Design optimization and performance comparison of two linear motor topologies with PM-less tracks

Citation for published version (APA):

DOI:
10.1109/TMAG.2018.2837746

Document status and date:
Published: 01/11/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Design Optimization and Performance Comparison of Two Linear Motor Topologies with PM-less Tracks

S.R. Aleksandrov\textsuperscript{1}, T.T. Overboom\textsuperscript{1}, and E.A. Lomonova\textsuperscript{1}

\textsuperscript{1}Electromechanics and Power Electronics Group, Department of Electrical Engineering, Eindhoven University of Technology, PO Box 513, 5612AZ, Eindhoven, The Netherlands

An essential requirement for a long stroke linear motion system is a low-cost and robust track. To allow the implementation of a linear motor topology in such application, passive tracks, consisting no rare-earth material are recommended to reduce the price. This paper presents a comparison between two linear motor topologies with PM-less tracks: e.g. Linear Induction Motor (LIM) and Linear Flux-Switching PM Motor (LFSM). These motors are benchmarked to a Linear PM Synchronous Motor (LSM), which merits itself for high force density. LIM and LFSM are optimized for maximized continuous force while considering the same footprint as LSM. The optimization is based on a multiphysical model containing an analytical representation of the magnetic field distribution, force production, power losses and thermal behaviour of both structures. The obtained parameters are used to compare different configurations of both motors to the LSM. The results of the comparison show that at the price of higher losses, both topologies have comparable thrust force to LSM.

I. INTRODUCTION

The Linear Permanent Magnet Synchronous Motor (LSM) is the preferable choice for linear motion applications when high force density is the main requirement. However, in a moving primary configuration, the main drawback of this motor is the relatively expensive track caused by the extensive usage of rare-earth materials. This limits the viability of these motors, especially for long-stroke applications, such as storage or airport transportation lines where the main prerequisite is a low-cost, passive and robust track.

Therefore, two alternative motor topologies are studied in this paper, namely a Linear Induction Motor (LIM) and a Linear Flux-Switching Permanent Magnet Motor (LFSM).

Considering the price of the track as the main requirement, the LIM is the most attractive one. Conventional configurations have a conducting plate (aluminium or copper) as a secondary, which is mounted on a solid iron plate. Having no permanent magnets (PM) in their construction, LIMs do not have any cogging forces, which results in low force ripples. However, this reduces the efficiency and leads to a low power factor, which results in an increased inverter rating and therefore costs. Furthermore, the absence of rare-earth materials also limits the generated propulsion force.

Another attractive alternative is the LFSM, which also has a passive secondary, but is made of laminated silicon steel. The track is constructed as a teeth structure. Reluctance paths, created by these teeth define the magnetic circuit of this motor. LFSM’s mover incorporates a limited amount of rare-earth materials, which significantly improves its force generation capabilities. This combination takes advantage of high force density of the brushless linear motors with the robust structure of the switched reluctance motor’s passive track. The PM-biased primary generates significant cogging forces and therefore increases the force ripples [1].

Despite their early origins, the LFSM topology is still considered as a novel type in the industry, and the research on this topic is limited [2] [3]. Most of the available designs are directly derived from their rotary counterparts, which makes direct comparison between LIM and LFSM very difficult. As an addition, the existing design solutions for LIM differ very much from each other, as they are implemented in different applications. LIM having short movers and therefore relatively small volume [4] [5], are designed with lower thrust, compared to designs with much larger overall dimensions [6] [7] [8]. However, both the LIM and LFSM are considered to be promising alternatives to LSM for long-stroke applications, because of their cheaper and more robust tracks.

In this paper, a comparative study on LIM and LFSM topologies is performed. To allow a fair comparison, semi-analytical methods are used to predict their performance and to obtain optimal design solutions within the footprint of a benchmark LSM topology. The motor configurations are optimized for maximum continuous force, accounting for the magnetic and thermal limitations of both LIM and LFSM. The results are used for comparison with the performance of LSM topology.

In Section II, the analyzed topologies, i.e. LFSM and LIM, are presented together with the benchmark LSM topology. Section III discusses the methods used for modelling the topologies. In Section IV, the design optimization considerations are presented and the results are discussed. Finally, conclusions are presented in Section V.

II. ANALYZED TOPOLOGIES

In Fig. 1, one periodical section of the LSM, used as a reference for this study, is shown. It represents a typical LSM configuration consisting of a three-phase coil unit and an infinitely long static array with axial magnetized permanent magnets. The thrust generation is a result of a travelling magnetic field produced by the armature windings and an array of magnetic poles. Usually, these motors are designed...
III. MODELLING PRINCIPLES

A. Topology assumptions and division in regions

Excluding the longitudinal end-effects, the topology of the LIM is periodic in the tangential direction. Therefore, Complex Harmonic Method (CHM) is a suitable semi-analytical modelling technique, where the magnetic field distribution can be obtained while accounting for the eddy-current effects in the conductive secondary [10]. The periodical section of the LIM is represented in a 2D Cartesian coordinate system and is divided into rectangular regions in the $x$-$y$ plane, as shown in Fig. 4. By considering the primary core as infinitely permeable, the model is reduced to four main regions: Region I encloses the air gap between the mover and stator, while Region II contains the secondary conductive sheet, Region III represents the back-iron plate and Region IV is used to model the air underneath the motor. The slotting of the primary is accounted for by adjusting the effective air gap length using Carter’s coefficient. By reducing the conductivity of the conductive plate, the transverse end effects are included in the analysis [11].

As the material properties of both the mover and the track of LFSM vary in $x$-direction, a Hybrid Analytical Method (HAM), which combines Harmonic Modelling (HM) with Magnetic Equivalent Circuit (MEC) [12], is chosen for this topology. The topology of LFSM is divided into five regions, as shown in Fig. 5. The Harmonic Method is used for the field description in Regions I, II, III, V are these are periodical in $x$-direction and they represent the free space over the mover, the air gap and space beneath the secondary, respectively. Region II and Region IV are modelled using MEC, and they represent the mover and the track, respectively. To allow coupling between different regions and to increase the accuracy of the model, each of these MEC-regions is discretized, as is explained in the following subsections.

B. Harmonic Modelling

The Harmonic method is based on an analytical solution of the magnetic vector potential $A_i$ expressed by Fourier series. It is obtained by applying the method of separation of variables, valid only in orthogonal domains with linear material properties. It is assumed that the magnetic flux density has only $x$ and $y$ components, while the vector potential has component in $z$-direction only.
In a region with no conducting materials and no sources, e.g. Region I and Region IV in LIM and Regions I, III and V in LFSM, the vector potential solution has to satisfy the Laplace equation

$$\frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} = 0. \quad (1)$$

When conducting materials are present in a particular region, e.g. Region II and Region III in LIM, the time-varying field induces currents. These currents are related to the vector potential by the diffusion equation

$$\frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} = \mu_0 \mu_r \sigma \frac{\partial A_z}{\partial t}, \quad (2)$$

where $\sigma$ and $\mu_r$ are the conductivity and the relative magnetic permeability of the material, respectively, while $\mu_0$ is the magnetic permeability of the free space.

### C. Source terms

The coils in LIM topology are represented as spatially distributed current sheets on the top boundary of the airgap region. The spatial description for all three phases of the distributed windings, moving together with velocity $v$, can be written as a complex Fourier series

$$J_f(x,t) = \sum_{n=-\infty}^{\infty} \left[ J_{ph} e^{-j\omega_n x} e^{j(0t - \omega_n vt)} + J_{ph} e^{-j\omega_n x} e^{j(0t - 0\omega_n vt + \frac{\pi}{2})} + J_{ph} e^{-j\omega_n x} e^{j(0t - \omega_n vt + \frac{\pi}{2})} + J_{ph} e^{-j\omega_n x} e^{j(0t - 0\omega_n vt + \frac{3\pi}{2})} \right], \quad (3)$$

with $\omega = 2\pi f$, $\omega_n = \frac{n\pi}{L}$ and

$$J_{ph} = \frac{-jh_{s}J}{2\tau \omega_n} \left[ (1 + e^{-j\omega_n \tau}) \left( e^{-j\omega_n x} - e^{-j\omega_n x} - e^{-j\omega_n x} + e^{-j\omega_n x} \right) \right]. \quad (4)$$

As shown in Fig 4, $x_1$ and $x_3$ are the coordinates of the positive current sheet of phase B, while $x_3$ and $x_4$ are the coordinates of the negative current sheet of phase B. The current sheets are considered as infinitely thin. Hence the current density $J$ is multiplied by the slot height $h_s$. As the phases are spatially distributed in sequence B,C,A, phase C and A are shifted with $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ in the x-direction, respectively. To account for the second layer of the winding, both positive and negative current sheets are additionally shifted with one slot pitch $\tau$, in x-direction and the resulting components are added to the expression.

### D. Vector potential solution

Applying the method of separation of variables, a general form of the solution to the vector potential is obtained. In the case of LIM, the vector potential solution is given in a complex form

$$A_z(x,y,t) = \sum_{n=-\infty}^{\infty} (a_n e^{j\lambda_n^2 x} + b_n e^{-j\lambda_n^2 x}) e^{j\omega_n t} e^{j\omega_n t}, \quad (5)$$

where $a_n$ and $b_n$ are the unknown coefficients for each harmonic, obtained from the applied boundary conditions, as explained in the following section, and

$$\lambda_n^2 = \omega_n^2, \quad (6)$$

for non-conducting regions, and

$$\lambda_n^2 = \omega_n^2 + j \omega \mu_0 \mu_r \sigma, \quad (7)$$

for regions containing conductive materials.

For the LFSM topology, the vector potential solution is obtained as

$$A_z(x,y) = \sum_{n=1}^{\infty} \frac{1}{\omega_n} (q_n e^{\omega_n y} + r_n e^{-\omega_n y}) \cos(\omega_n x) - \frac{1}{\omega_n} (s_n e^{\omega_n y} + t_n e^{-\omega_n y}) \sin(\omega_n x), \quad (8)$$

where $q_n$, $r_n$, $s_n$ and $t_n$ are the unknown coefficients for each harmonic. This provides the coupling of the Fourier regions with the neighboring MEC regions.

### E. MEC

In the LFSM, the regions containing non-homogeneous material properties along the $x$-direction are modelled using MEC formulation. These regions are discretized in $L$ layers along the $y$-direction, containing $K$ rectangular elements in each layer. Therefore, a mesh of $M = L \times K$ elements is formed for both the mover and the stator, as shown in Fig. 6a and Fig. 6b, respectively. Each MEC-element encloses one
Fig. 6: Discretization of MEC regions: (a) Region II - mover, (b) Region IV - track, (c) Boundaries and materials.

Potential node, $\psi(l,k)$, which is defined by four reluctances
\begin{align}
\mathcal{R}_{xp}(l,k) &= \mathcal{R}_{yn}(l,k) = \frac{l_x}{2\mu_0\mu_M^{MEC}(l,k)S_{yz}}, \\
\mathcal{R}_{yp}(l,k) &= \mathcal{R}_{yn}(l,k) = \frac{l_y}{2\mu_0\mu_M^{MEC}(l,k)S_{xz}},
\end{align}
where $l_x$ and $l_y$ are the lengths of each MEC-element in $x$- and $y$-direction, while $S_{xz}$ and $S_{yz}$ are the cross-sectional areas, parallel to the $xz$- and $yz$-planes, respectively. The values assigned to $\mu_M^{MEC}(l,k)$ depend on the material in which each element is located. The last element in $x$-direction of each layer is coupled with the first element from the same layer in order to fulfill the periodicity in $x$-direction.

To obtain correct magnetic behaviour inside the MEC-region, the magnetic equivalence of Kirchhoff’s current law should be fulfilled for each MEC-element. Therefore, all magnetic flux entering one potential node ($\psi(l,k)$) should be equal to the magnetic flux leaving this node
\begin{align}
\varphi_{xn}(l,k) + \varphi_{yn}(l,k) &= \varphi_{xp}(l,k) + \varphi_{yp}(l,k),
\end{align}
where
\begin{align}
\varphi_{xp}(l,k) &= \frac{\psi(l,k) - \psi(l,k) + \mathcal{F}_{xp}(l,k) + \mathcal{F}_{xn}(l,kp)}{\mathcal{R}_{xp}(l,k) + \mathcal{R}_{xn}(l,kp)}, \\
\varphi_{yn}(l,k) &= \frac{\psi(l,k) - \psi(l,k) + \mathcal{F}_{yn}(l,k) + \mathcal{F}_{xp}(l,kp)}{\mathcal{R}_{yn}(l,k) + \mathcal{R}_{xp}(l,kp)}, \\
\varphi_{yp}(l,k) &= \frac{\psi(l,k) - \psi(l,k) + \mathcal{F}_{yp}(l,k) + \mathcal{F}_{yn}(l,kn)}{\mathcal{R}_{yp}(l,k) + \mathcal{R}_{yn}(l,kn)}, \\
\varphi_{yn}(l,k) &= \frac{\psi(l,k) - \psi(l,k) + \mathcal{F}_{yn}(l,k) + \mathcal{F}_{yp}(l,kn)}{\mathcal{R}_{yn}(l,k) + \mathcal{R}_{yp}(l,kn)},
\end{align}
and the direction of the flux is indicated in Fig. 7.

In case of Region IV, all source terms are equal to zero, due to the absence of sources in the region. In Region II, the source terms include both PM and coils
\begin{align}
\mathcal{F}_{PM}(l,k) &= \frac{H_{c}l_x}{2}, \\
\mathcal{F}_{C}(l,k) &= \frac{I_{amp}}{2K_{c}},
\end{align}
where $I_{amp}$ is the current in a single coil, $K_{c}$ represents the number of MEC-elements for a single coil and $H_{c}$ is the coercivity of a PM.

F. Magnetic flux density computation

Using the relation
\begin{align}
B &= \frac{\partial A_{z}}{\partial y} e_y - \frac{\partial A_{x}}{\partial x} e_x,
\end{align}
analytical expressions for $H_{x}$ and $B_{y}$ are derived from the vector potential solution for each Fourier region. To limit the maximum flux density in the core of the LIM, the magnetic flux density in a single tooth is obtained using
\begin{align}
B_{tooth} = \int_{x=x_l}^{x=x_H} \sum_{n=-\infty}^{\infty} -j\omega (a_n e^{i\lambda_{yn}} + b_n e^{-i\lambda_{yn}}) e^{i\omega_{n}x},
\end{align}
and the direction of the flux is indicated in Fig. 7.

G. Boundary conditions

To obtain the unknown coefficients in the field description for both topologies, a set of linear equations is solved, accounting the tangential boundary conditions between every two neighbouring regions. The LFSM topology is modelled with air above its mover, represented by Region I. Additionally,
both LIM and LFSM are modelled with air regions underneath their tracks, Regions IV and V, respectively. Therefore, the top and bottom boundaries of LFSM and the bottom boundary of LIM are extended to infinity and Dirichlet boundary condition, forcing all field components to vanish, applies

\[ A_z = 0 \quad |y = \pm \infty. \]  

(22)

As the core of the mover is considered as infinitely permeable, a Neumann boundary condition applies to the top of Region I in the LIM topology. However, to account for the source terms, the tangential component of the magnetic field strength at the top boundary of the airgap is equal to the spatially distributed current sheets from (3)

\[ H_{y_{\text{top}}} = J_t \quad |y = h_v + h_e. \]  

(23)

On the border between each two neighbouring Fourier regions \( k \) and \( l \) (e.g. Region I and II in LIM) located at \( y = y_{BC} \), the normal component of the magnetic flux density and the tangential component of the magnetic field strength are continuous

\[ B_{y_k} = B_{y_l} \quad |y = y_{BC}, \]  

(24)

\[ H_{x_k} = H_{x_l} \quad |y = y_{BC}. \]  

(25)

On the boundaries between each Fourier and MEC region, the normal component of the magnetic flux density and the tangential component of the magnetic field strength should also be continuous. To ensure that for LFSM topology, the continuous boundary conditions become

\[ B_{y_{\text{MEC}}} = B_{y_{\text{MEC}}} \quad |y = y_{BC}, \]  

(26)

\[ H_{x_{\text{MEC}}} = H_{x_{\text{MEC}}} \quad |y = y_{BC}. \]  

(27)

To adequately define the MEC regions, each element of the bottom layer is coupled with an external flux source underneath the region \( (\phi_{\text{sn}}(1, k) \) is separately defined), while the elements from the top layer are coupled with an external flux source at the top of the region \( (\phi_{\text{sy}}(L, k) \) is separately defined). The expressions for the MEC regions are related to a single element, while the resulting equations for the magnetic flux density in Fourier regions are defined for the full periodical section of the analyzed model. To fulfill (26), the harmonic solution for the magnetic flux density in the Fourier region should be represented as multiple flux sources below each MEC-element from the bottom layer \( l = 1 \) or above each MEC-element from the top layer \( l = L \)

\[ \phi_{\text{sn}}(1, k) = \int_S B_{y_{\text{MEC}}}(x, y = y_{BC}) \, dS, \]  

(28)

\[ \phi_{\text{sy}}(L, k) = \int_S B_{y_{\text{MEC}}}(x, y = y_{BC}) \, dS. \]  

(29)

for \( 1 \leq k \leq K \). By substituting the \( y \)-parameter with the corresponding \( y \)-coordinate of the boundary between the two coupled regions and considering \( x_l(1, k) \) and \( x_r(1, k) \) for the left and right edge of a single MEC-element, respectively, the aforementioned equations are rewritten as

\[ \phi_{\text{sn}}(1, k) = L_s \int_{x_l(1, k)}^{x_r(1, k)} B_{y_{\text{MEC}}}(x, y = y_{BC}) \, dx, \]  

(30)

\[ \phi_{\text{sy}}(L, k) = L_s \int_{x_l(L, k)}^{x_r(L, k)} B_{y_{\text{MEC}}}(x, y = y_{BC}) \, dx, \]  

(31)

for \( 1 \leq k \leq K \), where \( L_s \) is the depth of the domain. The normal coupled boundary conditions are defined by (11), taking the form of

\[ \phi_{\text{sn}}(1, k) + \phi_{\text{sn}}(1, k) = \phi_{\text{sy}}(1, k) + \phi_{\text{sy}}(1, k), \]  

(32)

\[ \phi_{\text{sn}}(L, k) + \phi_{\text{sn}}(L, k) = \phi_{\text{sy}}(L, k) + \phi_{\text{sy}}(L, k), \]  

(33)

where the harmonic solutions are substituted in (30) and (31) and integration along the periodical length is performed.

On the same \( y \)-coordinate, also the tangential magnetic field strength continuity between the coupled regions should be ensured. The tangential component of the magnetic field along all elements will generate a staircase-shaped function in \( x \)-direction, since (20), calculated for the top or bottom layer of a MEC-region, is considered to be constant within a single element. To derive the coefficients for the adjacent Fourier regions

\[ B_{x_{\text{MEC}}}(y_{BC}) = \sum_{n=-\infty}^{\infty} \int_{x=0}^{6\tau} \frac{1}{2S_{yc}} \sum_{k=1}^{K} \phi_{\text{sn}}(l, k) + \phi_{\text{sy}}(l, k) \, \sin(\omega_0 x) \, dx, \]  

(34)

\[ B_{x_{\text{MEC}}}(y_{BC}) = \sum_{n=-\infty}^{\infty} \int_{x=0}^{6\tau} \frac{1}{2S_{yc}} \sum_{k=1}^{K} \phi_{\text{sn}}(l, k) + \phi_{\text{sy}}(l, k) \, \cos(\omega_0 x) \, dx, \]  

(35)

where \( 6\tau \) is the full periodical length and \( l = L \) or \( l = 1 \) for the top or bottom layer, respectively. Since the magnetic permeability of MEC region is not homogeneous in the tangential direction, \( \mu_{\text{MEC}}(l, k) \) is different for each element. By changing the order of summation and integration in the right side of (34), the integration is performed for each MEC-element. Therefore, (27) is fulfilled by substituting the derived equation for \( B_x \) from the adjacent Fourier region, which results in

\[ \frac{1}{\mu_0} B_{y_{\text{MEC}}}(y = y_{BC}) = \sum_{k=1}^{K} \frac{1}{\mu_0 \mu_{\text{MEC}}(l, k)} B_{x_{\text{MEC}}}(y = y_{BC}). \]  

(36)

Finally, two additional linear equations fulfilling (11) for each element inside of the MEC-regions are added to complete the set of boundary conditions and obtain all unknown potentials in MEC-regions. To obtain the unknown Fourier coefficients, the derived equations for \( H_x \) and \( B_y \) are substituted in the aforementioned boundary conditions and the set of linear equations is solved [13].
H. Force calculation

The thrust force is derived from Maxwell stress tensor, evaluated inside the airgap, represented by Region II for LIM and Region III for LFSM [14]

\[ F_x = \frac{L_x}{\mu_0} \sum_{n=-\infty}^{\infty} \int_0^T B_x(x,y)B_y(x,y)dy \]  \hspace{1cm} (37)

where \( T = 2\pi \) for LIM and \( T = 6\pi \) for LFSM. Taking into account the derived expressions for \( B_x \) and \( B_y \) for Region II, the analytical force equation is rewritten for LIM as

\[ F_x = \frac{L_x}{\mu_0} \sum_{n=-\infty}^{\infty} \int_0^{2\pi} B_{xny}(y)e^{j\omega x}B_{yny}^*(y)e^{-j\omega x} dy, \]  \hspace{1cm} (38)

where \( * \) is the complex conjugate.

I. Losses calculation

The copper loss component generated from the armature windings, is obtained for both topologies, while the iron losses are neglected. Additionally, as the Joule losses in the secondary have a significant effect on the performance of LIM, they are also included in the loss calculation. Therefore, as the expression for the magnetic vector potential in the conductive region of LIM is available, the losses of its track could be calculated using the Poynting vector approach [15]

\[ P_{joule,sec} = \frac{-L_x}{2} \Re \int_0^{2\pi} E_xH_y dy. \]  \hspace{1cm} (39)

Only the real component of this expression is taken into account, as it represents the surface power density due to active power flow. The components of this equation are obtained inside the airgap, using the following expressions

\[ E_{ztt} = -\frac{\partial A_{ztt}}{\partial t}, \]  \hspace{1cm} (40)

\[ H_{ztt}^* = \frac{1}{\mu_0} B_{ztt}^* = \frac{1}{\mu_0} \frac{\partial A_{zt}^*}{\partial y}. \]  \hspace{1cm} (41)

Therefore, after substituting the solution for the vector potential and the derived expression for \( B_{ztt} \) into (39), the expression for the losses inside the conductive region takes is obtained

\[ P_{joule,sec} = \sum_{n=-\infty}^{\infty} \frac{jL_x T_k^2}{\mu_0} \left( \omega + \omega_n \right) \left( a_n e^{j\omega y} + b_n e^{-j\omega y} \right) \]  \hspace{1cm} (42)

For both LIM and LFSM, the coils are considered with a single turn. The copper losses generated in the windings are calculated using

\[ R_{Cu} = R_{tot} I_{rms}^2, \]  \hspace{1cm} (43)

where

\[ R_{tot} = \rho \frac{L_s}{A_{coil}}, \]  \hspace{1cm} (44)

is the total resistance of all coils in a single periodical section with \( A_{coil} \) being the area of a single coil, including the filling factor of the slot, and

\[ L_{tot} = 2L_s + 2L_{end}, \]  \hspace{1cm} (45)

where \( L_s \) is the depth of the motor and \( L_{end} \) is the length of the end-windings. As the LFSM is designed with concentrated coils,

\[ L_{end} = w_t + \frac{\pi w_y}{2}, \]  \hspace{1cm} (46)

while for LIM, which has distributed windings,

\[ L_{end} = \sqrt{(3w_t + 2w_y)^2 + \frac{h_s^2}{4} + 4w_s + \frac{\pi w_y}{2}}, \]  \hspace{1cm} (47)

where \( h_s \) is the height of the slot in y-direction, and \( w_t \) and \( w_s \) are the tooth and slot length in x-direction, respectively.

J. TEC

To avoid demagnetization of PMs in LFSM topology and permanent damage of the windings in both motors, the temperature level under continuous operation has to be considered. Therefore a limit of 100°C is set as a maximum operating temperature for both motors. As a result of this thermal limit, in LFSM, the remanence of the PMs is decreased with 0.1% \( B_{rem} \) per Kelvin temperature rise.

To ensure the temperature limit, a Thermal Equivalent Circuit (TEC) model is built for the movers of all analyzed topologies, using the same mesh as in MEC [16]. It is assumed that no heat transfer is present at the bottom surface of the primary, where the mover is connected to the airgap. The whole motor is enclosed with a housing. Therefore, thermal convection the the ambient is considered at the top surface of the housing. The ambient temperature is equal to 25°C. Thermal conduction is considered inside the movers between all contacting material surfaces [17].

The copper losses, obtained from (43) are injected as heat flux to the centre node of each TEC element. The thermal resistances, applied to this model are as follows:

\[ R_{cond}(l,k) = \frac{l_x}{h_{cond}S(l,k)}, \]  \hspace{1cm} (48)

\[ R_{conv}(l,k) = \frac{1}{k_{conv}S(l,k)}, \]  \hspace{1cm} (49)

where \( S(l,k) \) is the surface on the boundary between two neighbouring elements and \( k_{conv} \) and \( h_{cond} \) are the thermal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermal conductivity of steel</td>
<td>( h_{Fe} )</td>
<td>28</td>
<td>W/m/K</td>
</tr>
<tr>
<td>thermal conductivity of copper</td>
<td>( h_{Cu} )</td>
<td>1</td>
<td>W/m/K</td>
</tr>
<tr>
<td>thermal conductivity of PM</td>
<td>( h_{PM} )</td>
<td>9</td>
<td>W/m/K</td>
</tr>
<tr>
<td>convection to ambient</td>
<td>( k_{conv} )</td>
<td>10</td>
<td>W/m/ºC</td>
</tr>
<tr>
<td>specific copper resistance</td>
<td>( \rho )</td>
<td>1.68e-8</td>
<td>Ωm</td>
</tr>
<tr>
<td>conductivity of the Al</td>
<td>( \sigma_{Al} )</td>
<td>30</td>
<td>MS/m</td>
</tr>
<tr>
<td>conductivity of the iron core</td>
<td>( \sigma_{Fe} )</td>
<td>4.5</td>
<td>MS/m</td>
</tr>
<tr>
<td>remanence of the PMs</td>
<td>( B_{rem} )</td>
<td>1.2</td>
<td>T</td>
</tr>
<tr>
<td>relative permeability of the PMs</td>
<td>( \mu_{rel,PM} )</td>
<td>1.05</td>
<td>-</td>
</tr>
<tr>
<td>relative permeability of the iron core</td>
<td>( \mu_{rel,Fe} )</td>
<td>5000</td>
<td>-</td>
</tr>
</tbody>
</table>
convection and conduction coefficients, shown in Table I for different material properties.

IV. OPTIMIZATION RESULTS AND DISCUSSION

A. Optimization assumptions

The optimization objective, considered in this study is to maximize the continuous thrust force. Therefore, the footprint of both LIM and LFSM is fixed to a total mover length of 300 mm and depth of 100 mm, while having the same airgap. The geometric parameters and the main characteristics of the benchmark LSM are listed in Table II. Fixed design parameters for both LIM and LFSM are the overall length, height and depth of the mover, while their tracks have equal depth and are considered as infinitely long in x-direction. The optimal pole pitch is not the same for all analyzed topologies, because they have different working principles. Therefore, different values for the pole pitch are considered such that one up to four periodical sections could fit into the overall length of the mover. Each configuration is optimized separately, and the resulting force and losses are multiplied by the number of periodical sections.

The value of the input current density is maximized for each obtained configuration based on the thermal limitations of the performed TEC models to secure the thermal stability of all machines. This consideration limits the possible copper losses of the primary, so they cannot exceed the allowed thermal levels. As an addition, for each configuration, the maximum value of the magnetic flux density in the teeth of the mover is limited to be less than 1.5 T. This value is obtained by (19) for LIM and by (20) and (21) for LFSM. The performance parameters, used for comparison between LIM and LFSM are the generated propulsion force, the primary copper losses and also the Joule losses in the secondary of LIM.

B. Optimization Method and Results

Both LIM and LFSM are modelled and optimized using parameter search method. In the case of LIM, the optimization is performed, considering the optimal slip frequency for each variation of the pole pitch. Optimization variables are the coil-to-tooth width ratio and the height of the slots in the primary, together with the thickness of the conductive secondary.

For the LFSM, optimization variables are the ratios between the width of the magnets, coils and teeth in the mover, together with different configurations for the width and height of the slots. The ratio between the height of the tooth and the height of the yoke in the secondary structure is also included in the optimization cycle.

The resulting continuous force and losses for the LSM are obtained considering the same thermal constraints and airgap as used for the design of the LIM and the LFSM. Therefore, the results from the optimization are shown in Table III. It could be clearly seen that both LIM and LFSM benefit from larger pole pitches, but the losses of LIM exceed the losses of LFSM more than twice. This is caused by the additional Joule losses in the conductive secondary of LIM. The generated thrust force from both topologies is comparable to the benchmark LSM, and at the cost of higher losses, they are suitable as substitutes, considering long-stroke applications.

V. CONCLUSION

This paper has shown the comparison of LIM and LFSM topologies, both of which are optimized for maximum propulsion force while considering their losses. The performance of both topologies is modelled using fast converging, semi-analytical modelling techniques. Finally, the results are compared to a benchmark LSM in terms of continuous force and power losses as low-cost alternatives for long-stroke applications.

REFERENCES


