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Abstract: Most cancer deaths are caused by secondary tumors formed through metastasis, yet due 

to our limited understanding of this process, prevention remains a major challenge. Recently, cancer 

stem cells (CSCs) have been proposed as the source of metastases, but only little is known about 

their migratory behavior. Oxygen gradients in the tumor have been linked to directional migration 

of breast cancer cells. Here, we present a method to study the effect of oxygen gradients on the 

migratory behavior of breast CSCs using a microfluidic device. Our chip contains a chamber in 

which an oxygen gradient can be generated between hypoxic (<1%) and ambient (21%) conditions. 

We tracked the migration of CSCs obtained from MDA-MB-231 breast cancer cells, and found that 

their migration patterns do not differ from the average MDA-MB-231 population. Surprisingly, we 

found that the cells migrate towards low oxygen levels, in contrast with an earlier study. We 

hypothesize that in our device, migration is exclusively due to the pure oxygen gradient, whereas 

the effects of oxygen in earlier work were obscured by additional cues from the tumor 

microenvironment (e.g., nutrients and metabolites). These results open new research directions into 

the role of oxygen in directing cancer and CSC migration. 

Keywords: cancer stem cells; tumor microenvironment; metastasis; oxygen gradient; migration; 

microfluidics 

 

1. Introduction 

The majority of cancer-related deaths are not caused by the primary tumor, but by the formation 

of secondary tumors through metastasis [1]. Yet due to our limited understanding of this complex 

process, preventing the spread of cancer remains a major challenge. Recently, cancer stem cells 

(CSCs) have been proposed as the source of metastases [2]. CSCs have the ability to self-renew 

indefinitely, and generate all cell types within the tumor. Although there is still controversy 

surrounding the hierarchic nature of several types of cancers, considerable experimental evidence for 

the CSC model has been found: CSCs have been identified and characterized in many different types 

of tumors, such as pancreatic, colorectal, liver, brain, and breast [3,4]. 

A close relation between CSCs and metastasis initiating cells is implied by their shared 

phenotypic and functional properties, such as self-renewal, multipotency, tumorigenicity, 

therapeutic resistance, and genomic instability [2]. Additional evidence for this relation was found in 
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early breast metastases, where cancer cells were shown to possess a distinct stem-cell like gene 

expression profile [5]. Additionally, premetastatic circulating tumor cells (CTCs) from the breast 

share properties with CSCs, such as their tumorigenic potential and expression of CSC markers such 

as CD44 and Aldehyde Dehydrogenase 1 (ALDH1) [6]. As such, it is becoming commonly accepted 

that CSCs, or at least a select subpopulation, are drivers of tumor metastasis. However, direct 

evidence that CSCs shed from the primary tumor form metastases is lacking, possibly due to the 

challenges in detection, identification, and tracking of CSCs. 

The challenges associated with studying metastasis, and especially its early phases, originate 

from the complexity of the tumor microenvironment (TME) from which metastasizing cancer cells 

originate. Several cell-extrinsic cues in the TME can directly affect invasive and migratory behavior, 

such as the extracellular matrix (ECM), mechanics, biochemical cues, and the presence of other 

stromal cell types [7,8]. Of these cues, the local oxygen concentration is highly relevant for both CSC 

maintenance and differentiation. 

The hypoxic conditions as present in the tumor core have been shown to increase the amount of 

CSCs in MDA-MB-231 breast cancer cells in vitro [9]. This is attributed to both hypoxia and tissue 

stiffness in vitro, via the integrin-linked kinase (ILK) mechanotransducer and regulation by the PI3K/ 

AKT pathway [10–12]. Both this relation and stem cell marker expression in cancer cells have been 

linked to hypoxia inducible factor (HIF) [13,14]. This factor, which responds to hypoxic conditions, 

also has distinct effects on the migration of cancer cells. It is known to induce the epithelial 

mesenchymal transition (EMT) in cancer cells via HIF-1 activation mediated by Notch signaling [15]. 

Through EMT, cancer cells obtain a more migratory phenotype, leading to a loss of cell–cell adhesions 

and polarity, and increased motility [3]. There seems to be a link between EMT and CSCs, as elevated 

CSC marker expression is found in cells that have undergone EMT [16]. Although the necessity of 

EMT for metastasis is still disputed, the role of HIF and hypoxia in directing cancer cell dissemination 

is well established [17,18]. 

Recently, breast cancer cells have been shown to respond to not only hypoxia (reduced oxygen), 

but to a gradient of oxygen [19]. In this study, MDA-MB-231 breast cancer cells migrated towards 

higher oxygen levels, which has interesting implications for the mechanisms through which they 

invade and metastasize. It implies that breast cancer cells tend to migrate away from the tumor 

hypoxic core to invade, which makes the oxygen level inside the tumor, or oxygen-affected signaling 

pathways, possible targets for metastasis prevention. 

However, not much is known about the migratory behavior of the CSC subpopulation, arguably 

one of the most important properties of metastasizing cells. If these cells are indeed involved in the 

formation of metastases, understanding their migratory behavior in the complex TME is of key 

importance. Therefore, learning more about the CSC migration with respect to different TME cues is 

essential to understanding their role in metastasis. In this work, we focus on the effect of an oxygen 

gradient on their direction of migration. Our main aim is to find out whether the O2 gradient 

differentially affects the migration of CSCs as opposed to the average cancer cell population in breast 

cancer. 

For this purpose, we developed a microfluidic chip that can generate an oxygen gradient 

between hypoxic and ambient conditions, and is capable of maintaining a stable gradient for 24 hours. 

Our device facilitates live observation and single cell tracking inside the gradient. We used the device 

to measure the migration patterns of normal and CSC enriched populations of MDA-MB-231 breast 

cancer cells, with and without the oxygen gradient. 

Our results indicate that the migration patterns in an oxygen gradient of MDA-MB-231 CSCs do 

not differ from the average cancer cell population. This indicates that either the migration of CSCs 

and non-CSCs is alike, or that an oxygen gradient alone is not enough to elicit a different response. 

Interestingly, we find that in contrast to an earlier study [19], MDA-MB-231 cells tend to migrate 

towards lower oxygen levels. These results open new directions of research into the role of oxygen 

in directing cancer and CSC migration. 
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2. Results 

2.1. Oxygen Gradient Chip 

A polydimethylsiloxane (PDMS) microfluidic device was developed, shown in Figure 1a, 

containing a chamber in which an oxygen gradient can be generated over a large (10 mm) distance, 

between hypoxic (<1%) and ambient (21%) conditions. This gradient contains all oxygen levels 

associated with breast cancer, ranging from median oxygen levels of 1.3% in the tumor, to median 

levels of 6.8% in healthy breast tissue [20]. The gradient is initiated and maintained by continuous 

perfusion of a microchannel, adjacent to the chamber, with an oxygen scavenging sodium sulfite 

(Na2SO3) solution. Oxygen continuously diffuses from the surrounding air through the PDMS into 

the leaching channel, which results in a steady-state gradient over the cell culture chamber. The top 

part of the chip is covered by a 0.5 mm thick Poly(methyl methacrylate) (PMMA) diffusion barrier, 

which ensures that the oxygen diffuses in-plane. A 3D finite element simulation in COMSOL was 

used to optimize the chip dimensions. The final design was able to generate an almost linear oxygen 

gradient over the entire cell culture chamber, as shown in Figure 1b. 

 
(a) 

 
(b) 

Figure 1. The microfluidic chip with simulated oxygen distribution at the glass cell culture surface: 

(a) Picture of the microfluidic device filled with blue dye. The polydimethylsiloxane (PDMS) is 25 × 

30 mm with a height of 2 mm, and bonded to a 25 × 75 mm glass microscope slide. The diffusion 

barrier on top is 0.5 mm thick, and has the same dimensions as the PDMS. The gradient direction in 

the chamber is indicated with a blue triangle and (b) simulation of the steady-state oxygen 

distribution in the chip. The chamber outline and chip symmetry line are shown in black. 

 
(a) 

 
(b) 

Figure 2. Measured oxygen gradient inside the microfluidic chip: (a) The measured oxygen 

concentration in the chamber at several time points compared to the simulation data and (b) the 

average oxygen concentration across the entire chamber, based on 10 measurements done within 1 

hour, performed in two parts. The brighter lines indicate the standard deviation of these 

measurements. 
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To validate the oxygen profile, oxygen concentration measurements were performed using an 

oxygen sensitive fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (RTDP). 

Measurements over time show that the O2 gradient shape develops within approximately 4 h, and 

the predicted concentrations are reached after 17 h, shown in Figure 2a. The concentration profile is 

in good agreement with the COMSOL simulation, with only small deviations from the computed 

gradient. The steady-state O2 gradient across the entire chamber, measured in two parts after 24 

hours, showed similar agreement, as shown in Figure 2b. Only at the edge of the chamber, where 

oxygen levels are highest, a significant deviation from the simulation is found. This deviation is most 

probably caused by fabrication inaccuracies near the chip edge. 

Taken together, the data show that our microfluidic chip is able to generate a stable oxygen 

gradient over a large distance, in good agreement with the predicted values. The stable gradient 

between 17 and 24 h enables the tracking of cell migration in constant conditions, making the device 

well suited for our migration study. 

2.2. Cancer Stem Cell Migration in an Oxygen Gradient 

Using the developed microfluidic oxygen gradient chip, migration experiments were performed 

with both MDA-MB-231 breast cancer cells, and CSC enriched populations from the same source. 

The enrichment of CSCs was confirmed experimentally by measuring ALDH activity, shown in 

Appendix A1. In order to investigate their migratory behavior, four conditions were tested: MDA-

MB-231 cancer cells with and without gradient and CSC enriched cells with and without gradient. 

All conditions were tested in three independent experiments, and cell migration was tracked between 

17.5 and 24 h after the cells had adhered. 

Typical migration tracks are shown in Figure 3, paired with the weighted angular histograms of 

the final cell positions. In the conditions without oxygen gradient, mostly random migration is 

observed in the tracking graphs, as visible in Figure 3a,b. At first sight, this is also the case for the 

normal MDA-MB-231 cells in an oxygen gradient, seen in Figure 3c, but the CSC enriched cells clearly 

show some deviation towards lower oxygen concentration, as seen in Figure 3d. The corresponding 

weighted angular histogram also shows this trend. In the weighted angular histogram of CSC 

without gradient condition, we also see a deviation towards the positive y-direction, which is mostly 

caused by one cell that migrated relatively far in this direction. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 3. Representative migration tracks and weighted angular histograms of the final cell positions 

for the four different conditions. A blue triangle shows the direction of the oxygen gradient in the two 

gradient conditions. The starting points of the migration tracks of each cell are offset to (0,0). Each 

graph contains the data of all 50 tracked cells in a single experiment: (a) Normal MDA-MB-231 cells 

without gradient; (b) CSC enriched cells without gradient; (c) normal MDA-MB-231 cells in oxygen 

gradient; and (d) CSC enriched cells in oxygen gradient. 
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In order to understand the migration patterns better, we further evaluate the average forward 

migration index (FMI), averaged over three independent experiments per condition. This index is a 

measure for how much of the cell migration is actually used to migrate in a certain direction, and is 

therefore a better quantitative descriptor of directional migration than the migration tracks and 

weighted angular histograms. 

As a control, we first evaluate the FMIperpendicular as shown in Figure 4a, which is close to 0 for all 

conditions. This indicates that there is no preferred migration direction perpendicular to the gradient. 

When we analyze FMIparallel in Figure 4b, both regular cells and cancer stems cells appear to migrate 

towards lower oxygen levels. However, only the FMIparallel of CSCs in an O2 gradient shows a 

statistically significant difference compared to MDA-MB-231 cells without gradient, and no 

significant difference is found between MDA-MB-231 cells and CSCs. No significant differences were 

found in the migration velocities and center of mass displacements, found in Appendix A2. 

 
(a) 

 
(b) 

Figure 4. The average forward migration index for all four conditions, defined as the displacement of 

a cell in the indicated direction divided by the total path length: (a) The forward migration index 

(FMI) perpendicular to the oxygen gradient and (b) the FMI parallel to the oxygen gradient. 

*Statistically significant at P<0.05 using a nonparametric Kruskal–Wallis test. 

To investigate whether the migratory behavior of CSCs was affected by the lack of interplay with 

the MDA-MB-231 bulk cell population, two experiments were performed with mixed populations of 

enriched and nonenriched cells. To identify each population, CSCs and bulk cells were obtained from 

MDA-MB-231 strains that stably expressed either GFP or mKO2 fluorescent protein. Migration 

experiments were performed with GFP expressing CSCs and mKO2 expressing MDA-MB-231 cells, 

and vice versa. The FMI perpendicular and parallel to the gradient of these experiments are shown 

in Figure 5a,b. 

The FMIparallel of the two experiments is very similar, both for CSCs and MDA-MB-231 cells. This 

indicates that in mixed populations, we find the same result as in the separate experiments: Both 

MDA-MB-231 bulk cells and their CSCs tend to migrate towards lower oxygen levels, with similar 

FMI. Similar to the previous data, the FMIperpendicular, found in Appendix A3, indicates that there is no 

preferred migration direction perpendicular to the gradient in both experiments. 

To investigate whether the migratory behavior was affected by the local oxygen concentration, 

we extracted the FMIparallel and migration velocity at the single cell level. In these data, found in 

Appendix A4, we did not find a clear influence of local oxygen concentration on migratory behavior. 

Taken together, the data indicate that an oxygen gradient does not differentially affect the 

migration of CSCs as opposed to the average MDA-MB-231 cancer cell population, yet it provides us 

with a surprising result: The direction of migration is opposite to the direction reported in a previous 

study [19].  
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(a) 

 
(b) 

Figure 5. Fluorescent image and the average FMI for mixed populations of cancer stem cell (CSC) 

enriched and nonenriched MDA-MB-231 cells: (a) Representative fluorescent image of a mixed 

population of CSC enriched MDA-mKO2 cells, and MDA-GFP bulk cells. The scale bar is 100 μm. (b) 

The FMI parallel to the oxygen gradient for one experiment (blue) with MDA-GFP bulk cells and CSC 

enriched MDA-mKO2 cells (CSCmKO2), and another (yellow) with MDA-mKO2 bulk cells and CSC 

enriched MDA-GFP cells (CSCGFP). 

3. Discussion 

In this study, we aimed to investigate whether CSCs migrate differently in an oxygen gradient 

than the average cancer cell. Our results with separate CSC enriched or bulk MDA-MB-231 cells 

indicate that this is not the case for MDA-MB-231 breast cancer cells. This also appears to be true for 

mixed populations of CSC enriched or bulk MDA-MB-231 cells, yet a more detailed study into the 

behavior of mixed populations is required to fully confirm this. Taken together, this implies that in 

an oxygen gradient, MDA-MB-231 CSCs do not have a preferred oxygen niche that they migrate 

towards. It does not disprove the possible existence of a CSC niche in vivo, where, for example, 

hypoxia driven CSC maintenance and differentiation can still lead to the development of such a niche 

[11]. However, our data indicate that an oxygen gradient is not a major player in differentially 

directing MDA-MB-231 cells and their CSCs. This suggests that targeting oxygen gradient related 

factors, such as HIF, most likely will not lead to selective changes in migration of CSCs, at least not 

directly via oxygen dependent pathways. Additionally, it might partially explain why metastasis is 

such an inefficient process [21]: If both CSCs and non-CSCs end up in the circulation as CTCs, only 

the low number of CSCs that survives the circulation is capable of colonizing a metastatic site.  

Since we studied CSC migration in the MDA-MB-231 cell line, verification with other cell lines 

is still necessary. Importantly, there are differences in the number of CSCs in the average cell 

population amongst cell lines: MDA-MB-231 cells are known to have a relatively large population of 

CSCs compared to other breast cancer cell lines, such as the MCF-7 and MDA-MB-468 cell lines [22]. 

Alternatively, the experiments could be done with specifically isolated cell populations, based on 

their CSC marker expression, using for example fluorescence activated cell sorting (FACS). Once 

better knowledge about the underlying mechanisms has been established, the results have to be 

validated in in vivo settings as well [23]. 

Our most surprising finding is that MDA-MB-231 cells tend to migrate towards lower oxygen 

levels, which is in contrast to an earlier study [19]. The difference can possibly be explained by their 

method to generate an oxygen gradient, which is based on limiting oxygen influx by largely encasing 

the cells in impermeable glass, relying on cell metabolism to locally deplete oxygen. A downside of 

this method, as already mentioned by the authors, is that nutrients and metabolites are influenced as 

well. This means that along with the oxygen gradient, several other gradients can arise. In our 

method, we generate an oxygen gradient using external control, making it possible to assess the 

impact of this factor alone, with a lower impact of cell metabolism. A similar external oxygen control 

based study seemingly confirms this: A549 lung cancer cells also migrated towards lower oxygen 
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levels when exposed to an oxygen gradient [24]. In addition, the direction of migration in our system 

seems to be in agreement with the typical metastasis path of breast cancer, which is via the lymphatic 

system [25]. Here, oxygen levels are typically lower, possibly attracting cancer cells via the 

surrounding oxygen gradients. 

At this point, it is important to mention that cues from the TME do not act in isolation, but often 

synergistically or in competition with other cues. For example, the A549 lung cancer cells were found 

to exhibit a different response to oxygen gradients in a 3D as opposed to a 2D environment [26], 

indicating interplay between cues from the ECM and the oxygen gradient. Additionally, other 

stromal cells in the TME, known to be involved in directing cancer cell migration, have been shown 

to respond to oxygen levels. One such example are fibroblasts, who have been shown to increase the 

sensitivity of cancer cells to hypoxic stress [27]. To complicate the TME even further, other soluble 

cues are known to affect cancer cell migration, and might even be more important than oxygen. One 

of these cues is provided by epidermal growth factor (EGF), which has been shown to induce higher 

FMI values of 0.25 to 0.35 in in vitro studies [28,29]. These, and more complex interactions are not 

modeled or measured in our device, and their relative roles have to be studied in more detail in future 

work. A good starting point in our system would be to explore different medium conditions and 

surface coatings, to assess the impact of soluble factors and ECM proteins. Additionally, it would be 

very interesting to explore the engagement of different signaling pathways, such as HIF dependent 

pathways. Including these, and any of the other TME cues in our device, is certainly possible, but 

care has to be taken not to complicate things too much: Controlling and varying cues from the TME 

independently is still essential to increase our understanding of cancer cell migration. As such, our 

current study provides insight in the role of oxygen and CSCs in the TME and directions for future 

research. 

4. Materials and Methods 

4.1. Chip Fabrication 

The chips were made using standard soft lithography methods [30], with some additional steps 

to control chip height and include the PMMA O2 diffusion barrier. A master mold was produced by 

spin-coating a 150 μm layer of negative photoresist (su-8 3050, Microchem, Westborough MA, USA) 

onto a silicon wafer, placing a photomask on top, and exposing the resist to 8 mW/cm2 UV-light for 

30 s. The photomask containing the channel geometry was obtained from CAD/Art services, Inc., 

Bandon OR, USA, and the design is found in supplementary file 

“O2_gradient_chip_mask_design.dxf”. In this design, shown in Figure 1a, the leaching channel is 500 

μm wide, and separated from the chamber by a 100 μm wide PDMS wall. The 10 × 10 mm large 

chamber, with in- and outlet regions that transition from 10 to 1 mm over a distance of 8 mm, is 

positioned at a distance of 4 mm from the chip side-wall. The leaching channel is positioned over 10 

mm from the PDMS side-wall on the opposite side. After a post exposure bake, uncured resin was 

removed using a developer (mr. Dev 600, micro resist technology GmbH, Berlin, Germany) for 15 

minutes. A casting frame, laser-cut out of 2 mm thick PMMA sheet, was glued to the mold using 

acrylic glue (Acrifix 1S0116, Evonik, Essen, Germany), to define the width and height of the chip. The 

design files for the casting frame and the corresponding lids are found in supplementary files 

“O2_gradient_chip_casting_frame_PMMA_2mm.dxf” and 

“O2_gradient_chip_casting_lids_PMMA_2 mm.dxf”. 

PDMS (Sylgard 184, Mavom, Alphen aan den Rijn, the Netherlands) base was mixed with curing 

agent at a 10:1 ratio, cast into the chip molds, and degassed in a vacuum. Lids were then placed on 

top of the casting frame to ensure a flat top surface, and the PDMS was cured overnight at 65 °C. The 

chips were removed from the mold, 1.2 mm in- and outlet holes were punched, and the PDMS slab 

was bonded to a glass microscope slide. Briefly, the PDMS and glass slides were both exposed to 50 

W air plasma for 45 s, brought into contact, and cured at 65 °C for 1 h. To attach the PMMA diffusion 

barrier, 20 G blunt needle tips (TE720050PK, RS, Haarlem, the Netherlands) were inserted into the 

in- and outlets, a drop of degassed PDMS was placed onto the chip, and the barriers were pressed on 
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the PDMS to glue them to the chip. The chip was completed by curing it overnight in an oven at 65 

°C. The design file for the diffusion barrier is found in supplementary file 

“O2_gradient_chip_diffusion_barrier_PMMA_0.5mm.dxf”. 

4.2. Oxygen Diffusion Simulation 

The diffusion of oxygen through our microfluidic chip was simulated using the finite element 

simulation program COMSOL Multiphysics. In the simulation the chip was modeled as a solid block 

of PDMS, with an estimated oxygen diffusion coefficient of 3∙10−9 m2/s [31]. The oxygen leaching 

channel was set to have a fixed oxygen concentration of 0%, assuming that the influx of oxygen into 

this channel did not affect the local concentration significantly. The PMMA diffusion barrier was 

modeled including the access ports present in the real chip, with an estimated diffusion coefficient of 

3.7 × 10−12 m2/s [32]. The oxygen diffusion coefficient in cell culture medium in the chamber was 

estimated to be similar to the coefficient in water of 40 °C: 3.2 × 10−9 m2/s [33]. The glass chip bottom 

was modeled by setting the oxygen flux to zero on the PDMS–glass interface. The surrounding air 

was assumed to have a constant oxygen concentration of 21%. Both the steady-state and time 

dependent solutions were computed with a physics dependent mesh, as generated by COMSOL. 

4.3. Oxygen Concentration Measurement 

The oxygen levels in the chip were validated using RTDP (544981-1G, Sigma-Aldrich 

Zwijndrecht, the Netherlands), a red fluorescent dye that is quenched in the presence of oxygen. From 

fluorescent intensity measurements, the local oxygen concentration can be computed using the Stern–
Volmer equation [34]: 

𝐼0

𝐼
= 1 + 𝐾𝑞[O2] (1) 

In which 𝐼0 is the fluorescent intensity at 0% oxygen, 𝐼 the current intensity, 𝐾𝑞 the Stern–Volmer 

quenching constant, and [O2] the current oxygen concentration. Both 𝐼0 and 𝐾𝑞 were obtained from 

two measurements at 0% and 21% (ambient) oxygen levels. These calibration measurements were all 

performed on the exact same location in the chip as the actual measurements, in order to compensate 

for measurement errors due to spatial variations in light intensity, refraction, and absorption. 

For the 21% oxygen calibration measurement, we filled the culture chamber with a 1 mg/mL 

RTDP solution in water, and imaged the chamber at 2.5× with a Leica DM4000B-M microscope. In 

total, 10 images were taken with intervals of 5 min. For the 0% oxygen measurement, the same 

procedure was repeated, but with an RTDP solution supplemented with 50 mg/mL Na2SO3 (71988, 

Fluka) to remove all oxygen from the solution. To obtain local 𝐼0 and 𝐾𝑞 values, the images were 

split into 10 pixel wide strips, perpendicular to the future gradient direction. For each of these strips, 

the average 𝐼0 was obtained from the 0% oxygen measurement, after which 𝐾𝑞 was obtained by 

solving Equation 1 for the 21% oxygen measurement. 

The gradient measurements were then performed by again injecting a 1 mg/mL RTDP solution 

into the chamber, and connecting a 30 mL syringe with a 50 mg/mL Na2SO3 solution to the leaching 

channel. Using a syringe pump (Chemyx, Nexus 3000), the leaching solution was alternately injected 

and withdrawn through the chip at 2 mL/min to ensure maximum oxygen transfer. Images of the 

chip were obtained for 24 h every 5 min, and split into the same strips as the calibration data. For 

each of these strips, the local oxygen concentration was computed using Equation 1. 

4.4. Cell Culture 

MDA-MB-231 human breast adenocarcinoma cells (92020424, Sigma-Aldrich, Zwijndrecht, the 

Netherlands) were used between P40 and P60. They were cultured in T75 flasks, in 13 mL of normal 

culture medium, containing RPMI 1640 medium (11875093, Thermo Fisher, Carlsbad CA, USA) 

supplemented with 10% fetal bovine serum (FBS) (Bovogen, lot 51113, East Keilor, Australia) and 1% 

Penicillin/Streptomycin (P/S) solution (SCC0503, Sanbio, Mountain View CA, USA). Cells were 

passaged 1:10 when they reached 70 to 80% confluency. 
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4.5. Cancer Stem Cell Enrichment 

CSCs were enriched from MDA-MB-231 cells by growing them as spheroids and then selecting 

for cells growing well without adhering [35]. We experimentally confirmed the CSC phenotype by 

ALDH activity using the ALDEFLUOR assay as previously described [35], found in Appendix A1. 

The assay, which is based on non-immunological staining of cells with high ALDH expression and 

FACS detection, was performed according to the manufacturer’s instructions. An almost confluent 

(80–90%) T75 flask was trypsinized to collect the cells, spun down, and resuspended in 10mL of CSC 

enrichment medium, which contained RPMI 1640 medium, 1% P/S, 25 ng/mL EGF (PHG0311, 

Thermo Fisher), 25 ng/mL basic fibroblast growth factor (bFGF) (F0291-25UG, Sigma-Aldrich, 

Zwijndrecht, the Netherlands), and B-27 supplement (17504044, Thermo Fisher, Carlsbad CA, USA). 

The cells were plated in a 94 mm nontreated petri dish (391–0490, VWR), and kept in culture at 37 °C 

and 5% CO2 for 4 to 5 days. To maximize the selection of CSCs, secondary spheroids were formed by 

breaking up primary spheroids and replating them in fresh CSC enrichment medium. Briefly, the 

spheroids were collected from the dish, spun down, and resuspended in 1 mL Trypsin-Versene (LO 

BE17-161E, Westburg, Leusden, the Netherlands). The spheroids were dispersed by vigorous 

pipetting, after which the Trypsin was quenched with normal culture medium. The cells were spun 

down again, resuspended in freshly made CSC enrichment medium, and plated in a new petri dish. 

Only cells from secondary spheroids were used in the migration experiments. 

4.6. Migration Experiments 

Cell migration experiments were done for four different conditions: normal MDA-MB-231 cells 

with and without gradient, and CSC enriched MDA-MB-231 cells with and without gradient. In each 

condition, a standard sterilization and coating protocol was followed: A chip was first sterilized with 

100 μL of 70% ethanol for 5 min, after which it was washed three times with 100 μL of phosphate 

buffered saline (PBS) (LO BE02-017F, Westburg, Leusden, the Netherlands). To coat the chip with 10 

μg/cm2 fibronectin (FC010, Sigma-Aldrich, Zwijndrecht, the Netherlands), 60 μL of 0.67 mg/mL 

solution was injected into the chip and incubated at room temperature for 20 min. The chip was then 

flushed twice with preheated normal cell culture medium, and stored in an incubator until cell 

seeding. 

Cells were seeded in the chip at a density of 6.5 × 105 cells per mL, which roughly compared to 

1 × 105 cells per cm2. The seeded chip was then incubated for 3 h to ensure adhesion, after which the 

cell culture medium was carefully refreshed, and the chip was placed on an incubator microscope 

camera (Lux 10, Cytosmart, Eindhoven, the Netherlands). For the conditions without gradient, image 

collection was started immediately and continued for 24 h with 10 min intervals. For the gradient 

conditions, the oxygen leaching equipment was prepared first. 

A 50 mg/mL Na2SO3 leaching solution in water was prepared and aspirated in a 30 mL syringe, 

which was installed on a syringe pump. The complete pump was placed inside the incubator to avoid 

generation of temperature gradients on top of the oxygen gradient. The leaching channel of the chip 

was connected to the syringe and a 50 mL Falcon tube reservoir, and the pump was set to alternately 

inject and withdraw the leaching solution at 2 mL/min. 

Each experimental condition was repeated three times, and migration tracks were obtained 

manually from 50 cells in each chip, using the MtrackJ plugin in the FIJI image analysis software. The 

data was further analyzed using MATLAB, and several properties were derived from the data: 

Weighted angular histograms, the FMI parallel and perpendicular to the gradient, the average 

migration velocity, and the center of mass displacement. Weighted angular histograms of the final 

cell positions were based on the angle of the line between the initial and final cell positions. The 

migration track plots were divided into eight bins, each spanning 45 degrees, and the contribution of 

each cell was scaled with their distance from (0,0), divided by the average cell distance from (0,0). 

The FMI parallel and perpendicular to the gradient were defined as the migration distance in the 

indicated direction divided by total migration path length. The average migration velocity was 

computed by dividing total migration path length over time. The center of mass displacement was 

defined as the difference between the final and the initial average cell position of all 50 tracked cells. 



Int. J. Mol. Sci. 2018, 19, 3047 10 of 15 

 

4.7. Migration Experiments of Mixed Populations 

We also performed two migration experiments in the oxygen gradient with mixed populations 

of MDA-MB-231 bulk cells and CSC enriched MDA-MB-231 cells. For this purpose, we used two 

MDA-MB-231 strains stably expressing either GFP or mKO2 fluorescent protein, kindly provided to 

us by Dr. Oscar Stassen. These strains are referred to as MDA-GFP and MDA-mKO2, respectively. 

CSC enriched populations were obtained from both strains, and used in the same experiment as 

described in 4.6., with small differences in the cell seeding and data collection procedures. Briefly, we 

performed the experiment with mixed populations of either MDA-GFP CSCs and MDA-mKO2 bulk 

cells, or MDA-mKO2 CSCs and MDA-GFP bulk cells. This to correct for possible effects of the cell 

line modifications. We seeded the MDA-MB-231 cells and CSCs at a 1:1 ratio with the same density 

of 6.5 × 105 cells per mL, and performed the experiments with oxygen gradient as described earlier. 

Afterwards, we imaged the complete chip using a fluorescent microscope (EVOS FL Cell Imaging 

System, Thermo Fisher, Carlsbad CA, USA) to manually identify both populations. Tracking data 

was then obtained for at least 30 cells of each cell strain. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/10/3047/s1. 
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Appendix A1 

We verified the stem cell phenotype after the CSC enrichment protocol by ALDH activity, as 

described previously [35]. The ALDH activity in the CSC enriched samples is significantly higher 

than the baseline activity in MDA-MB-231 cells, see Figure A1. This indicates that the CSC enrichment 

protocol indeed leads to an increased number of stem cell like cancer cells. 

 

Figure A1. Aldehyde dehydrogenase (ALDH) activity of bulk and CSC enriched MDA-MB-231 cells. 

Error bars indicate the standard deviation, based on three samples. * Statistically significant at p < 0.05 

using a nonparametric Kruskal–Wallis test. 

Appendix A2 

From the cell migration data, two other quantities are computed: The average migration velocity 

and the center of mass displacement per condition. The average migration velocity is determined by 

first averaging the migration velocity per tracked cell, as computed from the displacements and time 

intervals between images. Next the average is computed for each sample, containing 50 cells. The 

mean and standard deviation is then computed across all three samples per condition. 

The average migration velocity is similar in all conditions, as seen in Figure A2a. No significant 

differences are found using a nonparametric Kruskal–Wallis test, indicating that the cells in all 

conditions migrate at the same speed on average. 

The center of mass displacement, as seen in Figure A2b, seems to show an increase between 

conditions, with MDA-MB-231 cells without gradient having the lowest, and CSCs in a gradient the 

highest value. However, no significant differences are found using a nonparametric Kruskal–Wallis 

test. 

 
(a) 

 
(b) 

Figure A2. Additional migration properties of MDA-MB-231 cells and their CSC population, 

averaged over three samples per condition: (a) The average migration velocities and (b) the center of 

mass displacements, defined as the total displacement of the average cell position of all 50 tracked 

cells. 
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Appendix A3 

From the migration experiments with mixed bulk and CSC enriched populations, we also 

obtained the FMIperpendicular. This parameter, shown in Figure A3, is close to 0 for all conditions, 

indicating that there is no significant bias perpendicular to the gradient. 

 

Figure A3. The FMI perpendicular to the gradient, obtained from two experiments with mixed MDA-

MB-231 and CSC populations. Data is shown from one experiment (blue) with MDA-GFP bulk cells 

and CSC enriched MDA-mKO2 cells (CSCmKO2) and another (yellow) with MDA-mKO2 bulk cells and 

CSC enriched MDA-GFP cells (CSCGFP). 

Appendix A4 

In order to check for effects of the local oxygen concentration, the FMIparallel values and average 

migration velocities were plotted against the average local oxygen concentration experienced by the 

corresponding cells, shown in Figure A4-1. As a control, the FMIparallel values and average migration 

velocities of the no-gradient condition at environmental oxygen level were plotted against the 

average x-position relative to the chamber wall, shown in Figure A4-2. For both Figures, we pooled 

the tracking data from the three experiments in each condition. In all scatter plots, linear fits were 

added to visualize correlation between x and y-data. 

The linear fit of the FMIparallel in Figure A4-1a seems to indicate that there is a weak but different 

correlation for the MDA-MB-231 bulk population relative to the CSC population. However, a similar 

difference between the two populations is found when no gradient is applied, as seen in Figure A4-

2a. Therefore, we conclude that there is no significant effect of the local oxygen level on the FMIparallel. 

 
(a) 

 
(b) 

Figure A4-1. The FMIparallel and average migration velocity in the oxygen gradient, as a function of 

local oxygen concentration: (a) The FMIparallel of all tracked cells and (b) the average measured 

migration velocity of all tracked cells. For both images, the oxygen level experienced by each cell was 

estimated by taking its average x-position, and computing the local oxygen level at that position. 
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The linear fit of the velocity in Figure A4-1b also seems to indicate different correlation: CSCs 

seem to travel slightly faster at low oxygen levels, while MDA-MB-231 bulk cells seem to travel 

slower. The control without gradient in Figure A4-2b does not show this difference in correlation, 

indicating that the effect could be oxygen gradient specific. However, given the relatively weak 

correlation and the variability found in the FMI data, the significance of this effect is unclear. 

 
(a) 

 
(b) 

Figure A4-2. The FMIparallel and average migration velocity without gradient (at environmental oxygen 

level), as a function of the average x-position relative to the chamber wall: (a) The FMIparallel of all 

tracked cells and (b) the average measured migration velocity of all tracked cells. 
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