, y2(0) = 2 
and z2(0) = 2.5. Each time series includes 10,000 data 
points, where the initial transients are removed by dis-
carding the �rst 5000 data points. The coupling strength C 
is varied between 0 and 4, and the natural frequency mis-
match of the oscillators is set as �� = 0 and 0.05, which 
make the systems identical and non-identical, respectively. 
The di�erent trajectories on the x1�x2 plane obtained by 
changing the value of the coupling parameter (C) are illus-
trated in Fig.�2a�c when �� = 0.05. In these �gures, a 
clear tendency towards the identity of the two attractors 
can be observed, although complete synchronization will 
never be reached due to the parameter mismatch. In the 

Fig. 3  Predicted synchronization values as a function of coupling strength C. All compared measures are applied to time series x1 and x2 of two 
coupled Rössler systems
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