A sequentially coupled shape and topology optimization method
Wang, Z.; Suiker, A.S.J.; Hofmeyer, H.; van Hooff, T.; Blocken, B.

Published: 25/07/2018

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 07. Dec. 2018
A sequentially coupled shape and topology optimization method

Zhijun Wang¹*, Akke S.J. Suiker¹, Hèrm Hofmeyer¹, Twan van Hooff², Bert Blocken¹,²

¹ Department of the Built Environment, Eindhoven University of Technology
² Department of Civil Engineering, KU Leuven

* Email address: z.wang@tue.nl

Coupled method (2D)

- Minimizing the compliance \(c \) of a structure with volume \(V \) constraint, e.g. as shown in Fig. 1.
 - Shape optimization (SO).
 - Topology optimization (TO).

Research gap

- A sequentially coupled shape and topology optimization method
 - SO generally cannot introduce a new topology.
 - Solutions of TO are bounded by the chosen design domain.

Maximizing the compliance (CTSO) and finding new topology (SO) iteratively.

Modeling

- Optimal placement of a given amount of material in an optimal design domain, implemented to solve 2D, 2.5D and 3D design problems.

Scope

- Structural design problem
- Modeling
- Solution

Motivation

- Coupled optimization model
- Sequencing solution strategy

Conclusion

- Conclusions and future work
- Convergence history
- The final geometry of the beam can be obtained by interpolating the data of cross sections along the length direction.

Application (3D & 2.5D)

- 3D design problem
- 2.5D design problem

Fig. 2: Slender elastic cantilever beam with uniform rectangular cross section.

Fig. 1: Classic cantilever beam with varied height \(\mathcal{M} \) (initial \(\mathcal{H} = \mathcal{M} \) if \(\mathcal{M} = \mathcal{M} \)).

Initial design

- \(c = 2.488 \) N\(\cdot \)m

TO model

- \(c = 0.751 \) N\(\cdot \)m

SO model

- \(c = 0.371 \) N\(\cdot \)m

2-node beam FE.

CTSO

- \(c = 0.160 \) N\(\cdot \)m

TO model

- \(c = 0.215 \) N\(\cdot \)m

Initial design

- \(c = 3.836 \) N\(\cdot \)m

TO model

- \(c = 1.586 \) N\(\cdot \)m

SO model

- \(c = 0.278 \) N\(\cdot \)m

CTSO

- \(c = 4.508 \) N\(\cdot \)m

TO model

- \(c = 1.665 \) N\(\cdot \)m

SO model

- \(c = 1.984 \) N\(\cdot \)m

to

SO

- \(\rho \geq 0.75 \)

CTSO

- \(\rho \geq 0.75 \)

TO

- \(\rho \geq 0.75 \)

SO

- \(\rho \geq 0.75 \)

CTSO

- \(\rho \geq 0.75 \)

TO

- \(\rho \geq 0.75 \)