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bending only strength, the American standard allows for the application of the Direct Strength 
Method. Research is also underway to consider the Direct Strength Method for web crippling 
predictions, e.g. [34,35]. To overcome the empirical basis of the design standards, which lack 
insight in the failure modes and may yield significant different predictions, a theoretical 
model for first generation trapezoidal steel sheeting under combined web crippling and 
bending has been developed [8]. It considers a square plate that is representative for a square 
part of the sheeting's compressed flange at one side of the load bearing plate. This plate is first 
given an imperfection shape and size equal to its deformation that is normally caused by the 
concentrated load. Then it uses Marguerre's equations to predict the failure of this plate due to 
normal stresses, which are normally caused by the bending moment. As the Marguerre's 
equations are complex, for these equations an alternative so-called two-strip model has been 
developed. The two-strip model requires finite element simulations of the square plate for its 
set-up and as such performs well [36]. However, it comes out that for commonly used second-
generation sheeting, the required finite element simulations (for the two-strip model) need to 
model the complete compressed flange along the length of the section, instead of just a square 
plate, because otherwise boundary conditions cannot be applied correctly [37].  

In conclusion, the theoretical model indicates that only a square part of the compressed 
flange is needed to predict the failure of first-generation sheeting successfully. Nevertheless, 
if this theoretical model is developed further for second-generation sheeting, it occurs that the 
required finite element models (for setting up the two-strip model) need to model the 
complete compressed flange. Several questions can now be asked: (a) Will the complete 
compressed flange predict failure of second-generation sheeting successfully, just like the 
square part for first-generation sheeting? If positive, this could lead to new accurate design 
rules for second-generation sheeting, which also provide insight in the failure behaviour. (b) If 
a square plate predicts failure of first-generation sheeting correctly, will it also predict 
correctly first yield, yield-line patterns, and out-of-plane deformations in the sheeting's 
compressed flange? This could improve the understanding of the already complex behaviour 
of first-generation sheeting under combined web crippling and bending moment. (c) Or do we 
need to model the complete compressed flange for this, even for first-generation sheeting? If 
the complete compressed flange would be needed, it is applicable for second-generation 
sheeting too, and it may also be used to study why a symmetric or asymmetric (along the 
length) failure mode can occur in sheeting. This is not possible using only a square plate of 
the compressed flange, for this is located at one side of the load-bearing plate and so is 
inevitably asymmetric from the beginning. This is the reason that in this paper question (b) is 
skipped and immediately question (c) will be addressed. Future work can then focus on 
question (a) subsequently. 

Thus, the question to be answered by this paper is: Can a model of only the complete 
compressed flange predict first yield, failure, yield-line patterns, and out-of-plane 
deformations in the compressed flange of complete sheeting. Therefore, a systematic 
comparison between the behaviour of only compressed flanges and the behaviour of the 
accompanying trapezoidal sheeting is carried out. As the finite element method will be used 
throughout, and the finite element models of the flange are a part of the models for the full 
sheeting, first the general setup of the finite element models will be presented in section 2. 
Three fundamental failure modes exist for trapezoidal sheeting under web crippling and 
bending, and the finite element model is consequently validated and verified for each failure 
mode in section 3. The following section 4 presents in detail the several types of compressed 
flange models and their results, also in relation with the previously presented full models. 
Section 5 briefly considers some additional simulations of second-generation sheeting, to 
understand the behaviour of stiffened bottom flanges. Finally, section 6 concludes the work 
and suggests future research to be carried out. 
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2 FINITE ELEMENT MODEL PRINCIPLES 

 To investigate the behaviour of trapezoidal sheeting, which has normally a very wide 
cross-section and is applied continuously along multiple spans, experiments are commonly 
based on a sheet-section, and use a three-point bending test setup. A sheet-section is similar to 
a well-known hat-section, except that boundary conditions are applied such that it behaves 
equally to an imaginary hat-section part within the sheeting. In experiments, these boundary 
conditions are often realised by steel strips—placed at regular distances ls along the length—
that connect the two half flanges, thus avoiding spreading of the webs. With respect to the 
three-point bending test setup, the experimental span length is determined to obtain realistic 
ratios between the concentrated load and the bending moment as occurring for the multi-span 
situations in practice. Here the finite element model for trapezoidal sheeting follows the same 
modelling approach, see figure 1. The sheet-section is supported at the left and right by 
support strips, and is loaded at midspan via a load bearing plate, which would be the 
intermediate support for the multi-span situation. Depending on the failure mode, only a 
quarter (grey areas) or a half sheet-section (grey + lightly hatched areas) is modelled, through 
boundary conditions at the longitudinal and (for a quarter model only) cross-sectional 
symmetry lines. The dotted vertical lines, equally distributed along the length and their 
number given by ls < 250 mm, indicate the steel strips. The cross-sectional views present 
variables of some basic dimensions; the longitudinal view shows the mesh density regions. 

 

 
Figure 1: Finite element model setup. 

 
The finite element model was developed based on experience gained in previous research, 

e.g. [8,37]. For the top flange elements throughout, and for the bottom flange and web for the 
coarse mesh, 22 × 22 mm four-node (each 6 DOF's) double curved shell S4 [38] elements are 
present.  The fine part of the mesh, the bottom flange and web, is meshed 6 × 6 mm. The 
rounded top corner has a single element along the circumference, being 8 mm long along the 
length. This is also the case for the rounded bottom corner for the coarse mesh part, whereas 
for the fine mesh 4 elements are used, being 3 mm in length direction. For the transition mesh, 
intermediate values and a free meshing algorithm are used. For the coarse and fine mesh, a 
regular mesh is generated. The load bearing plate is a single rigid solid with between the plate 
and sheet-section "surface-to-surface" contact with "finite sliding", with the tangential 
behaviour set to "frictionless"; normal behaviour set to "hard"; and the constraint enforcement 
method being the default "kinematic" [38]. Boundary conditions are for nodes along the 
cross-section: at the longitudinal symmetry line UX=RY=RZ=0 and at the cross-sectional 
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kinetic energy, more than 1 % of the internal energy, however from 0.1 seconds on this 
threshold was met and thus 0.1 seconds was selected. Results of the implicit dynamic 
simulation with these settings were completely equal to the static simulations. Finally, an 
additional verification was made by using an explicit dynamic simulation over the same time 
and using the same loading. Oscillations occurred, but by filtering these out around 120 Hz 
results were comparable to both the static and dynamic implicit simulations. As the dynamic 
implicit simulations find equilibrium, are suitable for all possible failure modes, and have 
been verified as presented in the section, this type will be used for most of the simulations to 
follow. 

3 SHEET-SECTION FINITE ELEMENT SIMULATIONS 

 For first-generation sheeting, with practical cross-sectional dimensions, and loaded by 
practical ratios between web crippling load and bending moment, three failure modes may 
occur: the symmetric yield-arc mode as shown in figure 3 on the left, the asymmetric yield-
eye mode on the right and a yield-arc to yield-eye transition mode that starts as yield-arc but 
after some deformation transforms into a yield-eye mode (not shown). The yield-line pattern 
of the yield-arc mode starts with an arc-like shaped yield line in the web, and hereafter several 
yield lines in web and flange follow. The asymmetric yield-eye mode starts with two yield 
lines in the flange, together shaped like an eye, thereafter followed by secondary lines in the 
web and a single one in the flange. In the subsequent sections, for each failure mode the finite 
element model of section 2 is adjusted to a dedicated experiment from the past to provide a 
verified simulation for that specific mode. Different from experiment nr. 25 in section 2, 
which was only selected to fail by the yield-arc mode and to be well documented, the 
dedicated experiments in this section have been selected to cover different corner radii sizes, 
bottom flange widths, among others. Furthermore, the here selected yield-arc (nr. 42) and 
yield-eye (nr. 61) experiments were among the few that were simulated with two different 
programs in respectively [8] and [37], which provides additional verification.  

 

 
Figure 3: Half finite element models. On the left a yield-arc mode, which starts with the inner arc in 

the web. On the right the yield-eye mode, which starts with the two most right yield lines in the 
bottom flange. 

3.1 Yield-arc failure mode 

The verification of the finite element model as presented in section 2 indicated that an 
element aspect ratio for the bottom corner of 2 yields acceptable results. Combined with the 
required number of elements along the corner and overall mesh compatibility, this led to the 
following mesh: For the top flange elements throughout, and for the bottom flange and web 
elements for the coarse mesh, 20 × 20 mm elements are present. For the fine mesh, the bottom 
flange and web have been meshed 2 × 2 mm. The rounded top corner has single elements 
along the circumference, being 2 mm (fine part) respectively 10 mm (course part) along the 
length. This is also the case for the rounded bottom corner, but for the fine part, 3 elements 
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mm, and a span length equal to 2401 mm. As such, the finite element model for this transition 
mode could use the same mesh sizes as the model for the yield-eye mode. Simulations were 
carried out with imperfection type b3 with a variety of thickness reductions from 0 up to 35 
%. In general, small imperfections led to the yield-arc mode, large imperfections led to the 
yield-eye mode, and for 7 out of 14 cases a transition mode was found. Figure 5 shows that 
although load versus beam deflection is similar for all cases, load versus web-crippling 
behaviour is different. For very small imperfections the yield-arc mode occurred, which is 
symmetric and thus shows increasing values of web crippling deformation during the whole 
simulation. Very large imperfections led to the yield-eye mode. As this mode is asymmetric, 
the sheet-section bottom flange moves to an inclined position relative to the load bearing 
plate. At one side it loses contact, then transferring the load via the other side. Due to the 
inclination of the section, the distance between the load bearing plate surface and the top 
flange increases. As the original section height minus this distance is used for the web 
crippling deformation, the as such defined web crippling deformation reduces. Although this 
may be seen as a flaw in the experimental setup and in the definition of the web-crippling 
deformation, it actually provides a convenient measure that easily distinguishes between the 
several failure modes. For intermediate sized imperfections it can be seen that first the yield-
arc mode occurred (no snap back), for larger sized imperfections this yield-arc mode was 
followed (earlier if imperfections were larger) by snap-back behaviour, as explained 
belonging to the yield-eye mode. 
 

 
Figure 5:Web crippling deformation snaps back immediately after the ultimate load for the yield-eye 
mode (35 % reduction), during further deformation for the transition mode, or not at all for the yield-

arc (5% reduction). 

Using alternatively an explicit dynamic solver, or imperfection type b2, led to slightly 
different values for the imperfection size that decided between a full yield-arc, full yield-eye, 
or transition mode. This showed again that the yield-eye and transition modes are very 
sensitive for imperfection types and sizes, and even different solving approaches. 

 3.3 Sheet-section models to be used for comparisons 

The sheet-section finite element models, dedicated to the three failure modes, were able to 
simulate the associated experiments well. To compare the behaviour of their bottom flanges to 
the upcoming compressed flange finite element models, for each sheet-section model specific 
settings have been selected: For the yield-arc model imperfections are not used. For the yield-
eye model imperfection b3 with 10% reduction of the thickness has been selected. And as the 
transition mode is very sensitive to imperfections, and compressed flange finite element 
models will simulate bottom flanges both with and without rounded corners, two simulations 
have been selected: a simulation with imperfection b2 with 13% reduction and another 
simulation with b3 with 25% reduction. This latter 25% reduction is unrealistically large, but 
represents a complex of imperfections in the real experiments and delivers a clear transition 
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mechanism, as shown in figure 5 on the right. All sheet-section models are analysed with an 
implicit dynamic approach, with the program specific solver setting "quasi-static", which 
directs the solver to take large time increments, however also allows for considerable 
numerical dissipation if e.g. snap-back behaviour occurs [38]. 

4 COMPRESSED FLANGE FINITE ELEMENT SIMULATIONS 

 Referring to figure 1, which shows the setup of the sheet-section finite element models, a 
similar figure can be imagined for the compressed flange models, but now with only half the 
bottom flange (with or without the rounded bottom corner) shaded grey. Figure 13 in section 
4.3 shows a part of a sheet-section model, which may help further understanding. For the 
longitudinal symmetry line normal symmetry conditions UX=RY=RZ=0 apply, whereas for 
the other longitudinal edge, being (a) the junction of the rounded bottom corner and web or 
(b) the junction between bottom flange and rounded bottom corner, boundary conditions have 
been used as shown in table 1: BC1 provides free longitudinal movement, however transverse 
movement is not possible. BC2 allows transverse movements but keeps the edge straight. 
BC3 allows for the edge to wave free in-plane. Transverse edges are completely free, as is the 
case if they are part of a sheet-section.  

 
Table 1: Boundary conditions for compressed flange edges. 

BC Visualisation Longitudinal edges Transverse edges 

BC1 
 

UX=0 
UY=0 No BC's 

BC2 
 UX coupled 

UY=0 No BC's 

BC3 
 

UY=0 No BC's 

 
 The bending moment in a sheet-section is caused by the concentrated load applied via the 

load bearing plate. Assuming linear behaviour of the geometry and material, the normal strain 
in the compressed rounded corner in z-direction due to this bending moment is given in figure 
6. Integrating the strain yields the displacements u as shown at the bottom of figure 6 and by 
equations (1) to (3), with a being the load bearing plate width [40]. 

 

 
Figure 6: Strain and displacement functions due to bending along the length of a compressed bottom 

flange, boundary conditions not shown. 
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For a three-point bending test, the bending moment at z=0 and the concentrated load F are 
related as shown in the equation bottom left, leading to the concentrated load Frep on a sheet-
section as function of the steering displacement uz=a/2, as indicated in the right hand side of the 
equation. Note that this load is only fully representative in the case of linear behaviour, both 
geometrically and materially.  

First visible yield in the contour plots of figure 9 occurs at point "ty" in figure 8, somewhat 
after the first Eigen value for buckling, the latter indicated by the vertical dotted line marked 
Fbuckle. First yield is quickly followed by the ultimate load at "tu". This ultimate load is related 
to a representative load on the horizontal axis equal to 4041N, which is 1.73 times larger than 
the ultimate load of the sheet-section (2339 N). Finally, "tf" indicates the user-set end of the 
simulation. On the right of figure 8, the number of buckles versus the steered in-plane 
displacement -uz=a/2 is shown. The number of buckles have been determined by hand, studying 
deformation contour plots and scaled plots of the deformed plate.    
 

 
Figure 8: Compressed flange model with BC1 for experiment 42. On the left load vs. deformation (i.d. 

representative load), on the right number of buckles vs. deformation. 
 
Figure 9 on the left shows—for "ty", "tu", and "tf" in figure 8—, the maximum value of the 

Von Mises stresses at the bottom and top surfaces. The contour colours have been set such 
that any colour indicates yielding. On the right, out-of-plane deformations are shown. The 
figure shows clearly that yielding starts not along the longitudinal edge but at the top or 
bottom of a buckle. At the ultimate load and beyond, the longitudinal edges also yield, 
together with yield zones (in the figure being vertical) at buckle tops or bottoms.  

 

 
Figure 9: On the left yielding starts in the middle, different from the effective-width approach. On the 

right the number of buckles change as buckles move inwards to the middle from both sides. 
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To obtain more insight in the yielding pattern, figure 10 plots the Von Mises stress for the 
bottom, middle, and top layers of the compressed flange, both at first yield (ty) and at failure 
(tu). It can be seen that first yield is due to local bending (as only the outer fibres yield) and at 
ultimate load the longitudinal edges are yielding due to compression (as the middle surface 
yields) and local bending, in combination with (in the figure vertical) yield lines at the top and 
bottom of the buckles. The behaviour of the compressed plate can be compared with the 
compressed flange from the sheet-section finite element model, figure 11. In the sheet-section, 
first yield is shown to occur due to the indentation of the plate by the load bearing plate, 
whereas failure occurs due to yield lines (due to local bending) in a circular shape adjacent to 
the load bearing plate. This is clearly different from the behaviour of the compressed flange 
only. This needs not to be surprising, but on the other hand, the theoretical model (see section 
1) uses only a square part of the compressed flange to predict first yield of a sheet-section 
very well.   

 

 
Figure 10: Compressed flange model: First yield is due to local bending of the compressed flange. 

Failure is due to compression along the longitudinal edges and local bending at these edges and in the 
figure vertical yield lines at the top and bottom of the buckles. 

 

 
Figure 11: Sheet-section model: First yield is due to indentation of load bearing plate. Failure is 

related to small zones of yielding due to compression (middle layer) and two circular yield line zones 
due to bending, both to the left and right of the load bearing plate. 

 
Figure 12 presents the out-of-plane displacements (so in y-direction) at the longitudinal 

symmetry line, for the positions along the length equal to -a/2, 0, and a/2. These out-of-plane 
displacements are measured relatively to the other longitudinal edge and are thus not 
influenced by e.g. beam deflection in the sheet-section finite element model. The 
displacements are plotted against the representative load. The compressed flange finite 
element simulation shows clearly out-of-plane buckling deformations after the buckling load 
(dotted horizontal line). The change of sign of the out-of-plane deformations quickly after 
onset are due to the shift of buckle positions (see figure 9). Completely different, the sheet-
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section finite element model shows strong downwards deflections due to the action of the load 
bearing plate. 

This compressed flange simulation with BC1 was also carried out with a static solution 
procedure for verification. Boundary conditions BC2 and BC3 were also tested, the latter with 
using several imperfection sizes and different end times (i.e. different end speeds) for the 
explicit procedure. Finally six simulations were carried out for the yield-eye and the transition 
mode, for all three boundary conditions. The sheet-section models and the bottom flange 
models were compared for the Eigen mode (symmetric or asymmetric), the buckling load, the 
yield pattern development, the ultimate load, and the out-of-plane deformations, and did not 
relate clearly for any of these investigated characteristics [39]. 

The buckling and ultimate loads are predicted too high by the compressed flange only, 
possibly due to the absence of stresses caused by the load bearing plate. As the load bearing 
plate may also correct the different out-of-plane displacement behaviour, as typically shown 
in figure 12, the next subsection presents a possible improvement of the compressed flange 
model by incorporating a load bearing plate. 

 

 
Figure 12: Sheet-section out-of-plane displacement can only occur in positive y-direction, as load-

bearing plate restricts the other direction, snap-back occurs due to the forming of yield-lines. For the 
plate, displacements start around buckling and change sign due to the shifting of the buckles, see 

figure 9. 
 

4.2 Long plate without rounded bottom corner radius and with fixed load bearing plate 

This bottom flange finite element model is equal to the model in section 4.1 except that it 
includes a fixed load bearing plate with contact modelled between the load bearing plate and 
the bottom flange. The bearing plate and the contact are modelled completely following the 
techniques as used for the sheet-section finite element models. 

The models with load bearing plate, for all failure modes and for all boundary conditions, 
did not improve compared to the models without load bearing plate [39]. The difference in 
failure load between the sheet-section model and bottom flange model including load bearing 
plate was even larger than for the model excluding the load bearing plate. This is probably 
due to the fact that the compressed flange is more restricted in its displacements: out-of-plane 
deformation graphs and contour plots show that the load bearing plate effectively restricts out-
of-plane flange movements away from the plate. This possibly also led also to the fact that 
load vs. deformation plots show more ductile behaviour after ultimate load, often with a rigid-
plastic like path. This is very different from the strong decrease in strength for the flanges 
without load bearing plate. Further data and graphs, similar to the simulation presented in the 
previous subsection, are available in [39]. 
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4.3 Long plate with rounded bottom corner 

To investigate whether modelling the rounded bottom corner could improve the basic 
model of subsection 4.1, this model was extended with the rounded bottom corner, as shown 
in figure 13 on the left. In the model the prescribed displacements according to the 
displacement function is applied on the corner-flange junction and the boundary conditions on 
the outer corner longitudinal edge. Different from the previous models, buckled shapes as part 
of the imperfection cannot be seen before actual buckling, figure 13 on the right. This can be 
explained as follows. In the model of section 4.2, without a rounded corner even light 
compression amplified the imperfection shape strongly, which was visible in the contour plots 
and the (amplified) deformed flange (not shown here). However, for the model in this section 
the corner will carry a large part of the compression force, the flange and corner being much 
stiffer, and consequently an amplification of the imperfection buckles such that they become 
visible only takes place after buckling. 

 

 
Figure 13: On the left: displacements are prescribed at the corner-flange junction and boundary 

conditions along the rounded corner edge. A single point is fixed in z-direction to avoid rigid body 
movements for all flange models. On the right: buckles are only visible after buckling. 

 
This model predicts the load at first yield and the ultimate load reasonably well if BC3 is 

used. Unfortunately, corresponding yield line and out-of-plane displacement patterns do not 
match the sheet-section models [39]. Therefore in the next section this model is also extended 
with a fixed load bearing plate. 

4.4 Long plate with rounded bottom corner and fixed load bearing plate 

This model combines the models of subsection 4.3 with the fixed load bearing plate as 
used in subsection 4.2. As for all models, three boundary conditions for three different failure 
modes were tried. Except that the location and moment of first yield were predicted 
reasonably well, at least for BC3, all other comparisons failed in achieving a resemblance 
between the behaviour of the compressed flange model and the flange in the sheet-section 
models. In a logical attempt to further increase the performance of the compressed flange 
models, a model was developed with rounded bottom corner and a moving (by means of a 
prescribed displacement) load bearing plate, to be presented in the next section. 

4.5 Long plate with rounded bottom corner and moving load bearing plate 

In this model, the load bearing plate starts with its loading surface coincident with the 
bottom flange surface, and is then given a linearly increasing speed, from 0 to -6.67 mm/s 
from the beginning at 0 s to the end time of 0.15 s. This is equivalent to a constant 
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acceleration equal to 44.44 m/s2. This results in a displacement at the end time equal to 0.5 
mm, and this is equal to the amount for which the rounded corners will be indented. 

For all simulations (3 modes × 3 BC's), out-of-plane deformations are similar for the flange 
and sheet-section model up to the failure load of the sheet-section model, as shown in figure 
14 on the left for the yield eye mode, BC2. To investigate the ratio between the in-plane 
compression of the bottom flange and the out-of-plane indentation of the load bearing plate, 
the constant acceleration was modified to 100 mm/s2 and 200 mm/s2. A larger acceleration 
resulted in larger out-of-plane deformations compared to the unmodified in-plane load, and as 
can be seen in figure 14 on the right. This also resulted in larger relative out-of-plane 
deformations. This could be helpful for further calibration of this specific model, were it not 
that for first yield and ultimate loads this model gave as inconsistent results as the other 
models. Also the model did not indicate symmetric or asymmetric behaviour corresponding to 
the sheet-section models. However, naturally the final deformed shape of the bottom flange 
resembled the sheet-sections as both are dominated by the indentation by the load bearing 
plate. 

 

 
Figure 14: On the left: for the first part of loading, the bottom flange model now follows the behaviour 

of the flange in the sheet-section mode (compared with figure 12). On the right: higher acceleration 
means larger load bearing plate displacements, which in turn increases relative out-of-plane 

deformations. 
 

4.6 Long plate with rounded bottom corner and elastic foundation 

Despite the increasingly advanced attempts to model the compressed flange such that it can 
represent the behaviour of the flange in a sheet-section, the models developed so far cannot 
predict the first yield and failure loads correctly. Yield line patterns and their symmetric or 
asymmetric character also do not match for flange and sheet-section models. A subsequent 
attempt was made by realising that in reality the compressed bottom flange is significantly 
curved during loading. To take this effect into account in the bottom flange model, a strategy 
is followed as shown in figure 15. Along the longitudinal edges to each node a spring is fixed, 
effectively creating a beam on elastic foundation. Hereafter, prescribed displacements at 
midspan result in a curvature of the bottom flange. Finally, the boundary conditions as used 
before are applied (either BC1, BC2, or BC3), after which the springs and the prescribed 
displacements at midspan can be removed. As such the compressed flange has a curved 
geometry, as is the case for a loaded sheet-section, and thus the geometry of the compressed 
flange is described more precisely. Comparisons between the deformed shapes of the bottom 
flange models and the bottom flange of the sheet-section models lead to a spring stiffness of 
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the elastic foundation equal to 0.0001 N/mm and a prescribed displacement equal to 6.31, 
10.63, and 8.30 mm for the yield-arc, yield-eye, and transition modes respectively.   

 

 
Figure 15: The bottom flange is fixed to an elastic foundation, curved by prescribed displacements, 

and then boundary conditions are applied. 
 
By this model using BC3, the first yield load is predicted reasonably well. However, the 

location of first yield may be different from the location as found in the sheet-section model. 
The ultimate load is predicted as larger than that of the sheet-section model, and this 
overprediction varies for the boundary condition type and failure mode inconsistently. Out-of-
plane deformations closely follow the Eigen mode and are not influenced by the initial 
curvature. Yield line patterns are similar to the uncurved version of this model (subsection 
4.3). 

4.7 Long plate with rounded bottom corner, elastic foundation, and load-bearing plate 

The most extended model investigated is presented in figure 16. Again an elastic 
foundation was provided to the bottom flange with bottom corner("Step 1" in the figure). For 
displacement control, a load bearing plate is used on which a prescribed displacement is set 
equal to the displacement mentioned in the previous section. In step 3, the bottom flange is 
loaded in longitudinal direction as before, and the load bearing plate is displaced further such 
that the corner indentation (the difference in height between the rounded corner top and 
bottom) equals this indentation in the sheet-section model if both models have the same in-
plane displacements. Equally for load control, the load bearing plate is loaded load-controlled 
such that in step 2 the same displacement is found as for the displacement control option. In 
step 3 the load at the load bearing plate is controlled such—along the prescribed 
displacements following the displacement function—that the indentation of the rounded 
corners are the same for bottom flange model and the sheet-section model for equal in-plane 
displacements (of the displacement function). 

 

 
Figure 16: The bottom flange is fixed to an elastic foundation, curved by a load bearing plate, and then 

boundary conditions are applied with further load bearing plate action. 
 
For the yield-arc experiment (nr. 42) all three types of boundary conditions (BC1, BC2, 

and BC3) were used in combination with both displacement and load control. BC1 with 
displacement control obtained a good prediction of the ultimate load. Therefore also the 



Hèrm Hofmeyer et al. 

 16

transition mode (nr. 56) was simulated with BC1 and displacement control. This resulted, 
however, in a prediction of the ultimate load 2.4 times too large, which led to the decision to 
stop further simulations of this type. For the simulations carried out, out-of-plane deformation 
resembled the bottom flange behaviour in the sheet-section reasonably up to the failure load. 
Due to the lack of a complete set of simulations, no conclusions can be made about the 
relation of symmetric or asymmetric behaviour of the compressed flange model and the sheet-
section models. However, all previous models (section 4.1 to 4.6), together including all the 
features of this model of section 4.7, could not established this relation. Thus it is not likely 
that the model in this subsection will perform differently. 

5 FLANGE BEHAVIOUR FOR SECOND-GENERATION SHEET-SECTIONS 

As mentioned earlier in the introduction, one of the reasons to investigate whether 
compressed flange behaviour is representative for sheet-section behaviour is that the complex 
behaviour of second-generation sheet-sections, with stiffeners, could be studied more 
conveniently, namely for the bottom flange in isolation. For this a start was made by 
developing sheet-section finite element models for stiffened sections as researched in the past 
[8] as shown in figure 17. Although finite element simulations were also carried out in the 
past research, the simulations here provide new information as they simulate both the 
stiffened sections and the same sections without stiffeners. 

 

 
Figure 17: Cross-sections of second-generation sheet-sections investigated in [8]. 

 
  As this paper is focussed on flange behaviour, here only the simulations for W0-F1w and 

W0-F1s, see figure 17, are discussed. The stiffened sheet-section analyses were performed 
with an implicit dynamic and an explicit solver, all very similar to the simulations presented 
in section 3. Results for W0-F1s are shown in figure 18, which shows that reasonable 
agreement exists between the two solvers and the experiments. On the right of figure 18, the 
implicit dynamic simulation is shown, but now together with the same simulation without 
stiffeners, as also shown in figure 17. The introduction of a stiffener increases the ultimate 
load significantly for a short period along the deformation path, but the load quickly falls back 
to levels very comparable to the unstiffened section, which may limit the redistribution of 
bending moments. Graphs for W0-F1w are similar and yield the same conclusions [39]. The 
"envelope" Von Mises stresses are shown in figure 19 for "t1" and "t2" as marked in the plots 
in figure 18. In these plots it can be seen that both the top and bottom flange yield due to 
bending. In the stiffened case the shortening of the bottom flange leads to a folding yield line 
pattern in the flat parts and yielding due to compression in the stiffener. As soon as the yield 
line pattern and yielding due to compression enable shortening across the complete width, 
strength is very similar to the unstiffened case. It is interesting to note that the unstiffened 
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case shows web-crippling, evidenced by the folding yield line pattern both at t1 and t2, but the 
stiffened case not. As the sections are similar in overall geometry and loading, a reasonable 
explanation seems that the web-crippling yield lines in the web are a compatible mechanism 
to the bottom flange yield line patter—which is indeed different from the stiffened case—
rather than an indication of significant web-crippling itself.  

 
Figure 18: On the left: New simulations agree with experiment W0-F1s. On the right: a stiffener 

increases the ultimate load, but the load quickly degrades to nearly unstiffened values. 
 

 
Figure 19: At t1 (see figure 18 on the right) the stiffener starts to yield, the section starting to loose the 

extra strength compared to the unstiffened section. At t2 shortening of the flange is completely 
possible, thanks to yield line patterns in the unstiffened parts and/or yielding of the stiffener. 

6 CONCLUSIONS 

A finite element model has been presented for a hat-section with boundary conditions such 
that it models sheeting, and it has been tailored for the yield-arc, transition, and yield-eye 
failure modes.  
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Finite element models have been developed that model only the compressed flange of the 
sheet-section, applying a prescribed displacement field along the flange longitudinal edges 
that simulate compression due to sheet-section bending.  

Results of the two model types have been compared for (a) onset of yielding; (b) ultimate 
load; (c) yield line patterns; and (d) out-of-plane deformation patterns. The first type 
compressed flange finite element model, a flat plate only, predicts (a) and (b) not very well, 
and it is shown that adding a fixed load bearing plate —to suppress deformations beyond the 
bearing plate surface— nor modelling the rounded corner improves the results.  

If the fixed load bearing plate is allowed to displace so as to result in web-crippling 
deformations comparable to those of the sheet-section models, aspect (d) improves, but (a) 
and (b) may still be inaccurate. Additionally modelling the curvature of the compressed flange 
at failure does not improve the situation. However, then incorporating a load-bearing plate 
results in a more accurate prediction of the location of first yield. 

Interestingly, a theoretical model that only models a square part of the compressed flange 
predicts the ultimate load of first-generation sheet-sections very well [36]. This should be due 
to the main difference between the theoretical model and the finite element models presented 
here: In the theoretical model, very large imperfections are used, in fact representing elastic 
full web-crippling deformations. Differently, in the finite element simulations very small 
imperfections are used, representing realistic imperfections in practice. Thus further research 
should investigate the introduction of web-crippling deformation like imperfections in the 
bottom flange models. 

Simulations of second-generation stiffened sheet-sections revealed information about their 
bottom flange behaviour compared to that for first-generation unstiffened sheeting. For two 
investigated sections the ultimate load was related to yielding of the bottom flange edges. 
This indicates that it could be worthwhile to further develop a future successful bottom flange 
model for first-generation sheeting into one for second generation sheeting. 
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