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Data-driven multivariable ILC: enhanced performance by
eliminating L and Q filters

Joost Bolder*,†, Stephan Kleinendorst and Tom Oomen

Control Systems Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands

SUMMARY

Iterative learning control (ILC) algorithms enable high-performance control design using only approximate
models of the system. To deal with severe modeling errors, a robustness filter Q is typically employed. Irre-
spective of the large performance enhancement, these approaches thus require a modeling effort and are
subject to a performance/robustness tradeoff. The aim of this paper is to develop a fully data-driven ILC
approach that does not require a modeling effort and mitigates the performance/robustness tradeoff. The
main idea is to replace the use of a model by dedicated experiments on the system. Convergence condi-
tions are developed in a finite-time framework, and insight in the convergence aspects is presented using
a frequency-domain analysis. Extensions to increase the convergence speed are proposed. The developed
framework is validated through experiments on a multivariable industrial flatbed printer. Both increased per-
formance and robustness are demonstrated in a comparison with closely related model-based ILC algorithms.
Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Iterative learning control (ILC) [1] can significantly enhance the performance of systems that per-
form repeated tasks. After each repetition, the control signals for the next repetition are updated by
learning from past experiments, see the block diagram in Figure 1. Examples applications include
additive manufacturing machines [2, 3], robotic arms [4], printing systems [5], pick-and-place
machines, electron microscopes, wafer stages [6–8], and nuclear fusion reactors [9].

Iterative learning control algorithms including frequency-domain ILC [10, 11], optimal ILC
[12–17], and Arimoto-type algorithms [18] are to a certain extent model based. Indeed, the conver-
gence conditions and performance properties of these learning control algorithms hinge on model
knowledge of the controlled system. In view of achieving perfect performance, the learning filter,
typically denoted as L, is usually based on an approximate model where model errors up to 100%
are tolerable, for example [11, 19]. Because of the inherent approximate nature of models, the model
of any physical system typically has a large model error. For example, in mechanical systems, if
a resonance is missed, then both magnitude and phase have a large error with respect to the true
system, [20, Section 7.4.6]. This necessitates the design of a robustness filter, often denoted as Q,
either manually or through robust ILC approaches including [21–24].

Although there are substantial developments in robust ILC, such approaches drastically increase
the modeling requirements and lead to a performance/robustness tradeoff. In particular, these
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Figure 1. The use of L and Q filters in standard ILC. The initial control signal f0 is applied to system
J , of which the output is compared with reference r , yielding the error e0. The error is passed through
learning filter L, of which the result is added to f0. The next control signal f1 follows after robustness

filtering with Q.

approaches require both nominal model and description of model uncertainty. Especially in the
multivariable situation, such models are difficult and expensive to obtain. In addition, when the
uncertainty is too large, the required robustness leads to a poor performance. The aim of this paper
is to develop an optimal ILC algorithm for multivariable systems in which the need for a model
and the performance/robustness tradeoff are eliminated. In fact, the proposed approach will have no
learning and robustness filters in the usual ILC sense.

Other data-driven ILC approaches have been developed, aiming to address the fact that a model
is required in the design of the L and Q filters. In [25–28], a model is estimated after each trial
and used for ILC. As such, these approaches essentially classify to a traditional model-based ILC
approach, involving a recursive or adaptive estimation scheme. The methods are hence also subject
to a performance/robustness tradeoff, depending on how well the estimated model captures the
true system.

In the present paper, the need for a learning filter is replaced by dedicated experiments on the true
system. In these experiments, the gradient of a performance criterion is directly measured and used
for the learning update. The main difficulty in the development of the presented approach lies in
the multivariable aspect. Indeed, when the proposed approach is applied to the special case of SISO
systems, a well-known result is recovered that is closely related to the commonly used ‘FiltFilt’
[29] approach in robustness filtering [30, Section 36.3.3.1]. This standard solution for SISO systems
is also well known and commonly applied in system identification [31, 32],[33, Section 12.2], in
ILC [34–38] and recently also exploited in virtual reference feedback tuning [39].

The main contribution of this paper lies in a fully data-driven optimal ILC framework for
multivariable systems. This is achieved by an approach that resembles recent results in system
identification [40]. The main contributions are

1. the development of a data-driven ILC algorithm with convergence conditions,
2. insight in the convergence aspects is obtained using a frequency-domain analysis,
3. an extension to enhance the convergence speed that relies on a data-driven quasi-Newton

approach,
4. connections with closely related model-based ILC algorithms are established,
5. experimental validation on an industrial multivariable flatbed printer.

Preliminary research related to contribution 1 appeared in [41]. The present paper extends [41] with
contributions 2–5 and more theory and explanations.

The outline of this paper is as follows. In the next section, the problem is stated, and the con-
tributions are summarized. Then, in Section 2, the data-driven ILC algorithm and convergence
conditions are developed. In Section 3, a frequency-domain interpretation of the convergence
aspects is presented, leading to the extensions to increase convergence speed in Section 4. Sev-
eral connections with common pre-existing ILC algorithms are established in Section 5. The results
of the present paper are supported with an experimental validation on industrial multi-axis flatbed
printer in Section 6. The conclusions and ongoing research topics are presented in Section 7. Finally,
implementation aspects are elaborated on in the appendices.

Notation Systems are considered in discrete time. The spectral radius of a matrix A 2 RN �N

is given by N�.A/ D max16i6n j�i .A/j, with �.A/ D ¹�1; �2; :::; �nº the spectrum of A. A matrix
B 2 RN �N is defined positive definite if xTBx > 0;8x ¤ 0RN and is denoted asB � 0. A matrix
C 2 RN �N is defined positive semi-definite if xTCx > 0;8xRN and is denoted as C � 0. For a

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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3730 J. BOLDER, S. KLEINENDORST AND T. OOMEN

vector x, the weighted 2-norm is denoted as jjxjjW ´
p
xTWx, whereW is a weighting matrix. If

W D I , then W is tacitly omitted. For a matrix M , the induced matrix 2-norm is denoted as jjM jj
and is given by jjM jj ´ supjjxjjD1 jjMxjj D �.M/, with � the maximal singular value of M .

2. DATA-DRIVEN LEARNING: ADJOINT-BASED ITERATIVE LEARNING CONTROL

In this section, the proposed approach is developed. This constitutes contribution 1, see Section 1.

2.1. System description

Consider a single-input single-output (SISO) causal system J 11 with the corresponding transfer
function denoted as

J 11.´/ D

1X
iD0

hi´
�i ;

where hi 2 R, i D 0; : : : ;1 are the Markov parameters of J 11, and ´ a complex indeterminate
which is sometimes tacitly omitted for conciseness. It is assumed that signals have finite length
N 2 N. The response of the system y1 D J 11f 1 for the finite-time interval 0 6 k < N is
denoted as 266664

y1.0/

y1.1/

:::

y1.N � 1/

377775
„ ƒ‚ …

y1

D

266664
h.0/ 0 : : : 0

h.1/
: : :

: : :
:::

:::
: : :

: : : 0

h.N � 1/ : : : h.1/ h.0/

377775
„ ƒ‚ …

J 11

266664
f 1.0/

f 1.1/

:::

f 1.N � 1/

377775
„ ƒ‚ …

f 1

;

with y1 2 RN ; f 1 2 RN , and J 11 2 RN �N a finite-time matrix representation of J 11.´/.
Consider a multiple-input multiple-output (MIMO) system J with transfer function matrix

J .´/ 2 Cno�ni , with ni the number of inputs, n0 the number of outputs. The finite-time response
for the MIMO system J is denoted as2664

y1

:::

yno

3775
„ ƒ‚ …
y

D

264 J 11 : : : J 1ni

:::
:::

J no1 : : : J noni

375
„ ƒ‚ …

J

2664
f 1

:::

f ni

3775
„ ƒ‚ …
f

; (1)

where J ij is the matrix representation of the ij th entry in J .´/, yi 2 RN ; f i 2 RN ; y 2
RnoN ; f 2 Rni N , and J 2 RnoN �ni N is the matrix representation of J .´/.

2.2. Optimal adjoint-based iterative learning control

The ILC framework used in this paper is presented in Figure 2. The system J 2 RnoN �ni N is a
MIMO system with output yj 2 RnoN , input fj 2 Rni N , and reference r 2 RnoN . The trial index
is denoted as j . From Figure 2 follows the tracking error

ej D r � Jfj : (2)

The error propagation from trial j to j C 1 is given by

ej C1 D ej � J.fj C1 � fj /;

and follows by eliminating r from ej C1 D r � Jfj C1.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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Figure 2. Multivariable ILC setup with MIMO system J , output yj , input fj , reference r , and tracking
error ej . The trial index is denoted as j .

Optimal ILC is an important class of ILC algorithms, for example,[15–17], where fj C1 is deter-
mined by minimizing a cost function with a gradient-descent approach. The optimization criterion
used in this paper is defined as follows.

Definition 1 (Performance criterion)
The performance J .fj C1/ is given by

J .fj C1/ ´ jjej C1jj2We
C jjfj C1jj2Wf

C jjfj C1 � fj jj2W�f
; (3)

with jjxjjW D
p
xTWx, We 2 RnoN �noN ; Wf 2 Rni N �ni N , and W�f 2 Rni N �ni N .

In Definition 1, We � 0, Wf � 0, and W�f � 0 are user-defined weighting matrices.
The gradient of J .fj C1/ in (3) with respect to fj C1 is given by

@J .fj C1/

@fj C1

D 2
�
J TWeJ CWf CW�f

�
fj C1

� 2
�
J TWeJ CW�f

�
fj � 2J TWeej ;

(4)

which is affine in fj C1. The steepest descent direction is given by

�
@J .fj C1/

@fj C1

ˇ̌̌̌
fj C1Dfj

D 2J TWeej � 2Wf fj ; (5)

and follows from (4) by substituting fj C1 D fj and including a minus sign. The gradient-descent
learning update follows by performing the learning update in the steepest descent direction and is
given by

fj C1 D fj � "
@J .fj C1/

@fj C1

ˇ̌̌̌
fj C1Dfj

D fj C "J TWeej � "Wf fj ; (6)

where the factor 2 is absorbed in the step size ". Note that the steepest descent direction (5) does not
depend on W�f . Rearranging (6) leads to a gradient-descent ILC algorithm for minimizing (3) and
is presented next.

Algorithm 2 (Gradient descent ILC)
The gradient-descent ILC algorithm that minimizes (3) is given by

fj C1 D .I � "Wf /fj C "J TWeej ; (7)

with " 2 R, " > 0 the learning gain.

An upper bound on the learning gain " 6 " to ensure convergence of algorithm (7) is developed
later, see Theorem 7 in Section 2.4. In the following, it is shown that J T has the interpretation of
the adjoint operator of J , see also [42, Section 22]

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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Definition 3 (Adjoint)
Let the inner product of two signals be given by hu; gi D uT g, with u; gRN . Then, for a linear
operator J , the adjoint J � is defined as the operator that satisfies the condition

hf; Jgi D hJ �f; gi8 f; gRN :

The adjoint J � of J , see (1), is given by J � D J T . Indeed, from Definition 3 follows that if J �

is the adjoint of J then

f T Jg D .J �f /T g D f T .J �/T g; 8f; g 2 RN :

This reveals that J T is the adjoint of J . Therefore, gradient-descent ILC Algorithm 2 has the
interpretation of an adjoint-based ILC algorithm.

2.3. Data-driven learning using the adjoint system

In this section, a data-driven approach is presented that enables filtering through an adjoint of
a multivariable system. In the well-known SISO case, an operation with the adjoint of a lin-
ear time-invariant SISO system can be recast to an operation on the original system and time
reversal of the input and output signals. There are many applications that exploit this property,
for example, system identification [31, 32, 40], [33, Section 12.2] and iterative learning control
[30, Section 36.3.3.1], [28, 34–38, 43]. The generalization to MIMO systems requires significantly
more steps and is investigated next. The theory developed here resembles recent developments in
system identification [40].

Before presenting the main results for MIMO systems, note that for a SISO system J 11, the
adjoint J 11T

can be recast to

J 11T
D T J 11T (8)

with

T D

26666664
0 : : : 0 0 1

0 : : : 0 1 0
::: : :

:

0 0

0 : :
: :::

:::

1 0 : : : 0 0

37777775
an involutory permutation matrix with size N � N . Note that this step is valid because J 11 has
a lower-triangular Toeplitz structure, because it is a linear time-invariant system. Here, T has the
interpretation of a time-reversal matrix. Next,

y D J 11T
f D T J 11T f;

which shows that the operation y D J 11T
f can be recast to an operation on the original system J 11,

and time-reversing the input before applying operator J 11, and time-reversing the resulting output
afterwards. Note that (8) is only valid for SISO systems and is in fact exactly the same operation as
is performed using the ‘FiltFilt’ [29] operation in robustness filtering [30, Section 36.3.3.1].

In case of a MIMO system J , the adjoint J T can be written as

J T D

264 T 0
: : :

0 T

375
„ ƒ‚ …

Tni

264 J 11 : : : J no1

:::
:::

J 1ni : : : J noni

375
„ ƒ‚ …

QJ

264 T 0
: : :

0 T

375
„ ƒ‚ …

Tno

; (9)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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where QJ 2 Rni N �noN , and Tni
2 Rni N �ni N , Tno

2 RnoN �noN are time-reversal operators for the
higher dimensional input and output signals. Matrix QJ is the finite-time representation of eJ .´/ 2
Cni no , with

eJ .´/ D

264 J 11.´/ : : : J no1.´/
:::

:::

J 1ni .´/ : : : J noni .´/

375 :
The key observation is that QJ ¤ J for general MIMO systems. Indeed, the standard approach as

in the SISO case can only be applied if QJ D J , that is, J must be a symmetric system.
The main idea of the presented approach is to develop a data-driven MIMO ILC algorithm by

noting that

eJ .´/ D

niX
iD1

noX
j D1

E ij J .´/E ij ; (10)

where E ij 2 Rni �no is a static system with ni outputs and no inputs. For the kth and l th, entry of
E ij holds

E
ij

kDi;lDj
D 1;

E
ij

k¤i;l¤j
D 0;

(11)

that is, all entries are of E ij zero, except the ij th entry. The structure of E ij is given by

E ij D

24 0i�1 � j �1 0i�1 � 1 0i�1 � no�j

01 � j �1 1 01 � no�j

0ni �i � j �1 0ni �i � 1 0ni �i � no�j

35 ;
where 0i�j is the zero matrix with dim.0i�j / D .i; j /. The role of E ij in y.´/ D J .´/E ij u.´/ is
selecting the j th entry in u.´/ and apply it to the i th input of J .´/, where the rest of the inputs to
J .´/ are zero.

Let Eij be the finite-time representation of E ij , then the finite-time representation of QJ , see (10),
is given by

QJ D

niX
iD1

noX
j D1

EijJEij :

Substitution of the previous equation in (9) yields

J T D Tni

0@ niX
iD1

noX
j D1

EijJEij

1A Tno
: (12)

The aforementioned equation recasts the evaluation of J T as ni � no experiments on J .
This approach is used with ILC algorithm (7), to arrive at the data-driven ILC algorithm for
MIMO systems.

The following procedure provides the learning update for the ILC Algorithm 2.

Procedure 4 (Dedicated gradient experiment)
The objective is to compute J T ej by performing experiments on J . This is achieved by applying
the following sequence of steps.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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Figure 3. Overview of Procedure 4 for ni D no D 2. [Colour figure can be viewed at
wileyonlinelibrary.com]

1. Time reverse ej D Tno
ej .

2. Compute ´j by performing ni � no experiments on J using

´j D

niX
iD1

noX
j D1

EijJEij ej :

with Eij the matrix representation of static system E ij defined in (11).
3. Time reverse again to compute J T ej D Tni

´j .

In traditional ILC, J is a model, in which case Procedure 4 can directly be used. However, the
main idea here is that Procedure 4 only depends on J and not J T ; hence, the learning update in
(7) can be accomplished by performing dedicated experiments on the real system instead of using
models. The earlier approach is visualized in a diagram for ni D no D 2 in Figure 3.

The complete adjoint-based ILC algorithm (7) using the data-based learning update in (12) is
presented next.

Procedure 5 (MIMO data-driven adjoint-based ILC)
Given an initial input f0, set j D 0, perform the following steps.

1. Perform an experiment and measure ej D r � Jfj .
2. Use Procedure 4 to experimentally determine vj D J TWeej .
3. Apply ILC algorithm (7), set fj C1 D .I � "Wf /fj C " vj .
4. Set j ´ j C 1 and go back to step 1 or stop if a suitable stopping criterion is met.

Note that the inclusion of weighting matrix We in step 2 of Procedure 5 is a straightforward
multiplication of ej prior to using Procedure 4. A suitable stopping criterion can be a threshold on
the cost function value resulting from (3), or a threshold on the change in cost function value.

Remark 1
In case MIMO system J is (almost) symmetric, that is, J � J T , only a single experiment is
needed to experimentally determine J TWeej in step 2 in Procedure 5 because J TWeej � JWeej .
Standard robustness filtering, see, for example [1], could be applied to accommodate for differences
between J and J T .

Remark 2
All measured signals contain noise. In principle, to show that Procedure 4 yields unbiased results
requires computing the expected value of the filtered ej . A full stochastic proof that J T ej resulting
from Procedure 4 is indeed unbiased follows along the lines of [44] and is outside the scope of
this paper.

2.4. Convergence conditions

In this section, the convergence of Procedure 5 is analyzed. Firstly, monotonic convergence
is defined.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
DOI: 10.1002/rnc
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Definition 6 (Monotonic convergence)
The ILC algorithm is monotonically convergent in the 2-norm if

jjfj C1 � f1jj 6 � jjfj � f1jj; 8fj ; f1 (13)

with f1 the unique fixed point of iterative algorithm (7) and � 2 Œ0; 1/ a convergence rate.

See [1] and [11] for equivalent definitions. Next, the conditions for achieving monotonic
convergence of ILC algorithm (7) are presented.

Theorem 7 (Condition for monotonic convergence)
Given weighting matrices We; Wf , such that J TWeJ CWf � 0, then for any " 6 " with

" D 2jjJ TWeJ CWf jj�1; (14)

algorithm (7) is monotonically convergent. In addition,

f1 D lim
j !1

fj D
�
J TWeJ CWf

��1
J TWer; (15)

e1 D lim
j !1

ej D
�
I � J

�
J TWeJ CWf

��1
J TWe

�
r: (16)

Proof
Substituting (2) in (7) yields

fj C1 D
�
I � "

�
J TWeJ CWf

�
fj C "J TWer;

D Mfj Cm;
(17)

withM D I�".J TWeJCWf / andm D "J TWer . Note that ".J TWeJCWf / is a real-symmetric
matrix and has real eigenvalues. Hence, (17) is a stable system with N�.M/ < 1 if N�.".J TWeJ C
Wf // < 2. Again, because ".J TWeJ C Wf / is a real symmetric matrix, the spectral radius and
maximal singular value coincide; hence, results jj".J TWeJCWf /jj < 2 , N�.M/ < 1 , jjM jj <
1, yielding " 6 " with " D 2jjJ TWeJ CWf jj�1.

From (17) results f1 D .I �M/�1m using fj C1 D fj D f1, proving (15). Similar steps yield
e1 in (16). Next, it can be shown that

jjfj C1 � f1jj D jjMfj �Mf1jj

by substituting (17) in the left hand side of (13) and substituting f1 D Mf1 Cm. Using jjMfj �
Mf1jj 6 jjM jjjjfj � f1jj, it follows that if and only if jjM jj < 1, then condition (13) for
monotonic convergence is satisfied 8fj ; f1 with � D jjM jj. �

For further results in related adjoint-based ILC algorithms, see, for example, [36] and [17]. From
Theorem 7 results an upper-bound for the maximal learning gain that ensures convergence of the
ILC algorithm. This upper-bound depends on the system J , see (14).

Remark 3 (Robustness against model uncertainties)
The developed approach does not require the design of a learning filters in contrast to classical
approaches as in [1]. In classical ILC design, all modeling errors are typically addressed through a
robustness Q-filter design, see [30], which goes at the expense of performance. In this sense, the
presented approach eliminates performance/robustness tradeoff in ILC designs.

In the next section, the relation between J and the convergence speed is investigated using a
frequency-domain analysis.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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3. FREQUENCY-DOMAIN ANALYSIS

In this section, the adjoint-based ILC algorithm in Procedure 5 is analyzed in the frequency domain,
constituting contribution 2, Section 1. The results show that the convergence speed for adjoint-
based ILC algorithms can be directly related to the frequency response characteristics of J .ei!/.
The results are illustrated with an example where it is shown that slow convergence of adjoint-
based ILC algorithms is to be expected when J .ei!/ has large ratio between the maximal and
minimal magnitude.

To facilitate a frequency-domain analysis, assume Wf D 0 and We D I in (2). Next, given
adjoint system J �.ei!/, then a frequency-domain adjoint-based ILC algorithm is given by

f j C1.e
i!/ D f j .e

i!/C "J �ej .e
i!/; (18)

with J �.ei!/ D J T .e�i!/ for J .ei!/ 2 Cno�ni . The trial dynamics follow by substituting ej D
r � J f j in (18) and rearranging

f j C1 D
�
I � "J �J

�
f j C "J �r:

A frequency-domain convergence condition follows along identical lines as in Theorem 7, see
also [11], and is given in the following corollary.

Corollary 8 (Frequency-domain convergence criterion)
Algorithm (18) is monotonically convergent in the sense of Definition 6, replacing fj C1 with f j C1,
fj with f j , and � with � in (13), if

jjM .ei!/jj < 1;8!;

with M .ei!/ D 1 � "J �.ei!/J .ei!/.

Using this convergence condition yields monotonic convergence with � D jjM .ei!/jj, see Def-
inition 6 and the proof of Theorem 7. Next, a Bode magnitude condition is developed which is
commonly used in ILC for SISO systems. Consider a SISO system J 11.ei!/. For SISO systems, the
adjoint reduces to J 11�

.ei!/ D J 11.e�i!/. Consequently, the convergence condition in Corollary 8
reduces to ˇ̌

M 11.ei!/
ˇ̌
< 1;8!; (19)

with M 11.ei!/ D 1 � "J 11.e�i!/J 11.ei!/.
Note that J 11.e�i!/J 11.ei!/ is a real-valued function and that jJ 11�

J 11j D
ˇ̌
J 11

ˇ̌2
. Hence, the

convergence condition in (19) is satisfied if " < " with

" D sup
!

2

jJ 11.ei!/j
2
: (20)

It shows that the maximal allowable " is determined by the the peak value of the frequency response
function of J 11.

Next, note that
ˇ̌
M 11.ei!/

ˇ̌
in (19) has an interpretation in terms of a frequency-dependent

update-rate of f j C1.e
i!/. For a particular frequency !�, a value

ˇ̌̌
M 11.ei!�

/
ˇ̌̌

� 0 results in a large

trail-to-trial change in f j C1.e
i!�
/, and a value

ˇ̌̌
M 11.ei!�

/
ˇ̌̌

� 1 results in a very small change.

The shape of
ˇ̌
M 11.ei!/

ˇ̌
is determined by the system J 11.ei!/ and by the learning gain ". Because

the maximal allowable learning gain " directly results from the peak value of J 11.ei!/, the shape
of the frequency response function essentially determines the overall convergence behavior. In case
the ratio between the peak value and the minimal value of jJ 11.ei!/j is large, slow convergence
should be expected. This is illustrated with the following example.
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Figure 4. Bode diagram example system: J 11 ( solid blue line), J 11�

( dashed red line), J 11�

J 11

( solid black line), update rate
ˇ̌̌
M 11

ˇ̌̌
( solid gray line), and supj´jD1 jJ 11j ( dashed gray line).

[Colour figure can be viewed at wileyonlinelibrary.com]

Example 9
Consider the second-order system

J 11.´/ D
4:29´2 � 8:53´C 4:25

´2 � 1:98´C 0:99
; (21)

with the sampling frequency fs D 1 Hz. A Bode diagram of J 11, J 11�

and J 11�

J 11 is presented
in Figure 4. As is expected, analysis of Figure 4 reveals that J 11�

has the inverse phase of J 11,
hence in the product J 11�

J 11, the phases cancel and the resulting phase of J 11�

J 11 are zero.
The peak value of jJ 11.ei!/j is shown in Figure 4 with the dashed gray line, that is,

sup! J 11�

J 11 D 60:7 dB. From the peak value results a maximal learning gain " D 1:8 � 10�4

using (20). Let " D 0:5" D 9:0 � 10�5 such that (19) is satisfied for example system (21) .
The resulting update rate

ˇ̌
M 11.ei!/

ˇ̌
is also shown in Figure 4. The results show that for fre-

quencies around the peak value of jJ 11.ei!/j, large trial-to-trial changes in f j .e
i!/ are obtained,

see the very small values of
ˇ̌
M 11.ei!/

ˇ̌
at f � 1:6 � 10�2 Hz.

On the other hand,
ˇ̌
M 11.ei!/

ˇ̌
is close to 1 for almost all other frequencies. Indeed, the system

includes a resonance which determines the peak-value. Clearly, jJ 11.ei!/j peaks in only a small
frequency neighborhood around the resonance, and the rest of jJ 11.ei!/j is significantly lower.
This illustrates that the gradient-descent ILC algorithm converges slowly for this example system
because the ratio between peak and minimal value of J 11.ei!/ is large.

Similar phenomena as in the example system in Figure 4 are often present in mechanical systems.
Using gradient-descent Algorithm 2 may yield slow convergence in this case. Also in [45], slow
convergence of adjoint-based ILC algorithms is reported for non-minimum phase systems.

In the next section, extensions to (7) are presented to increase the convergence speed significantly.

4. ENHANCING CONVERGENCE SPEED

In the previous section, a frequency-domain analysis is employed to gain insight in the convergence
speed of adjoint-based ILC algorithms. In this section, algorithm (7) is extended using concepts
from optimization theory in order to enhance the convergence speed. This constitutes contribu-
tionS 3 and 4 in Section 1. Several common ILC algorithms including standard norm-optimal ILC,
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see for example, [12, 14] and the algorithm in [17] termed parameter-optimal ILC, are recovered as
special cases. Moreover, the results presented here are suitable for fully data-driven implementation
on MIMO systems.

4.1. Incorporating Hessian information

The main idea of gradient-descent ILC algorithm (7) is taking small steps towards the minimum
of (3). As illustrated in Section 3, the maximal step size is very small if the dynamic range of the
system’s response is large. The use of Hessian information, that is, knowledge of the Hessian of (3),
can significantly improve convergence speed. In fact, by setting J .fj C1/

fj C1
D 0 in (4), the optimal

solution to (3) can be obtained in a single step and is given by

arg min J .fj C1/ D

fj �

 
@2J .fj C1/

@f 2
j C1

!�1 �J .fj C1/

fj C1

ˇ̌̌̌
fj C1Dfj

!
:

(22)

This general solution is well known and used in Newton’s method for optimization, see
for example, [46, Section 8.8]. The following ILC algorithm extends the algorithm in (7) and
encompasses (22).

Algorithm 10 (Data-driven quasi-Newton ILC)
Given learning gain "j 2 R and matrix Bj 2 RnoN �ni N , the quasi-Newton ILC algorithm is
given by

fj C1 D .I � "jBjWf /fj C "jBjJ
TWeej ; (23)

Clearly, gradient-descent ILC algorithm in (6) is recovered by setting "j D " and Bj D I in

(23). Algorithm 10 is inspired by (22) where the inverse Hessian @2J .fj C1/

@f 2
j C1

�1

is replaced with an

estimate Bj . A procedure to determine an estimate Bj from already available measurement data is
presented later. First, consider the following theorem, where convergence in a single iteration using
Algorithm 10 is illustrated in case estimate Bj is exact.

Theorem 11
SetW�f D 0 in (3), let "j D 1, and set Bj D .J TWeJ CWf /

�1, then ILC algorithm (23) directly
minimizes performance criterion (3) and also achieves fj C1 D f1 in a single iteration.

Proof
From Theorem 7 follows that f1 D .J TWeJ CWf /

�1J TWer , which is also the minimizer of (3)
because W�f D 0. Substituting (2) in (23) yields fj C1 D f1 8fj . �

In Theorem 11, Bj is the inverse Hessian of (3). If Hessian knowledge is available, much faster
convergence then gradient-descent algorithm (7) may be achieved. Theorem 11 also shows that
the Hessian is independent of fj , because (3) is a quadratic criterion. In fact, Theorem 7 recov-
ers standard norm-optimal ILC as developed in, for example, [14]. To arrive at a fully data-driven
implementation of Algorithm 10, consider the following procedure to estimate Bj and compute a
suitable "j .

Procedure 12 (Data-driven Hessian estimation)
Given Bj �1, fj �1, fj , J TWeej �1 and J TWeej resulting from step 2 in Procedure 5, then Bj in
(23) is given by

Bj D Bj �1 �
�j �

T
j Bj C Bj �j�

T
j

�T
j �j

C

 
1C

�T
j Bj �j

�T
j �j

!
�j�

T
j

�T
j �j

; (24)
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where

�j D fj � fj �1;

�j D wj � wj �1;

with wj D 2J TWeej � 2Wf fj . The learning gain "j follows by minimizing (3) over "j given
fj C1 in (23). Note that (23) is affine in "j which enables the following analytic solution

"j D arg min J
�
fj C1."j /

�
D

jjwj jj2Bj

jjJBjwj jj2We
C jjBjwj jj2Wf

C jjBjwj jj2W�f

(25)

with fj C1."j / given in (23) and Bj resulting from (24).

Procedure 12 is known as the Broyden–Fletcher–Goldfard–Shanno (BFGS) approach for con-
structing the inverse Hessian, see for example, [46, Section 10.4] combined with a commonly used
line-search, see for example, [46, Section 8.5]. The BFGS method combined with quasi-Newton-
type algorithms is known to be effective in practice and is generally considered one of the best
general purpose methods for unconstrained optimization problems, see [47] for the convergence
aspects. The main idea is that the gradient information that is already available is used to generate
curvature information of the cost function. The key motivation for using this approach is the obser-
vation that the Hessian of (3) is invariant under fj , as shown in Theorem 11. It is hence expected
that this approach also works well for the data-driven ILC approach in the present paper.

Note that Bj can be directly computed using the measurement data that results from step 3 in
Procedure 4. Using an optimal step size "j as in (25) is often used to improve the convergence
properties. Indeed, the accuracy of Bj resulting from (24) is unknown a priori. Using a fixed " as
in Theorem 7 may achieve convergence because the BFGS estimate inhibits strong self-correcting
properties, see [47]. On the other hand, determining "j from (25) generally results in a decrease of
J for all trials, which is not guaranteed with a fixed ". It is hence expected that using a trial-varying
"j both enhances the convergence speed and robustness of the extended data-driven ILC algorithm
in (23). Using (25) comes with the expense of one additional experiment in order to determine "j

in (25) because JBjwj is not available form measurement data of Procedure 4. In this experiment,
the input to the system is set to Bjwj from which JBjwj can be directly measured.

The fully data-driven quasi-Newton ILC Algorithm 10 using the Hessian estimation in Proce-
dure 12 is summarized as follows.

Summary 13
Given an initial input f0 and initial B0, set j D 0, and perform the following steps.

1. Perform a trial and measure ej D r � Jfj .
2. Use Procedure 4 to experimentally determine vj D J TWeej .
3. Use Procedure 12 to compute Bj and experimentally determine "j .
4. Apply ILC algorithm (23), set fj C1 D .I � "jBjWf /fj C "jBj vj .
5. Set j ´ j C 1 and go back to step 1 or stop if a suitable stopping condition is met.

Remark 4
The inverse Hessian Bj may also be determined by performing experiments on J instead of esti-
mating it from data already available, for instance, along the lines of [44]. This is especially relevant
in case a non-convex performance criterion is used, and local Hessian information is needed. An
example of a non-convex performance criterion in ILC is presented in [48], where extrapolation
capabilities with respect to changes in r are introduced using rational basis functions. Note that
because all measured signals contain measurement noise, a direct estimate of the Hessian can be
biased, see [49] for the analysis and unbiased estimates.
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In the next section, several important ILC approaches are recovered as special cases of the
proposed approach.

5. CONNECTIONS WITH COMMON PRE-EXISTING ILC ALGORITHMS

In this section, it is shown that standard norm-optimal ILC, see for example, [12, 14] and
the parameter-optimal ILC algorithm in [16, 17, 50] are special cases of Algorithm (10) and
Procedure 12.

Norm-optimal ILC is an important class of ILC algorithms, see for example, [2, 12–14, 27], where
fj C1 is determined from performance criterion (3) using measurements ej and fj , and a model
of J . In the following corollary, standard norm-optimal ILC is recovered as a special case of the
framework in the present paper.

Connection 1 (Recovering standard norm-optimal ILC)
Given a model of J denoted as OJ , set "j D 1 andBj D . OJ TWe

OJCWf CW�f /
�1 in Algorithm 10,

then

f no
j C1 D

�
OJ TWe

OJ CWf CW�f

��1 �
OJ TWe

OJ CW�f

�
fj

C
�

OJ TWe
OJ CWf CW�f

��1
OJ TWeej :

(26)

Clearly, f no
j C1 depends on both measurement data and a model, hence robustness of the con-

vergence and performance properties is a vital issue. Indeed, this is evidenced by the numerous
developments in robust norm-optimal ILC, see for example, [21–24], and this will also be illustrated
with experiments in the next section.

In [50], a parameter-optimal ILC algorithm is proposed. The following corollary recovers a
general parameter-optimal ILC algorithm as a special case of the framework in the present paper.

Connection 2 (Recovering parameter-optimal ILC)
Given a model of J denoted as OJ , set Bj D I in Algorithm 10, then the resulting ILC algorithm is
given by

f
po

j C1 D .I � "poWf /fj C "
po
j

OJ T ej ; (27)

where learning gain "po
j follows by replacing J with the model OJ in (25) and is given by

"
po
j D

jj Owj jj2

jj OJ Owj jj2We
C jj Owj jj2Wf

C jj Owj jj2W�f

(28)

with Owj D OJ TWeej �Wf fj . In case We D I and Wf D W�f D 0, the learning gain reduces to

"
po;w
j D

jj OJ T ej jj2

jj OJ OJ T ej jj2

Essentially, algorithm (27) is an adjoint-type ILC algorithm with a trial-varying learning gain "po
j

that follows using (25). As is also mentioned for norm-optimal ILC, algorithm (27) is model based,
and robustness against model uncertainties is again a key issue, see, for example, [16] and [17]
where robustness of algorithm (27) is investigated. In the next section, the main experimental results
are presented.

6. EXPERIMENTAL VALIDATION

In this section, the proposed data-driven algorithms are experimentally validated and compared with
model-based approaches norm-optimal ILC and parameter-optimal ILC constituting contribution 5,
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see Section 1. The system used in the experiments is an industrial flatbed printer, with multiple in-
and outputs. The results demonstrate both enhanced performance as well as enhanced robustness
properties. In particular, the following five approaches are compared:

1. proposed data-driven quasi-Newton ILC Algorithm 10 with Hessian estimation in Proce-
dure 12, see Summary 13 for an overview,

2. proposed data-driven quasi-Newton ILC Algorithm 10 with a fixed Hessian Bj ´ I and
data-driven optimal step size "j , see (25) in Procedure 12,

3. proposed data-driven gradient-descent ILC Algorithm 2 with a fixed step size " using
Procedure 4,

4. standard norm-optimal ILC, with a model-based Hessian and step size "j D 1, see
Connection 1,

5. parameter-optimal ILC, with a fixed Hessian Bj ´ I and model-based step size "j , see
Connection 2.

Note that the difference between approach 2 and 3 is either a varying (optimal) learning gain "j

(approach 2), or a fixed learning gain " (approach 3). Note that several implementation aspects
are addressed in the appendices. In particular, a method to improve the signal-to-noise ratio in
Procedure 4 is presented in Appendix A.1. Secondly, an approach to deal with friction in motion
systems is proposed and compared with a pre-existing approach in [35] in Appendix A.2.

The outline of the present section is as follows. First, the experiment system and experimental
test case is elaborated on. Next, the specific settings of the validated ILC algorithms are presented,
followed by the main experimental results.

6.1. System description

The system used in the experimental validations is an industrial flatbed printer. The flatbed printer
is shown in Figure 5, and an overview is presented in Figure 6. The system has four degrees of
freedom: the carriage has translations s and ´, the gantry has a translation x, and a rotation ' which
is defined around the point p that is fixed to the center of the gantry. The coordinate s is fixed to the
translation direction of the carriage and rotates with ', the coordinates ´ and x are absolute.

The gantry is considered for control in the present paper and is denoted as system P . The gantry
is controlled in x and ' direction using force actuators u1 and u2, Figure 6. The system response
y D Pu with

y D

�
x

'

�
; u D

�
u1

u2

�
;

Figure 5. Océ Arizona 550GT flatbed printer experimental setup. The printer is normally used to print on
rigid media with applications in interior decoration, product decoration, signage, and art. [Colour figure can

be viewed at wileyonlinelibrary.com]
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Figure 6. Overview of the Arizona Setup. The printer has four motion axes: ´ and s translations for the
carriage, the gantry translates in x direction and the rotation is '. The gantry is considered for control in the

present paper.

the output and input, respectively. The system operates in closed loop with a given feedback con-
troller C . The input u D Ce C f , where f D Œf 1 f 2�T is the ILC control signals and e D Qr � y

with Qr the reference for the feedback controller with

Qr D

�
rx
r'

�
;

where rx is the reference for x and r' is the reference for ' and e D Œe1 e2�T are the corresponding
tracking errors. The error in closed-loop operation is given by e D S Qr�Jf , with S ´ .ICPC/�1

and J ´ .I C PC/�1P . The closed-loop system is captured in the control structure in Figure 2
by introducing trial index j and setting r ´ S Qr , yielding ej D r � Jfj . Because ej is directly
measured, it is not necessary to compute r D S Qr . The dedicated gradient experiments in Procedure 4
can be performed in closed-loop by straightforwardly setting Qr D 0, because in this case ej D Jfj .
An approach for nonzero Qr with the purpose of reducing mechanical friction effects is developed in
Appendix A.2.

6.2. Model identification for comparative purposes

The five approaches defined in Sections 2 and 4 are compared, and these include the proposed
data-driven algorithms and pre-existing model-based approaches. To enable implementation of the
model-based approaches, a model of J has been identified using frequency response measurements
and parametric model identification. Note that these models are not required to implement the
proposed data-driven algorithms.

The system is excited with Gaussian noise, and the sampling frequency is 1 kHz. A Von Hann
window is used to deal with leakage effects. The non-parametric model J frf.´/ is estimated using
the procedure in [51, Chapter 3]. The frequency response measurement J frf.´/ results from 300
averaged measurement blocks to reduce the variance. The obtained frequency resolution is 0.5 Hz.
The parametric model OJ .´/ is estimated using an iterative identification procedure in [52]. The
resulting underlying state-space model for OJ .´/ is of 44th order. The Bode diagrams of J frf.´/ and
OJ .´/ are shown in Figure 7. The identified model OJ .´/ corresponds well with the measurement

J frf.´/ for frequencies up to approximately 175 Hz.
Further analysis of the Bode diagram reveals that strong interaction is present, that is, the mag-

nitudes of the off-diagonal entries in J frf.´/ are in the same order of magnitude as the diagonal
entries. It is therefore expected that MIMO ILC can achieve a significant performance improvement
for this system.

6.3. Iterative learning control design and test case

First, the selection of weighting matrices in (3) is presented. This is followed by a detailed
overview of the specific settings for the compared algorithms. Finally, the selection of reference r is
elaborated on.

6.3.1. Weighting matrices. The weighting matrices in performance criterion (3) are selected iden-
tical for the five tested algorithms to enable a direct comparison of the cost function values.
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Figure 7. Bode diagram of the frequency response measurement J frf.´/ ( red dots) and identified model
OJ .´/ ( solid black line). Note that OJ .´/ is only used for comparative purposes and not needed for the

proposed data-driven ILC methods. [Colour figure can be viewed at wileyonlinelibrary.com]

Specifically,We D I �106,Wf D I �10�8, andW�f D I �10�3, with I of appropriate dimensions.
The main motivation for these settings is to reduce ej as much as possible. The value for We is for
scaling purposes because the values of ej are in the order 10�6, while the values fj are in the order
of 1. The matrix Wf ensures that large control signals are penalized. In addition, OJ is singular; thus
Wf � 0 ensures that J TWeJ CWf � 0 as is required in Theorem 7. The value for Wf has been
increased from extremely small values to a level where the control signals are acceptable for the
flatbed printer. It is known that Wf � 0 attributes to robustness at the expense of larger tracking
errors, see for example, [22]. In this test case, Wf is deliberately not increased further to demon-
strate robustness issues with the model-based approaches. Finally, a relatively small W�f � 0 is
introduced to attenuate trial-varying disturbances.

6.3.2. Algorithm settings. The proposed algorithms in Sections 2.3 and 4.1 are experimentally vali-
dated and compared with the model-based special cases in Section 5. An overview of the algorithms
with specific settings is presented in Table I. Three variants of the proposed data-driven methods are
tested and compared with the two model-based special cases in Section 5.

6.3.3. Reference trajectories. The reference trajectories rx and r' are presented in Figure 8. The
trial length N D 1500 samples with a sampling frequency fs D 1 kHz. The reference for the x-
direction is a fast forward and backward movement of the gantry with a displacement of 0.1 m.
These step-wise trajectories are typical for printers and general motion systems, including pick-and-
place systems. The backward movement leads to approximately identical initial conditions at the
beginning of a trial. The reference r' is zero, that is, the goal is to keep the gantry rotation zero
during movement in x, which is also typical for printing. Note that although r' is zero, the errors
with feedback control are nonzero because of the interaction in J , see Figure 7 and the discussion
in the previous section, hence this is a full multivariable control problem.

In the following section, the main experimental results are presented.
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6.4. Main experimental results

The experiments are invoked with f0 D 0; hence, the first trial hence corresponds to the performance
of the system with feedback control only. For the data-driven approaches, a scaling ˛j is introduced
to attenuate noise effects, Appendix A.1, and chosen such that the absolute peak value of Weej is
20% of the maximal allowable input range for J , which is 10 V. In total, 100 trials are performed
with each of the five approaches in Table I. The results are presented in Figures 9 and 10.

One of the key results in the present paper is the cost function values that are shown in
Figure 9. The results demonstrate significant performance improvements for the proposed data-
driven approaches and that both pre-existing model-based approaches have robustness issues. The
following main observations are made.

� Proposed extended algorithm 1 with Hessian estimation achieves approximately a factor 10
higher performance after 100 trials than the other approaches. Approach 2 is identical to

Figure 8. References: rx ( solid black line) a 0.1-m smooth forward and backward step, r' ( solid red
line) zero rotation during the step. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 9. Cost function values J .fj / for the five approaches in Table I: (i) ( ) proposed data-driven
quasi-Newton algorithm, (ii) ( ) proposed data-driven quasi-Newton algorithm without Hessian estimation,
(iii) ( ) proposed gradient-descent, (iv) ( ) standard norm-optimal ILC, (v) ( ) parameter optimal ILC.
The results demonstrate significant performance improvements for the proposed data-driven approaches
and that both pre-existing model-based approaches have robustness issues. [Colour figure can be viewed at

wileyonlinelibrary.com]
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approach 1 without Hessian estimation. Between trials 0�20, very similar convergence behav-
ior is observed. This is attributed to the initial Hessian estimate B0 D I in approach 1, hence
similar behavior is expected for the first few trials until the Hessian estimate for approach 1
improves. Indeed, the convergence speed of approach 1 increases significantly after 20 trials
leading to a much larger performance improvement. Approach 3 is the gradient-descent algo-
rithm with a fixed step size. The difference with approach 2 lies in an either a varying or a fixed
learning gain, Table I. Indeed as expected, this algorithm has the slowest convergence of the
data-driven approaches, see the corresponding discussion in Sections 3 and 4.

� Approach 4 is standard norm-optimal ILC. The results show a fast decrease of cost function
for trials 0 � 3. At trial 4, oscillations start to appear in the tracking errors, which continue to
grow until this behavior necessitated to stop the experiment after 10 trials. This behavior can be
explained with the lack of robustness against modeling errors. Note that a high-fidelity model
is used, Figure 7.

� Approach 5 is parameter-optimal ILC. The results show a slightly faster decrease of the cost
function than the proposed gradient-descent approach 3 for trials 0� 40. Still, the convergence

Figure 10. Time domain measurements ej and fj of the five approaches in Table I for trials 4 (left), 9 (cen-
ter), and 99 (right): (i) ( solid green line) proposed data-driven quasi-Newton algorithm, (ii) ( solid blue
line) proposed data-driven quasi-Newton algorithm without Hessian estimation, (iii) ( solid yellow line)
proposed gradient-descent, (iv) ( solid black line) standard norm-optimal ILC, (v) ( solid red line) param-
eter optimal ILC. The results show that the proposed data-driven quasi-Newton approach clearly achieves
the smallest tracking errors after 99 trials; standard norm-optimal ILC shows fast convergence in 4 tri-
als but also increasing oscillations in the tracking error that eventually necessitated to stop the experiment

after 9 trials. [Colour figure can be viewed at wileyonlinelibrary.com]
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is slower than approach 2, which uses a very closely related learning update, compare (23) with
Bj D I and (27). Indeed, a model is required to compute "j , see (28), in contrast to approach
1 and 2 where the stepsize "j is determined using an additional dedicated experiment, see the
discussion following Procedure 12. Modeling errors reduce the accuracy of the optimal "j in
(28) and could explain the decreased convergence rate. The results also show robustness issues
for trials 50 � 80, which are indicated in Figure 9. The cost function values appear to oscillate
between trails 50 � 80, these oscillations eventually dissipate. This behavior could also be
attributed to modeling errors in both the learning update, see (27) and (28).

In Figure 10, time domain measurements of ej and fj for j D 4, j D 9 and j D 99 are
shown. The results support the earlier conclusions because the proposed extended approach clearly
achieves the smallest tracking errors after 100 trials. The other approaches have comparable track-
ing performance. Unstable behavior of standard norm-optimal ILC is prominently visible. In trial
4, oscillations appear in e1

4 , and at trial 9, these oscillations have significantly increased. Although
difficult to observe in Figure 10, close analysis of f 1

9 (black) and f 2
9 (black) reveals small oscilla-

tions in the control signals. Interestingly, the control signals of the proposed approach 1 in Table I
for trial 99 (green) have a very similar shape as the control signals of norm-optimal ILC for trial 4
but without these small oscillations.

To conclude, the experimental results highlight performance and robustness improvements of
the proposed methods with respect to the pre-existing approaches for the test-case on the Arizona
flatbed printer.

7. CONCLUSION

In this paper, a fully data-driven optimal ILC framework for multivariable systems is presented. The
key idea is to replace the model in the learning update with dedicated experiments on the system.
The main difficulty lies in the multivariable aspect.

The need for a model is eliminated by measuring the gradient of a performance criterion using
specially crafted intermediate experiments. To improve convergence speed, an extension is proposed
that employs Hessian estimation.

The efficacy of the developed framework is highlighted through comparative experiments with
closely related model-based approaches. Both increased performance and robustness are demon-
strated on an industrial multivariable flatbed printer. It is expected that the results will replicate
well in other applications, as the experiments are successful while the printer suffers from distur-
bances and nonlinearities including friction, noise, cable slab effects, and temperature-dependent
actuator forces.

The key advantage of the presented framework is the fact that no model is required, which comes
at the cost of additional experiment time that grows bi-linearly with the number of inputs and outputs
of the system. Hence, the approach is particularly useful in cases of dealing with a large modeling
effort and inexpensive experiments, such as in mechatronic printing systems. In case model knowl-
edge is already available, the convergence speed can be enhanced further by using a model in the
initial Hessian estimate.

Ongoing research is towards extending the approach to a sampled-data setting, for example, using
lines in [53], and investigating the effects of measurement noise and trial-varying disturbances. A
first step towards addressing such effects in case they are severe could be including basis func-
tions, see for example, [5] and [48], for increased convergence speed, increased robustness against
measurement noise, and introducing extrapolation capabilities with respect to the reference.

APPENDIX A: IMPLEMENTATION ASPECTS

A.1. Improving signal-to-noise ratio

The implementation of Procedure 5 can benefit from addressing several implementation aspects.
All measured signals contain noise. Consequently, the effects of noise in the dedicated adjoint

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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Figure A1. Cost function values J .fj / of approaches to deal with friction in the dedicated gradient experi-
ments in Procedure 4: (i) ( ) proposed constant velocity reference, (ii) ( ) pre-existing approach [35, Section

6], and (iii) ( ) ignoring friction. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure A2. Gradient comparison of approaches to deal with friction in the dedicated gradient experiments
in Procedure 4. Simulation ( solid black line), measurements: (i) ( solid yellow line) proposed constant
velocity reference, (ii) ( solid cyan line) pre-existing approach [35, Section 6], and (iii) ( solid magenta

line) ignoring friction. [Colour figure can be viewed at wileyonlinelibrary.com]

experiments in step 2 of Procedure 5 (and also the identical step 2 in Summary 13) may affect the
performance and convergence of the proposed ILC algorithms. Therefore, an approach to improve
the signal-to-noise ratio is developed in this section.

Consider the dedicated gradient experiment in Procedure 4 that is used in step 2 of Procedure 5
and Summary 13. The result of step 2 is given by vj D J TWeej . Suppose that additive mea-
surement noise �j is present on each measured signal in Procedure 4, then define the resulting
measurement as v�

j D vj C �j , which is given by

v
�
j D �j C J TWeej :
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The main idea is to attenuate the effect of �j by scaling ej with a factor ˛j 2 R prior to
Procedure 4 and compensating that scaling afterwards. Following this approach, v�

j is recast to

v
�
j D

1

˛j

�
�j C J TWe˛j ej

�
D
�j

˛j

C J TWeej :

Clearly, the effect of �j in v�
j can be made arbitrarily small by increasing ˛j . In practice, ˛j can

be used to trade-off signal-to-noise ratio in the data-driven learning procedure versus allowable input
range and nonlinearities such as sensor quantization in the experimental system. A good value for
˛j is hence highly application-specific and a suitable ˛j can be obtained from system knowledge
or appropriate pre-testing.

A.2. Dealing with friction in motion systems

During the experiments, it is experienced that mechanical friction in motion systems influences the
results of Procedure 4. A method to deal with friction is proposed in this section and compared with
a pre-existing approach to deal with friction in [35]. The increased effectiveness of the proposed
approach is illustrated with experiments and simulations.

The dedicated gradient experiments in Procedure 4 can be directly applied to the closed-loop
system in Section 6.1 if Qr D 0 during the gradient experiments, as discussed in Section 6.1. In this
case, the gantry of the Arziona flatbed printer, Figures 5 and 6, is at standstill, and the presence of
mechanical friction negatively affects the results of the dedicated gradient experiments, as will be
demonstrated.

The proposed approach to mitigate the effects of friction is to use a very small constant velocity
Qr during the gradient experiments in Procedure 4, instead of Qr D 0 as required from the closed-loop
setting described in Section 6.1. In this case, a perturbation is present on the result vj in step 2 in
Procedure 5 and Summary 13. The perturbed result is given by

v
r¤0
j D vj � r

with r D S Qr and S D .I C PC/�1 as earlier given in Section 6.1. Clearly, in case r D 0, vr¤0
j D

vj , and step 2 remains identical to the open-loop case. Therefore, the impact of the additional term
r should be as small as possible, because it directly introduces an error in the gradient experiment.

Two measures to reduce the effect of nonzero references are used. Firstly, C and Qr are designed
such that S Qr is close to zero for constant velocity references. Secondly, the scaling approach pro-
posed in Section A.1 also attenuates the effect of r in vr

j in exactly the same fashion as the
measurement noise.

A pre-existing approach to deal with friction in data-driven ILC experiments for SISO systems is
presented in [35, Section 6]. In the latter, Qr D 0, and a sign change in ej is applied every other trial
before using the data-driven gradient approach and changed back afterwards. The rationale behind
this method is that the error in the gradient due to friction averages out as sufficiently many trials
are performed. This method can be used in the MIMO framework of the present paper by applying
these sign changes to ej in step 2 of Procedure 4.

Gradient-descent ILC algorithm 3 in Table I is used to validate these methods. In total, 40 trials
are performed using the reference and ILC settings of the previous section. The results are presented
in Figures A1 and A2.

The cost function values are shown in Figure A1. It shows that the proposed constant velocity
approach performs significantly better than the pre-existing approach. The results also show that
ignoring friction leads to a non-converging implementation because the cost function value starts to
increase after 20 trials. The cost function values for the pre-existing approach exhibit an alternating
behavior, which is also observed in [35, Figure 17].

Time domain measurements and simulations of v0, see step 2 in Summary 13, are shown in
Figure A2. It shows that the measurements correspond well with the simulation for the proposed
method, and that the pre-existing approach and ignoring friction lead to large discrepancies. Given

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2018; 28:3728–3751
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the close correspondence of the model with the frequency response measurements in Figure 7,
it is expected that v0 for the proposed method is also closer to the true gradient than the
other approaches.
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