A sequentially coupled shape and topology optimization method

Citation for published version (APA):

Document status and date:
Published: 25/07/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 20. Mar. 2019
A sequentially coupled shape and topology optimization method
Zhijun Wang1*, Akke S.J. Suiker1, Hèrm Hofmeyer1, Twan van Hooff1,2, Bert Blocken1,2
1 Department of the Built Environment, Eindhoven University of Technology
2 Department of Civil Engineering, KU Leuven
* Email address: z.wang@tue.nl

Coupled method (2D)

- Structural design problem
 - Minimizing the compliance c of a structure with volume V constraint, e.g. as shown in Fig. 1.
 - Shape optimization (SO).
 - Topology optimization (TO).

- Research gap
 - Initial design
 - NURBS-based SO
 - NURBS-based TO

- Coupled optimization model
 - Consider both shape (a) and topology (p) design variables.

- Sequential solution strategy
 - Solving the coupled model by performing TO and SO iteratively.

Application (3D & 2.5D)

- 3D design problem
 - Coupled optimization for 3D structure shown as following example.

- 2.5D design problem
 - Coupled optimization of a 2.5D beam-type structure shown in Fig. 2.

- Conclusions and future work
 - An optimization framework aims to optimally place a given amount of material in an optimal design domain, implemented to solve 2D, 2.5D and 3D design problems.
 - The results of representative case studies clearly show that the features of the design domain can have a large influence on the final topology.
 - Future work: solving the coupled optimization model in a parallel manner, and incorporating the aerodynamic analysis in the framework for wind turbine blade design.