Passivating electron-selective contacts for silicon solar cells based on an a-Si

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1002/pip.3023

Document status and date:
Published: 01/10/2018

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Passivating electron-selective contacts for silicon solar cells based on an a-Si:H/TiO\(_x\) stack and a low work function metal

Jinyoun Cho\(^1,2\) | Jimmy Melskens\(^3\) | Maarten Debucquoy\(^2\) | Maria Recamán Payo\(^2\) | Shruti Jambaldinni\(^2\) | Twan Bearda\(^2\) | Ivan Gordon\(^2\) | Jozef Szlufcik\(^2\) | W.M.M. Kessels\(^3\) | Jef Poortmans\(^1,2,4,5\)

\(^1\) ESAT Department, K.U. Leuven, Leuven 3001, Belgium
\(^2\) imec, Kapeldreef 75, Leuven 3001, Belgium
\(^3\) Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
\(^4\) University Hasselt, Martelarenlaan 42, Hasselt 3500, Belgium
\(^5\) EnergyVille, Thor Park 8310, Genk B-3600, Belgium

Correspondence
Email: jinyoun.cho@imec.be

Funding Information
imec, Interuniversity Microelectronics Center, Belgium

Abstract
In this work, the ATOM (intrinsic a-Si:H/TiO\(_x\)/low work function metal) structure is investigated to realize high-performance passivating electron-selective contacts for crystalline silicon solar cells. The absence of a highly doped Si region in this contact structure is meant to reduce the optoelectrical losses. We show that a low contact resistivity (\(\rho_c\)) can be obtained by the combined effect of a low work function metal, such as calcium (\(\Phi = 2.9\) eV), and Fermi-level depinning in the metal-insulator-semiconductor contact structure (where in our case TiO\(_x\) acts as the insulator on the intrinsic a-Si:H passivating layer). TiO\(_x\) grown by ALD is effective to achieve not only a low \(\rho_c\) but also good passivation properties. As an electron contact in silicon heterojunction solar cells, inserting interfacial TiO\(_x\) at the i-a-Si:H/Ca interface significantly enhances the solar cell conversion efficiency. Consequently, the champion solar cell with the ATOM contact achieves a \(V_{OC}\) of 711 mV, FF of 72.9%, \(J_{SC}\) of 35.1 mA/cm\(^2\), and an efficiency of 18.2%. The achievement of a high \(V_{OC}\) and reasonable FF without the need for a highly doped Si layer serves as a valuable proof of concept for future developments on passivating electron-selective contacts using this structure.

KEYWORDS
carrier-selective, electron-selective, heterojunction, passivating contact, TiO\(_x\), calcium, low work function metal

1 | INTRODUCTION

Industrial crystalline silicon solar cells (eg, passivated emitter rear totally diffused (PERT) cells, passivated emitter and rear contact (PERC) cells, or silicon heterojunction solar (SHJ) cells) use highly doped silicon layers.\(^1-4\) The high doping concentration of these n\(^+\) or p\(^+\) silicon layers is very effective to lower the contact resistivity (\(\rho_c\)). However, heavy doping can induce parasitic absorption, Auger recombination, and Shockley-Read-Hall recombination.\(^5,6\) Carrier-selective contacts without the use of highly doped silicon layers are getting attention to avoid these disadvantages.\(^7,8\) However, a lowly doped silicon surface typically results in a high \(\rho_c\).

Based on the Schottky-Mott rule,\(^7,10\) when a metal work function is lower than the work function of a semiconductor, the band of the semiconductor near the metal-semiconductor (MS) interface should move downwards (forming an accumulation contact for electrons). Accordingly, many groups have aimed to reach a low \(\rho_c\) for electron-selective contacts on n-type-based c-Si solar cells using low work function metals either individually\(^11,12\) or in combination with other materials such as alkaline earth metal fluorides.\(^13,14\) However, the main challenge of these approaches is that the penetration of the metal wave function into the semiconductor overlaps with surface states in the semiconductor energy band gap\(^15\) resulting in metal Fermi-level (\(E_{F,metal}\)) pinning.\(^16\) Therefore, the promised gain of the low work function is not fully realized, and a non-negligible Schottky energy barrier can still be formed at the interfaces with c-Si or a-Si:H.\(^17-19\)
As an alternative, a metal-insulator-semiconductor (MIS) contact can mitigate the E_F pinning due to the reduction of surface states or dipoles at the interfaces of the contact.\(^{20-23}\) In addition, when using low doping concentrations, it has been shown that an MIS contact can outperform the contact resistivity of an MS contact.\(^{24,25}\) In the MIS structure, the thickness of the insulator is a critical parameter to obtain low ρ_c: the thicker the insulator layer is, the larger the reduction in the E_F pinning but also the larger the resistance for the carrier transport through the insulator itself. The position of the energy bands of the dielectric also plays an important role in this resistance. In this respect, TiO$_x$ stands out as a good candidate because it has a suitable band structure for electron-selective contacts: a small E_C offset and a large E_V offset relative to c-Si.\(^{26}\)

For the aforementioned reasons, MIS contacts including TiO$_x$ layers with a typical thickness below 2 nm have been intensively studied in the field of CMOS\(^{24,25,27-29}\) to achieve the lowest possible ρ_c by mitigating E_F pinning. In silicon solar cells, solar cell efficiencies of above 20% have been successfully shown based on a slightly thicker TiO$_x$ layer of 3.5 nm which was subjected to a forming gas annealing treatment at 350°C.\(^{30-32}\) When it is aimed to realize silicon solar cells that do not include highly doped silicon regions, a low-temperature process at or below 200°C is still required to be compatible with the fabrication of hole-selective contacts based on high work function transition metal oxides.\(^{33-39}\) Therefore, electron-selective contacts with an intrinsic a-Si:H/TiO$_x$/low work function metal contact which achieves a reduction of 2 orders of magnitudes in ρ_c by combining merits of a MIS contact and a low work function metal. Furthermore, the process temperature was below 200°C for the layers in the contact structure. However, the experiments performed to quantify the recombination losses clearly showed a higher dark saturation current density at the metalized area ($J_{0,metal}$) for the ATOM contacts adopting e-beam evaporated TiO$_x$ when compared to the contacts without TiO$_x$. It is believed that the a-Si:H passivation quality was degraded by e-beam radiation damages during the evaporation.\(^{43,44}\)

In this work, ATOM contacts involving TiO$_x$ layers fabricated by atomic layer deposition (ALD) are evaluated in ρ_c and J_0 to assess their potential in a passivating electron-selective contact. Finally, the ATOM contact structure with TiO$_x$ is integrated in heterojunction solar cells and compared to a classical SHJ solar cell.

2 CHARACTERIZATION OF ATOM TEST STRUCTURES

2.1 Preparation of test structures

Mirror polished n-type FZ-Si wafers (3 Ω cm, 200-μm thickness) were used to evaluate ρ_c and the contact passivation quality. After HF:HCl cleaning, 8-nm-thick intrinsic a-Si:H (i-a-Si:H) layers were deposited on both sides of the substrate by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200°C in an AK1000 Inline system of MicroSystems. Wafers were diced into squares of 4×4 cm, 180×180 mm2 (for the determination of J_0) and 30 × 30 mm2 (for the determination of ρ_c). After HF dip, on top of the i-a-Si:H layers, TiO$_x$ layers of 2 nm were deposited on both sides of the substrate by ALD (Oxford Instruments FlexAL, UK). For the ALD-TiO$_x$ process, titanium tetra-isopropoxide (TTIP) and H$_2$O were used as Ti precursor and oxidant, respectively, and the substrate temperature was set to 200°C.

For the measurement of J_0, thin blanket layers of 4-nm-thick Ca and 6-nm-thick Al were deposited by thermal evaporation (Angstrom Engineering, USA) on the rear side of the substrate (see Figure 1A, B). The metal layer thickness was monitored using a quartz sensor in the evaporation tool. These metal layers were kept thin and were deposited only on the rear side to allow a quasi-steady-state photoconductance (QSSPC) measurement\(^{45}\) with illumination from the front. The metal layer needs to be thin enough to achieve sufficiently low conductivities for the QSSPC measurement while thick enough to show metal-induced effects on the passivation. The metal thickness of a few Angstroms is sufficient to allow for a metal-induced effect to the band structure at the contact region.\(^{46}\) Moreover, to avoid the nonconformal coating of metals and complete oxidation of Al, a few nanometers can be adequate.\(^{47,48}\) A similar methodology to extract $J_{0,metal}$ have been previously reported in the literature.\(^{49-51}\)

The QSSPC measurement was carried out before and after the thermal evaporation of the Ca/Al stack (see Figure 1A, B). This allowed us to calculate the J_0 of the complete ATOM stack based on implied V_{OC} with a J_S of 36 mA/cm2 (typical J_S of our SHJ solar cells), $kT/q = 25.9$ mV, and $J_{0,blank} = 0$ fA/cm2 (high-quality FZ-Si wafers).

Before Ca/Al evaporation, $J_{0,front}$ is calculated based on the symmetry of the structures. After Ca/Al deposition (see Figure 1B), $J_{0,rear}_{Ca/Al}$ is determined by subtracting $J_{0,front}$ which was already measured before Ca/Al evaporation, from $J_{0,total}_{after\ Ca/Al}$. Assuming the same $J_{0,front}$ before and after Ca/Al evaporation is an acceptable approximation for these contact structures, as during Ca/Al thermal evaporation, the wafer temperature does not exceed 400°C and no process damage is generated because no plasma or e-beam is used.

For the measurement of ρ_c, 100 nm Ca and 200 nm Al were thermally evaporated through a shadow mask, yielding circular contacts with different diameters (200-600 μm) (see Figure 1C). The values of ρ_c were extracted using the 2-contact 2-terminal method.\(^{42,52}\) Consequently, the measured ρ_c includes the ρ_c contribution of all contact layers, as well as the resistive contributions of the bulk of these layers (i-a-Si:H/TiO$_x$/Ca/Al).

Samples for additional analysis were prepared using the same process as the ρ_c samples based on double side chemically polished n-type Cz-Si wafers (3.7 Ω cm, 180-μm thickness). The nanoscale layer structure and the chemical distribution were further investigated by means of transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) measurements.

2.2 Results of test structures

As shown in Table 1, no process damage of a-Si:H is observed after ALD-TiO$_x$ deposition, in contrast to the e-beam evaporated TiO$_x$ in our previous study\(^{52}\) (note that all TiO$_x$ layer in this study were deposited using ALD). J_0 and $J_{0,metal}$ of the i-a-Si:H/TiO$_x$ structure exhibit

\[E_F \]
values similar to the structure without ALD-TiO$_x$, which means that neither the deposition of the TiO$_x$ layer nor the subsequent metallization results in significant damage to the passivation quality that is provided by the a-Si:H layer. A significant reduction of about 2 orders of magnitude in ρ_c was achieved by the interfacial TiO$_x$, which illustrates that the presence of a TiO$_x$ layer induces Fermi-level depinning on the a-Si:H surface. As can be seen in Figure 2, the contact type is also changed from a Schottky contact to an Ohmic contact.

The features of the ATOM contact structures with TiO$_x$ were characterized by TEM and EDX and are shown in Figure 3. The rough c-Si/a-Si:H interface is because of a phase transition region of a few nanometers from crystalline to fully amorphous. The TiO$_x$ layer, of which the thickness is around 2 nm, was deposited uniformly on the i-a-Si:H surface, showing no isolated islands. A closed TiO$_x$ layer is important to achieve E_F depinning, and a uniform TiO$_x$ layer thickness with an amorphous phase is required for homogeneous surface passivation. Furthermore, an interfacial amorphous SiO$_x$ layer can be found in the EDX image between the i-a-Si:H and the TiO$_x$ layers (see Figure 3A). This interfacial SiO$_x$ may have a potentially positive impact on the passivation properties of the ATOM contact structure. According to Kita et al., a dipole can be generated by oxygen movement resulting from a charge imbalance at the SiO$_x$/TiO$_x$ interface, which produces a downward band bending at the contact (see Figure 4B) which is beneficial in passivating electron-selective contacts.

After Ca/Al evaporation, the a-Si:H passivation layer preserves the original amorphous phase in both cases with and without TiO$_x$ in Figure 3C and in Supporting Information Figure S1. Moreover, Al on Ca formed a stack with a clear interface between Ca and Al (see Figure 3D).

Based on previous work, it can be speculated that Ca diffused into the TiO$_x$ layer without any additional annealing. This in-diffusion of Ca within the TiO$_x$ layer may work as a dopant in the TiO$_x$, which results in lowering the conduction band of TiO$_x$. Alternatively, it can be imagined that Ca also induces the formation of defects in the TiO$_x$ layer, especially when Ca is not active as a dopant. This could lead to enhanced trap-assisted transport that also lowers ρ_c. Furthermore, oxygen vacancies can be generated by oxygen extraction from the TiO$_x$ layer by Ca or Al metal. It implies that the oxygen vacancies of TiO$_x$, interfacial SiO$_x$, and likely Ca in-diffusion possibly have a positive impact on increasing the major carrier conductivity and thus a reduction in ρ_c.

The energy band structures of the i-a-Si:H/Ca/Al and ATOM contact are illustrated in Figure 4. It is based on an effective Schottky energy barrier height ($\Phi_{B,eff}$), the layer stacks depicted in Figure 3, and the energy band of amorphous SiO$_x$. Additionally, the movement of oxygen at the a-SiO$_x$/TiO$_x$ interface induces a dipole (negatively charged at SiO$_x$ side and positively charged at TiO$_x$ side from the interface).

Allen et al calculated the $\Phi_{B,eff}$ based on ρ_c using Equation (1) in thermionic emission condition.

$$\rho_c = \left(\frac{k}{qA^\ast T}\right) \exp\left(\frac{\Phi_{B,eff}}{kT}\right)$$ (1)
where A^{∞} is the reduced effective Richardson constant (110 A/cm²/K²), k is the Boltzmann constant, and $\Phi_{B,\text{eff}}$ is the effective Schottky energy barrier at the contact. When this methodology is applied, the extracted $\Phi_{B,\text{eff}}$ on the i-a-Si:H layer is 0.6 eV for Ca and 0.4 eV for the ATOM contact. A significant change of the electron conductivity at the contact is resulting from this difference in barrier height, and $\Phi_{B,\text{eff}}$ of the ATOM contact is comparable to that of a n-Si/Ca/Al contact.¹¹ Temperature-dependent ρ_c measurements could provide more detailed information about the barrier height, although they were not part of this study.

3 | SOLAR CELLS

3.1 | Solar cell preparation

Our ATOM contact was applied to 2-side contacted SHJ cells. The schematic cell structures are shown in Figure 5. All the cell structures investigated had the same hole-selective contact approach featuring the stack i/p-a-Si:H/ITO/Ag on the front side. On the rear side, different stacks were applied: i-a-Si:H/Ca/Al and i-a-Si:H/ALD-TiOₓ/Ca/Al as highly doped Si layer free electron-selective passivating contact.
structures. As a reference contact, i/n-a-Si:H/ITO/Ag, which is commonly used in a classical SHJ cell, was applied.

To fabricate these solar cells, n-type Cz-Si wafers (3.2 Ω cm, 165-μm thickness) with a textured front side and a chemically polished rear side were used. After HF:HCl:O₃ and HF:HCl cleaning, the i/a-Si:H stack was deposited on the textured front side. Subsequently, a-Si:H and n-a-Si:H layers with thicknesses of 4 and of 8 nm, respectively, were deposited by plasma-enhanced chemical vapor deposition (PECVD) for the reference sample, while 8 nm of i-a-Si:H was deposited on the other samples. For the SHJ cell,

FIGURE 5 Schematic cross-sectional structures for the different solar cells with candidate electron-selective contacts [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Effect of candidate electron-selective contact structures on the light IV parameters. A, JSC. B, VOC. C, FF. D, Efficiency. The numbers in the box plot are the average external parameters of the solar cells in that group, while the sample quantity of each group is indicated in (A) with braces ({}). [Colour figure can be viewed at wileyonlinelibrary.com]
a 4-nm-thick i-a-Si:H layer leads to the best cell results. For the other cells, 8-nm-thick i-a-Si:H was applied as this resulted in the best passivation quality without n-a-Si:H, as has been demonstrated previously. After HF dip, the TiO$_x$ layer was deposited by ALD to obtain a layer thickness of 2 nm for the samples with the i-a-Si:H/TiO$_x$/Ca/Al structure. After ITO sputtering, Ag fingers (100 μm wide, 17 μm high) and full area Ag (thickness of 17 μm) were printed on the front and rear sides of the reference cells, while this was only done on the front side of the other samples. Next, a belt furnace annealing at 175°C was performed to sinter the Ag contacts. In all samples but the reference SHJ cells, the rear metallization was completed with Al evaporation which was directly performed after Ca evaporation without breaking the vacuum. As the final step, the wafers were diced into solar cells of 5 × 5 cm2.

Light IV characterization was conducted with an aperture opening of the same size as the active cell area of 4 × 4 cm2 under calibrated illumination (AM 1.5, 1000 W/m2 at 25°C). External quantum efficiency (EQE) and reflectance were measured in the same tool (PVTools LOANA, Germany) using a large beam size of 1.5 × 1.5 cm2. Therefore, the EQE and reflectance results include the shading and reflecting effects of the metal grid.

3.2 Solar cell results

The light IV parameters of the silicon solar cells with the different candidates for electron-selective contacts are shown in Figure 6 and Table 2. The IV curves of champion cells are found in Supporting Information Figure S2. The J_{SC} values of all solar cells appear to be rather low, most likely caused by parasitic absorption in the ITO and the i/a-Si:H stack on the front side of the cells. More specifically, the average J_{SC} of the solar cells with and the cells without TiO$_x$ are similar (see Figure 6A) while the reference cell shows a somewhat higher J_{SC}. V_{OC} and FF are strongly dependent on the applied rear contact structure. ATOM contact which includes TiO$_x$, an average V_{OC} enhancement of 36 mV, and an average FF improvement of 2.3% are achieved with respect to i-a-Si:H/Ca/Al contacted solar cells.

The champion cell is a device with a TiO$_x$ layer showing a V_{OC} of 711 mV. However, all cell parameters are still higher for the reference SHJ solar cells compared to the other cell structures, which will be discussed further at the end of this section.

To improve the understanding of the differences in J_{SC}, the EQE and reflectance curves were measured. As can be seen in Figure 7, much parasitic absorption in the front stack is inferred by low EQE response in short wavelengths. Moreover, the solar cell with the ATOM contact shows a similar EQE at longer wavelengths compared to the other candidate electron-selective contacts except for the reference SHJ contact. In comparison to the i-a-Si:H/Ca/Al contacted solar cell, the lower J_{SC} of the solar cell with the ATOM contact structure is caused by a lower EQE at short wavelengths.

An unintentional variation in front ITO thickness seems to play a role, which can be recognized by the peak shift of the reflectance at shorter wavelengths.

At long wavelengths, there is virtually no difference between the cell with the i-a-Si:H/Ca/Al contact and the cell with the i-a-Si:H/TiO$_x$/Ca/Al (ATOM) contact. This indicates that the amount of parasitic absorption occurring in substoichiometric TiO$_x$ is negligible. The differences with the other cells at long wavelengths can be explained by the impact of the specific metal layout on the rear reflectance (see Figure 7). According to Allen et al., the reflectance of the Ca/Al stack is lower than that for both Al and Ag. Furthermore, as shown in Supporting Information Figure S3 and Table S1, changing the metal from Ag to Ca/Al on i/n-a-Si:H/ITO reduces the EQE and reflectance in the long wavelength range, similar to the reflectance of the i-a-Si:H/Ca/Al contacted solar cell, while it does not change V_{OC} and FF. Although the high EQE at longer wavelengths for the reference cell is partially because of the superior rear surface passivation quality, most of the J_{SC} improvement is caused by the higher reflectance of Ag. For these reasons, strontium (Sr) and ytterbium (Yb) can be good alternatives to calcium (Ca) because of their superior reflectance properties, although still lower than Al.

To further assess the contact performance and the V_{OC} values of the solar cells, SunsV_{OC} measurements have been conducted (see Figure 8). For the solar cells with i-a-Si:H/Ca/Al rear contacts, a bend (dashed circle areas in Figure 8) can be observed in the SunsV_{OC} curve above 1 sun illumination intensity. This phenomenon occurs when $ρ_c$ is high (typically >0.1 Ω cm2) based on the modified Ebers-Moll equivalent circuit analysis (see the circuit diagram in Figure 8).

The measured $ρ_c$ of Ca/Al was about 8 Ω cm2 (see, Table 1). In case of a high $ρ_c$ value corresponding to the Ca/Al contacts, therefore, the overall cell output voltage is decreased because the voltage increase at the rear contact (oppositely directed Schottky diode) is larger than the voltage increase at the normal pn junction.

Table 2

<table>
<thead>
<tr>
<th>Candidate Electron-Selective Contact Structure</th>
<th>J_{SC} (mA/cm2)</th>
<th>V_{OC} (mV)</th>
<th>FF (%)</th>
<th>$η$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-a-Si:H/Ca/Al</td>
<td>35.2</td>
<td>666.3</td>
<td>70.9</td>
<td>16.6</td>
</tr>
<tr>
<td>i-a-Si:H/TiO$_x$/Ca/Al (ATOM)</td>
<td>35.1</td>
<td>710.8</td>
<td>72.9</td>
<td>18.2</td>
</tr>
<tr>
<td>i/n-a-Si:H/ITO/Ag</td>
<td>36.0</td>
<td>734.0</td>
<td>76.4</td>
<td>20.2</td>
</tr>
</tbody>
</table>

The active area and the aperture opening area: 16 cm2.

FIGURE 7 EQE and reflectance for the best cells of the various candidate electron-selective contact structures [Colour figure can be viewed at wileyonlinelibrary.com]
Different a-Si:H properties after annealing a-Si:H with and without TiO$_x$ on the rear side might induce a large difference in V_{OC} between the i-a-Si:H/Ca/Al contacted and the ATOM contacted solar cells. However, similar hydrogen contents of i-a-Si:H after belt furnace annealing at 175°C could be expected because of the very low effusion rate of an i-a-Si:H layer at annealing temperatures below 300°C.$^{70-73}$ Furthermore, the similar J_0 value in Table 1, the comparable EQE edge at the long wavelength range in Figure 7, and the overlapping SunsV_{OC} curves at the low injection level in Figure 8 support a similar contact passivation quality of both the i-a-Si:H/Ca/Al and the ATOM contacts. Therefore, it can be seen that the low ρ_c of the ATOM contact leads to high external V_{OC}.

On the other hand, the reference contact shows the highest V_{OC} among the test groups because of the lower $J_{0,\text{metal}}$, typically below 10 fA/cm2, and a strong field effect passivation. More downward band bending with a low ρ_c should be aimed for to improve the electron-selective contact performance, which will be discussed after the FF analysis.

Because the performance of the various contact structures investigated in this work is very different in their J_0 and ρ_c values, it is interesting to consider the FF losses in more detail as shown in Figure 9A. The series resistance of the solar cells is characterized using the Bowden method,74 and the FF loss is outlined using the Khana method.75 Generally, the FF can be expressed as:

$$
FF = FF_{J01} - \Delta FF_{R_s} - \Delta FF_{R_{sh}} - \Delta FF_{J02}
$$

(5)

where FF_{J01} is the maximum attainable FF for the particular cell considering only $J_{0,\text{rec}}$, ΔFF_{R_s} is the FF loss related to the series resistance of the solar cells as depicted in Figure 9B (including a ρ_c), ΔFF_{J02} is the FF loss resulting from $J_{0,\text{rec}}$ recombination (the recombination in the space charge region), and $\Delta FF_{R_{sh}}$ is the FF loss associated with the shunt resistance of the solar cells. In all these cells, $\Delta FF_{R_{sh}}$ was only a very minor loss factor (0.01%-0.02%), so it is not considered in further detail here.

In the solar cells with i-a-Si:H/Ca/Al contacts, the sum of ΔFF_{R_s} and FF is already slightly higher (1%-2%) than FF_{J01} because of the lower accuracy of the analysis in case of these solar cells because of the low FF value. Therefore, the FF_{J02} values for the solar cells with i-a-Si:H/Ca/Al contacts are not mentioned in Figure 9A.

The very large ΔFF_{R_s} of 15% in the solar cell with an i-a-Si:H/Ca/Al rear contact can be significantly reduced by inserting the interfacial TiO$_x$ layer. The resulting performance of the ATOM contacts incorporating TiO$_x$ already yields a ΔFF_{R_s} below 10% and a R_s close to 2 Ω cm2, which approaches the values measured for the reference SHJ contact (i/n-a-Si:H/ITO/Ag). This FF analysis underlines that an

FIGURE 8 SunsV_{OC} measurements of the best solar cell in each group. The corresponding circuit diagram is the modified Ebers-Moll equivalent circuit including a Schottky diode in the rear contact.68 The bend in the curves measured for both Al and Ca/Al contact is marked using a dashed circle [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 FF, FF_{J01}, ΔFF_{R_s}, and ΔFF_{J02} comparison (A) and dependence of the total series resistance of solar cells (B) on the type of metal rear contact. The FF_{R_s} and FF_{J02} losses are indicated in (A) [Colour figure can be viewed at wileyonlinelibrary.com]
TABLE 3 Benchmarking the solar cell results for different passivating electron-selective contact structures

<table>
<thead>
<tr>
<th>Electron Contact Structure</th>
<th>Hole Contact Structure</th>
<th>J_{SC} (mA/cm²)</th>
<th>V_{OC} (mV)</th>
<th>FF (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-a-Si:H/TiO$_x$/Al40</td>
<td>i/p-a-Si:H/ITO/Ag</td>
<td>-</td>
<td>677</td>
<td>54.0</td>
<td>-</td>
</tr>
<tr>
<td>i-a-Si:H/TiO$_x$/ITO/Ag40</td>
<td>i/p-a-Si:H/ITO/Ag</td>
<td>-</td>
<td>492</td>
<td>29.2</td>
<td>-</td>
</tr>
<tr>
<td>i-a-Si:H/TiO$_x$/Al78</td>
<td>Boron diffused emitter/Cr/Pd/Ag</td>
<td>40.5</td>
<td>570</td>
<td>57</td>
<td>13.2</td>
</tr>
<tr>
<td>i-a-Si:H/TiO$_x$/Al/ITO/Ag41</td>
<td>i/p-a-Si:H/ITO/Ag</td>
<td>35.5</td>
<td>612</td>
<td>71.3</td>
<td>15.5</td>
</tr>
<tr>
<td>i-a-Si:H/TiO$_x$/Ca/Al (ATOM, this work)</td>
<td>i/p-a-Si:H/ITO/Ag</td>
<td>35.1</td>
<td>711</td>
<td>72.9</td>
<td>18.2</td>
</tr>
</tbody>
</table>

added TiO$_x$ layer is strongly beneficial when aiming to make a passivating electron-selective contact based on a low work function metal to finally obtain acceptably low values for both J_0 and p_e.

However, the ATOM contact could not yet achieve higher performance than the conventional SHJ contact (i/n-a-Si:H/ITO/Ag). As can be seen in Figure 9A, the lower FF of the cells with the ATOM contact when compared to the reference can be mainly attributed to the higher R_s and the larger recombination ($ΔFF_{rob}$). Taking into account that all cells have the same front structure, the R_s difference is caused by the rear contacts. The higher R_s of the ATOM contacted cells compared to the reference cell might come from a higher p_e resulting from the absence of an n-a-Si:H layer, or be induced by the much thinner rear metal than the printed Ag of the reference. In addition, without n-a-Si:H, and even with the TiO$_x$ and the Ca, the band bending seems to be reduced. Next to that, the thicker i-a-Si:H layer in the ATOM contact (8 nm instead of 4 nm in the reference contact) increases the probability of carrier recombination through the defect states in this layer.

Overall, to improve the ATOM contact performance, it is required to achieve a lower series resistance maintaining similar or lower $J_{0,metal}$ by forming more downward band bending at the electron contacts. The work of Matsui et al76 demonstrated that the band bending could be tunable by the ALD TiO$_x$ growth conditions, likely because of the presence of fixed charge. Therefore, TiO$_x$ material development to control the fixed charge can be another alternative to enhance the band bending. Additionally, replacing the Ca with a lower work function metal could help to bend the bands further down to repel minority carriers more effectively. Possible materials here are again Sr or Yb ($Φ = 2.4-2.5$ eV instead of 2.9 eV for Ca77). These results are first cells demonstrating the ATOM contact, and there is room for further improvement.

In Table 3, the IV parameters for the best ATOM contact cells fabricated in this work are compared with previously reported results.40,41,78 Especially, Ali et al78 tested a-Si:H/TiO$_x$/Al contact in a boron diffused junction solar cell because of good contact passivation of a-Si:H/TiO$_x$ with respect to SiO$_x$/TiO$_x$. However, the cell performance was likely limited by a high contact resistivity and high anneal temperature of 350°C. In the work of Sacchetto et al41 a thin Al layer between TiO$_x$ and ITO was applied to form additional oxygen vacancies in the TiO$_x$ layer. However, it seems difficult to attain a good carrier selectivity79 (a low p_e and a low $J_{0,metal}$) by using TiO$_x$ with not sufficiently low work function metals on an i-a-Si:H passivation layer. As illustrated in this work, combining TiO$_x$ with a low work function metal such as Ca is an efficient route to decrease the p_e and preserve a low $J_{0,metal}$, such that the V_{OC} and FF values of the solar cells can be increased. Additionally, the low-temperature processing of the ATOM contact structure is compatible with the fabrication of hole-selective contacts based on high work function transition metal oxides.$^{33-39}$

Finally, it has been reported that the quality of the Ca/Al electrode can be reduced because of the penetration of water through the pinholes in the capping layers.80,81 Therefore, the stability improvement of ATOM contacts should also be a point of interest for future work.

4 CONCLUSION

The ATOM contact structure including a TiO$_x$ layer and a low work function metal on an a-Si:H passivation layer was evaluated as a candidate for a passivating electron-selective contact for c-Si solar cells. Applying ALD-TiO$_x$ in the ATOM contact is an effective way to obtain a contact structure that combines good passivation properties with a low p_e. The integration of the ATOM contact into SHJ solar cells was successfully demonstrated and the best cell with an ATOM contact achieved a high V_{OC} of 711 mV, a FF of 72.9%, J_{SC} of 35.1 mA/cm2, and an efficiency of 18.2%. However, the absence of a n-a-Si:H layer in the ATOM contact leads to losses in V_{OC} and FF possibly caused by a weaker field effect passivation. These challenges may be overcome by applying a metal with a lower work function and possibly a higher reflectance than Ca, double side randomly textured substrates, improved i-a-Si:H passivation with thinner thickness, and the use of positively charged TiO$_x$ or extrinsically doped TiO$_x$.$^{82-87}$ Although the maximum efficiency of the ATOM contacted solar cell was lower than the more optimized conventional SHJ solar cell, the presented results indicate that the ATOM contact can pave the way toward highly efficient silicon solar cells without heavily doped Si layer.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of imec’s industrial affiliation program for Si-PV. Moreover, we would like to thank Arvid van der Heide and Monica Aleman for EQE reflectance measurements.

ORCID

Jinyoun Cho http://orcid.org/0000-0002-3524-1256

REFERENCES

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Cho J, Melskens J, Debucquoy M, et al. Passivating electron-selective contacts for silicon solar cells based on an a-Si:H/TiOx stack and a low work function metal. Prog Photovolt Res Appl. 2018;26:835-845. https://doi.org/10.1002/pip.3023