Building 5G Millimeter-wave Wireless Infrastructure: Wide-Scan Focal Plane Arrays with Broadband Optical Beamforming

A.B. Smolders¹, Senior member IEEE, A. Dubok, Student Member, IEEE, N.M. Tessema, Student Member, IEEE, Z. Chen, Student Member, IEEE, A. Al-Rawi, Student Member, IEEE, U. Johannsen, Member, IEEE, T. Bressner, Student Member, IEEE, D. Milosovic, Member, IEEE, H. Gao, Member, IEEE, E. Tangdiongga, Member, IEEE, G. Gerini, , Senior Member, IEEE, P.G.M. Baltus, Senior Member, IEEE, M. Geurts², A.M.J. Koonen, Fellow IEEE

Abstract— A wide-scan and broadband focal-plane array (FPA) concept is introduced that provides high antenna gain and effective isotropic radiated power (EIRP) with electronic beam-steering within a relative large field-of-view (FoV) up to +/-20°. The antenna uses a bi-focal double-reflector concept that optimizes the illumination of the focal-plane region. In this way, we have reduced the required size of the feed array and have maximized the number of simultaneously active array elements. By using a photonics beamformer, a broadband system for the 20-40 GHz band can be created with a fiber-based interface to a central processing unit. This hybrid antenna system proves to be a very interesting concept for future 5G and beyond-5G millimeter-wave base-stations, two-way satellite communication systems and point-to-point wireless backhaul systems. A silicon BiCMOS low-noise amplifier and a photonic integrated circuit for the optical beamformer have been developed and integrated in the overall system. A system-level demonstrator was developed and experimentally validated in receive mode. Our concept provides an antenna gain of more than 40 dBi over a FoV of +/-15° at 28.5 GHz.

Index Terms— Focal-plane arrays, field-of-view, beam-steering, 5G and beyond-5G, base-stations, Ka-band, phased array antennas, optical beamforming, optical ring resonators, BiCMOS low-noise amplifiers.

I. INTRODUCTION

The continuously growing need for higher data rates in wireless communications drives new applications into the millimeter-wave (mm-wave) frequency domain. Emerging applications include base-stations for 5G wireless communication, two-way satellite communication, point-to-point wireless backhaul and commercial radar [1]-[4]. These mm-wave applications would benefit from using advanced phased-array technologies. Phased arrays offer the ability of fast electronic beam-steering, multi-beam operation, adaptive pattern shaping and MIMO (Multiple-Input-Multiple-Output) capabilities. However, traditional directly radiating phased-array solutions have major limitations: they are far too expensive and have a very high power consumption due to the low efficiency of state-of-the-art mm-wave integrated circuits [5]-[7]. An alternative to phased-arrays is the focal-plane array (FPA), which is a hybrid solution that combines the best of both worlds: the robustness, low cost and large bandwidth of conventional reflector-based antenna systems and the flexibility and adaptivity of phased-arrays. However, conventional FPA systems [8]-[9] have a limited field-of-view (FoV) and are often used in narrow-band applications. Recent work in [10]-[11] report an improved FoV using a torus reflector at the expense of a relative large main reflector. In the reported torus concept only a small number of array elements in the phased-array feed (PAF) are active simultaneously, which is a major draw-back in our case, since we would like to use silicon-based electronics with a limited output power. This requires a large number of PAF elements to be active at the same time. In this paper we will investigate how these limitations can be overcome.

Fig. 1 shows two target applications of FPAs. Base-stations for mm-wave 5G should provide massive-MIMO capabilities and should be able to cover urban macro-cell sizes up to 300 m [2]. This requires a large antenna gain in order to overcome the non-line-of-sight (NLOS) propagation loss, which can be as high as 140 dB. Fig. 1a shows an illustration of such a base-station utilizing the FPA concept, providing high antenna gain and a high effective isotropic radiated power (EIRP). The base-station provides omni-directional coverage in the azimuth (horizontal) direction and limited beam scanning in elevation (+/- 5°). Note that the 360° azimuth coverage could be split in several sections. Another application that is considered is Ka-band two-way satellite communication as illustrated in Fig. 1b. In this case, multiple satellites operating at different frequency bands can be addressed simultaneously. In order to obtain a wide instantaneous bandwidth, we propose to use a novel optical beamforming system that can be controlled by the home communication controller.

¹ Manuscript received xxx, 2018; A.B. Smolders and other authors are with the Eindhoven University of Technology, The Netherlands; e-mail: a.b.smolders@tue.nl.

² M. Geurts is with NXP Semiconductors, The Netherlands, marcel.geurts@nxp.com.
In order to explore the limitations of FPAs, we have developed a system-demonstrator with the following set of challenging design goals:

- large operational bandwidth between 20-40 GHz,
- wide FoV with a scan range of +/- 20 degrees in the azimuth direction (horizontal plane),
- limited FoV in the elevation plane,
- antenna directivity larger than 40 dBi with overall efficiency of 80% (broadside scan),
- use of low-cost silicon BiCMOS technology to realize the RF electronics,
- use of integrated photonic chips to realize a compact wideband optical beamformer that is connected to a central processing unit using low-cost optical fibers.

In this way, we comply with the requirements of two-way satellite communications. In addition, the demonstrator can be used to cover a sector of an mm-wave 5G base-station. The use of optical fibers to connect the remote antenna station to the central site also allows us to use this concept in future beyond-5G systems utilizing distributed massive MIMO (DM-MIMO) in which multiple remote antenna stations within a single urban macro-cell are used to further enhance the capacity of the wireless network [12]. Note that for the development of the demonstrator we did not consider size constraint of the overall mechanical structure.

In this paper we will describe the design and experimental validation of the complete antenna system including FPA, feed array with integrated silicon electronics and an optical beamformer using photonic integrated circuits which are connected to a remote central processing unit by means of optical fibers. The demonstrator that was realized operates in receive mode. Although our concept is inherently wideband, the demonstrator has a limited bandwidth due to restrictions in the functionality of the photonic integrated circuits.

The outline of this paper is as follows. In Section II, the overall system concept is introduced. In Section III, the scan limitations of FPA systems are explored. A double-reflector bi-focus concept is proposed that provides a wide FoV. Section IV introduces the optical beamformer for which a new photonic integrated circuit was developed using ring resonators. Section VI is devoted to the design of BiCMOS low-noise amplifiers with a large dynamic range and integrated with a 4x1 wideband linear feed array. Finally, in Section VII, the measurement results of the system demonstrator are presented.

II. OVERALL SYSTEM CONCEPT

The basic set-up of the overall antenna system is illustrated in Fig. 2. It consists of an FPA antenna built up from a main reflector with diameter D and phased-array feed located at a distance F from the main reflector. The incident field illuminates the reflector. As a result, a focused field distribution will be generated in the focal region of the array. A phased-array feed receives this incident field. In Fig. 2(a), the basic symmetric parabolic reflector configuration is shown. Later on in this paper we will extend this concept by adding a shaped sub-reflector and shape the offset main reflector in order to optimize the FoV. In receive mode (Fig. 2(b)), each of the N antenna elements in the phased-array feed is connected to a low-noise amplifier (LNA) and external modulator (EM) that provides amplification and conversion to the optical domain. The optical beamformer generates M beams simultaneously by using M laser diodes of which the emission wavelengths are separately tunable. The phase shifts between the antenna
elements are achieved by optical phase shifters, i.e. micro-ring resonators. The phase shift in a micro-ring resonator depends periodically on the wavelength and on the refractive index of the optical micro-ring waveguide [13].

![Diagram of phased-array antenna feed](image)

By positioning the wavelength of each tunable laser diode individually on the slope of one of the group delay peaks, a different group delay (and thus phase shift) at each wavelength can be obtained. This allows the simultaneous reception of M radio beams for which the antenna reception patterns are individually adjustable, by remotely wavelength-tuning the laser diodes in the central site. After wavelength demultiplexing at the central site, individual amplitude weighing of each of the received wavelength channels is done to provide the optimal conjugate match of the incident field in the focal plane of the FPA [14]. In transmit mode (Fig. 2(c)), multiple beams are generated by using multiple tunable optical wavelengths.

III. BROADBAND WIDE-SCAN FOCAL-PLANE ARRAYS

The FoV of a classical parabolic prime-focus FPA (Fig. 2(a)) is very limited. Only a very small number of antenna elements in the phased-array feed are illuminated simultaneously. In [15] it was shown that for a prime-focus FPA with $F/D=0.6$ only 3.1% of all active array elements are used at the same time for a scan range up to 3° and aperture efficiency of 80% at broadside using an ideal feed. In case of transmitting, this would result in a low EIRP and would exclude the use of low-cost silicon-based RF integrated circuits. For even larger scan-angles the situation becomes even more dramatic. A way to improve this is by using a double-parabolic reflector FPA as shown in Fig. 3. The double-reflector configuration of Fig. 3(a) significantly improves the number of simultaneously active elements as compared to a single-reflector FPA. For a configuration with $F_m/D_m=0.6$ up to 9.1% of the array elements are active at the same time when scanning up to 3° [15]. However, a major drawback of the double-reflector configuration of Fig. 3(a) is the so-called magnification factor M_a [16], which states that the incident angle seen by the phased-array feed is a factor M_a larger as compared to the incidence angle θ_0. As a result, the required number of array elements to support a certain scan range is much larger.

This situation can be improved by optimizing the shape of the sub-reflector. In this way, up to 22.7 % of the array elements are active simultaneously for scan angles up to 3°. For a configuration operating at 30 GHz, this would require an array feed size (L_a) of about 115 mm, assuming a rectangular array with element spacing of $\lambda_0/2=5$ mm at this frequency. However, our application requires a much larger FoV. This can be

![Diagram of double-reflector FPAs](image)
achieved by using a more complex double-reflector system with a shaped bi-focus sub-reflector as illustrated in Fig. 4. An offset configuration is used to avoid blocking from the relative large reflector. The required array size for scanning up to ±20° with an aperture efficiency of 80% (ideal feed and broadside beam) is now 280 mm at 30 GHz of which 21.4% of the array elements are active simultaneously to create a single beam.

The principle of operation involves thermal control of the power coupling ratio κ via a heater within the coupling section which controls the amount of power fed into the feedback loop of an ORR [17]-[18]. Accordingly, the amount of time the input light stays inside the ORR is controlled and hence the generated time delay by the optical beamformer is continuously tuned. The relation of the generated time delay in an ORR with κ is graphically illustrated in Fig. 6. For decreasing values of κ, increased ORR delay is generated. A second heater on the feedback loop of an ORR enables fine tuning of the ORR delay response. Because of the spectral periodicity in an ORR delay response, several unique delay values can be tuned simultaneously with the use of multiple input wavelengths. This allows generating multiple radio beams via multiple wavelengths in a single ORR [19]. The optical beamformer is inherently broadband in the sense that it can enable beamforming for any RF carrier frequency (in this case 20-40 GHz) due to periodic response of the ORR. The delay bandwidth of a single ORR per carrier frequency is limited to 1-3 GHz, but an increased bandwidth in the order of several GHz can be realized by cascading several ORRs within the optical beamformer as demonstrated in [13].
stabilize the temperature of the optical beamformer chip via a thermo-electric cooling (TEC) controllers. The electro-packing facilitates system integration of the TTD chip within the optical beamformer system. As a result, the packaged optical beamforming chip is used in the system demonstrator presented in section VI.

Figure 7: Electro-optically packaged TTD chip on the Si3N4 platform for a four-channel radio beamformer (with 4 ORRs)

V. ACTIVE PHASED-ARRAY FEED USING LOW-NOISE AMPLIFIERS WITH A LARGE DYNAMIC RANGE

In this hybrid RF-optical system, the broadband LNA is one of the bottlenecks. The LNA should provide a low noise figure and high gain over a large operational bandwidth to satisfy the sensitivity and dynamic range requirements. A high power gain of at least 25 dB is required, since the LNAs should drive the optical modulators. In addition, the LNA should be realized in a low-cost silicon technology to ensure future integration with other analog and digital electronic circuits. Furthermore, the packaged LNA should fit within the array grid spacing that is required in our FPA concept. Fig. 8(a) shows a photo of the realized phased-array feed, consisting of four wideband bow-tie like antennas [20]-[21] connected to high-gain LNAs which are connected via a rat-race balun to RF cables used to validate the performance of the active 4x1 array. The differential antenna elements are directly matched to the input of the LNA to ensure a low overall noise figure and good power matching. The packaging concept is illustrated in Fig. 8(b)-(c). The silicon LNA chips and bond wires are covered with black glob-top material.

To satisfy all requirements aforementioned, various circuit concepts are compared and several design techniques regarding the input matching network are combined. The common-emitter (CE) structure with inductive degeneration and series input inductor is widely used in LNA designs to achieve simultaneous noise and power matching (SNPM) [22-23]. However, the matching condition is only valid at a single frequency if the input matching network only uses one inductor-capacitor (LC) tank. To achieve broadband SNPM, a dual-LC tank matching method was previously proposed in [25]. Nevertheless, the power gain is low (10.5 dB) and the reverse isolation is limited (25-30 dB). The differential structure circuit provides high reverse isolation and directly feeds to the balanced bow-tie antenna [20]-[21]. However, the input matching network requires at least four inductors to achieve wideband behaviour, which is challenging at mm-wave frequencies considering the layout complexity and mutual coupling among them.

As a result, a 3-winding transformer-based dual-tank matching technique is applied to replace the inductors to achieve a robust and compact solution for wideband applications [26]. The final design of this LNA consists of two stages using differential cascade structures and three stages with multiple-winding transformers as input/inter-stage and output matching.
networks. The chip is realized in a silicon-germanium (SiGe) BiCMOS technology and is experimentally validated on a probe station using a fully calibrated four-port vector network analyser setup (for S-parameter measurement) and a two-port spectrum analyser for noise figure and linearity measurements. The results are summarized and compared with other LNAs in Table I. We can conclude that this LNA can support this wireless-optical link by providing a power gain of 28.5 dB and a noise figure of 3.1 dB with an 8 GHz bandwidth. To cover a broader bandwidth, two or more LNAs should be put in parallel.

Table I: Performance summary and comparison of the BiCMOS LNA chip

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain (dB)</td>
<td>28.5</td>
<td>26</td>
<td>10.5</td>
<td>23.5</td>
</tr>
<tr>
<td>3-dB Gain BW (GHz)</td>
<td>29-37</td>
<td>25-34*</td>
<td>17-43</td>
<td>31-35*</td>
</tr>
<tr>
<td>NF (dB)</td>
<td>3.1-4.1</td>
<td>2.1-3.5</td>
<td>2.5-4.0</td>
<td>2.6-3.2</td>
</tr>
<tr>
<td>S11<-10dB BW (GHz)</td>
<td>24-40</td>
<td>N/A</td>
<td>17-50</td>
<td>26-40*</td>
</tr>
<tr>
<td>IIP3 (dBm)</td>
<td>-12.5 to -7</td>
<td>-5@31GHz</td>
<td>1.8 to 5.9</td>
<td>-19.5@30GHz</td>
</tr>
<tr>
<td>Power (mW)</td>
<td>80</td>
<td>134</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Technology</td>
<td>0.25 µm SiGe</td>
<td>0.25 µm SiGe</td>
<td>0.25 µm SiGe</td>
<td>0.12 µm SiGe</td>
</tr>
</tbody>
</table>

VI. SYSTEM DEMONSTRATOR

The overall system demonstrator is shown in Fig. 9 and Fig.10. It operates in receive-mode and consists of the optimized offset double-reflector FPA with the 4x1 active phased-array feed of Fig. 8(a) which is connected to the four-channel optical beamformer. The feed array is positioned in the center of the focal plane. Measurements have been performed in the near-field test facility of Eindhoven University of Technology.

Figure 9: System demonstrator in the near-field scanner antenna test facility. It consists of a wide-scan double-reflector FPA with a 4-element active phased-array feed (see Fig. 8a) connected to the optical beamformer with optical-ring resonators (ORR) and delay lines (ODL). This antenna system is connected to a remote central processing unit using optical fibers.
A detailed block-diagram of the optical beamformer setup is shown in Fig. 11. The first part of the optical beamformer (consisting of lasers and the optical Mach-Zehnder (MZM) modulators) is placed inside the anechoic chamber and is connected with the rest of the optical beamforming system outside the anechoic chamber via a 10 meter optical fiber link.

Note that we used a scheme employing two lasers with the same time delay and two detectors instead of one laser and four detectors to compensate for the relative high losses in the power splitters, but the basic functionality is the same in both cases. The output of two lasers tuned at $\lambda_1:1545.398$ nm and $\lambda_2:1546.033$ nm are used to supply a continuous wave (CW) light input to the four optical beamformer channels. The output of the four active antenna elements supply four 28 GHz signals input to the optical beamformer. The conversion of the RF signals from each antenna element into the optical domain is realized using separate MZMs via intensity modulation. The optical signals are then transported outside of the anechoic chamber via the four 10 meter optical fiber links. Then, optical amplifiers (OAs) compensate any optical loss in the modulators. Polarization controllers (PC) are used to align the light into TE-mode prior to being input into the packaged TTD chip for efficient fiber-to-chip coupling. The thermo-optic tuning of the ORRs is used to control the generated time delay of the optical beamformer as explained in section IV. The measured delay versus heater voltage is shown in Fig. 12. Any amplitude imbalance is controlled by variable power attenuators (VAtt). After further optical amplifications and double side-band to single side-band conversion via two optical filters, a 2×1 optical combination of the signals is used to generate 2×1 beamforming. After photo detection, a power combiner is used to generate the 4×1 beamformer output.

The thermo-optic elements of the ORR can be tuned in steps of 1 mV, leading to high beam scanning resolution in the order of less than 1 degree. We have measured the antenna far-field patterns of the single channels and compared the response with our simulation model. Fig. 13 shows the measured antenna pattern at 28 GHz for a single channel. Clearly, the bi-focal behavior of the double-reflector FPA can be observed. The somewhat higher measured sidelobes are due to the large construction required to accommodate the supporting equipment of the optical beamformer (see Figs. 9-10). In a full-operating system, we would require about 200 active array elements in order to cover the entire scan range of $\pm 20^\circ$. Fig. 14 shows the predicted antenna gain of our system. Clearly, scanning up to $\pm 15^\circ$ can be done with only a limited loss in gain. Further optimization of the double-reflector FPA is required to improve the performance at larger scan angles.
predicted performance. A demonstrator was developed that operates in receive mode. This hybrid antenna system, the low-noise amplifier with high gain and the optical integrated circuits for the most critical components in our system proves to be a very interesting candidate to be used in future 5G and beyond-5G mm-wave base-stations and in two-way satellite communication systems. We have developed integrated circuits for the most critical components in our system, the low-noise amplifier with high gain and the optical beamformer chip using ring-resonators. A system-level demonstrator was developed that operates in receive mode. Experimental results provide a good correlation with the predicted performance.

REFERENCES

ACKNOWLEDGEMENTS

This work is part of the FREEBEAM project funded by the Dutch technology foundation NWO-TTW.

